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Preface

Audience
This textbook presents an introduction to reinforced concrete design. We authors hope the
material is written in such a manner as to interest students in the subject and to encourage
them to continue its study in the years to come. The text was prepared with an introductory
three-credit course in mind, but sufficient material is included for an additional three-credit
course.

New to This Edition
Updated Code

With the ninth edition of this text, the contents have been updated to conform to the 2011
Building Code of the American Concrete Institute (ACI 318-11). Changes to this edition of the
code include:

• Factored load combinations are now based on ASCE/SEI 7-10, which now treats wind
as a strength level load.

• Minor revisions to development length to headed bars.

• Addition of minimum reinforcement provisions to deep beams.

• Introduction of Grade 80 deformed bars in accordance with ASTM 615 and ASTM 706.

• Zinc and epoxy dual-coated reinforcing bars are now permitted in accordance with ASTM
A1055.

New Chapter on Concrete Masonry

A new chapter on strength design of reinforced concrete masonry has been added to replace the
previous Chapter 20 on formwork. Surveys revealed that the forms chapter was not being used
and that a chapter on masonry would be more valuable. Because strength design of reinforced
concrete masonry is so similar to that of reinforced concrete, the authors felt that this would be
a logical extension to the application of the theories developed earlier in the text. The design
of masonry lintels, walls loaded out-of-plane, and shear walls are included. The subject of this
chapter could easily occupy an entire textbook, so this chapter is limited in scope to only the
basics. An example of the design of each type of masonry element is also included to show
the student some typical applications.

xv
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xvi PREFACE

Units Added to Example Problems

The example problems now have units associated with the input values. This will assist the
student in determining the source of each input value as well as help in the use of dimensional
analysis in determining the correct answers and the units of the answers. Often the student
can catch errors in calculations simply by checking the dimensions of the calculated answer
against what the units are known to be.

Organization

The text is written in the order that the authors feel would follow the normal sequence of
presentation for an introductory course in reinforced concrete design. In this way, it is hoped
that skipping back and forth from chapter to chapter will be minimized. The material on
columns is included in three chapters (Chapters 9, 10, and 11). Some instructors do not have
time to cover the material on slender columns, so it was put in a separate chapter (Chapter
11). The remaining material on columns was separated into two chapters in order to emphasize
the difference between columns that are primarily axially loaded (Chapter 9) and those with
significant bending moment combined with axial load (Chapter 10). The material formerly in
Chapter 21, “Seismic Design of Concrete Structures,” has been updated and moved to a new
appendix (Appendix D).

Instructor and Student Resources
The website for the book is located at www.wiley.com/college/mccormac and contains the
following resources.

For Instructors

Solutions Manual A password-protected Solutions Manual, which contains complete solu-
tions for all homework problems in the text, is available for download. Most are handwritten,
but some are carried out using spreadsheets or Mathcad.

Figures in PPT Format Also available are the figures from the text in PowerPoint format,
for easy creation of lecture slides.

Lecture Presentation Slides in PPT Format Presentation slides developed by Dr. Terry
Weigel of the University of Louisville are available for instructors who prefer to use PowerPoint
for their lectures. The PowerPoint files are posted rather than files in PDF format to permit the
instructor to modify them as appropriate for his or her class.

Sample Exams Examples of sample exams are included for most topics in the text. Prob-
lems in the back of each chapter are also suitable for exam questions.

Course Syllabus A course syllabus along with a typical daily schedule are included in
editable format.

Visit the Instructor Companion Site portion of the book website at www.wiley.com/
college/mccormac to register for a password. These resources are available for instructors
who have adopted the book for their course. The website may be updated periodically with
additional material.

http://www.wiley.com/college/mccormac
http://www.wiley.com/college/mccormac
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For Students and Instructors

Excel Spreadsheets Excel spreadsheets were created to provide the student and the instruc-
tor with tools to analyze and design reinforced concrete elements quickly to compare alternative
solutions. Spreadsheets are provided for most chapters of the text, and their use is self-
explanatory. Many of the cells contain comments to assist the new user. The spreadsheets
can be modified by the student or instructor to suit their more specific needs. In most cases,
calculations contained within the spreadsheets mirror those shown in the example problems
in the text. The many uses of these spreadsheets are illustrated throughout the text. At the
end of most chapters are example problems demonstrating the use of the spreadsheet for that
particular chapter. Space does not permit examples for all of the spreadsheet capabilities. The
examples chosen were thought by the authors to be the most relevant.

Visit the Student Companion Site portion of the book website at www.wiley.com/
college/mccormac to download this software.
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CHAPTER 1Introduction

1.1 Concrete and Reinforced Concrete
Concrete is a mixture of sand, gravel, crushed rock, or other aggregates held together in a
rocklike mass with a paste of cement and water. Sometimes one or more admixtures are added
to change certain characteristics of the concrete such as its workability, durability, and time of
hardening.

As with most rocklike substances, concrete has a high compressive strength and a very
low tensile strength. Reinforced concrete is a combination of concrete and steel wherein the
steel reinforcement provides the tensile strength lacking in the concrete. Steel reinforcing is also
capable of resisting compression forces and is used in columns as well as in other situations,
which are described later.

1.2 Advantages of Reinforced Concrete as a
Structural Material

Reinforced concrete may be the most important material available for construction. It is used
in one form or another for almost all structures, great or small—buildings, bridges, pavements,
dams, retaining walls, tunnels, drainage and irrigation facilities, tanks, and so on.

The tremendous success of this universal construction material can be understood quite
easily if its numerous advantages are considered. These include the following:

1. It has considerable compressive strength per unit cost compared with most other mate-
rials.

2. Reinforced concrete has great resistance to the actions of fire and water and, in fact, is
the best structural material available for situations where water is present. During fires
of average intensity, members with a satisfactory cover of concrete over the reinforcing
bars suffer only surface damage without failure.

3. Reinforced concrete structures are very rigid.

4. It is a low-maintenance material.

5. As compared with other materials, it has a very long service life. Under proper conditions,
reinforced concrete structures can be used indefinitely without reduction of their load-
carrying abilities. This can be explained by the fact that the strength of concrete does
not decrease with time but actually increases over a very long period, measured in years,
because of the lengthy process of the solidification of the cement paste.

6. It is usually the only economical material available for footings, floor slabs, basement
walls, piers, and similar applications.

7. A special feature of concrete is its ability to be cast into an extraordinary variety of
shapes from simple slabs, beams, and columns to great arches and shells.

1
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NCNB Tower in Charlotte, North Carolina, completed 1991.

8. In most areas, concrete takes advantage of inexpensive local materials (sand, gravel, and
water) and requires relatively small amounts of cement and reinforcing steel, which may
have to be shipped from other parts of the country.

9. A lower grade of skilled labor is required for erection as compared with other materials
such as structural steel.

1.3 Disadvantages of Reinforced Concrete as a
Structural Material

To use concrete successfully, the designer must be completely familiar with its weak points as
well as its strong ones. Among its disadvantages are the following:

1. Concrete has a very low tensile strength, requiring the use of tensile reinforcing.

2. Forms are required to hold the concrete in place until it hardens sufficiently. In addi-
tion, falsework or shoring may be necessary to keep the forms in place for roofs, walls,
floors, and similar structures until the concrete members gain sufficient strength to sup-
port themselves. Formwork is very expensive. In the United States, its costs run from
one-third to two-thirds of the total cost of a reinforced concrete structure, with average
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The 320-ft-high Pyramid Sports Arena, Memphis, Tennessee.

values of about 50%. It should be obvious that when efforts are made to improve the
economy of reinforced concrete structures, the major emphasis is on reducing formwork
costs.

3. The low strength per unit of weight of concrete leads to heavy members. This becomes
an increasingly important matter for long-span structures, where concrete’s large dead
weight has a great effect on bending moments. Lightweight aggregates can be used to
reduce concrete weight, but the cost of the concrete is increased.

4. Similarly, the low strength per unit of volume of concrete means members will be
relatively large, an important consideration for tall buildings and long-span structures.

5. The properties of concrete vary widely because of variations in its proportioning and
mixing. Furthermore, the placing and curing of concrete is not as carefully controlled
as is the production of other materials, such as structural steel and laminated wood.

Two other characteristics that can cause problems are concrete’s shrinkage and creep.
These characteristics are discussed in Section 1.11 of this chapter.

1.4 Historical Background
Most people believe that concrete has been in common use for many centuries, but this is
not the case. The Romans did make use of a cement called pozzolana before the birth of
Christ. They found large deposits of a sandy volcanic ash near Mt. Vesuvius and in other
places in Italy. When they mixed this material with quicklime and water as well as sand
and gravel, it hardened into a rocklike substance and was used as a building material. One
might expect that a relatively poor grade of concrete would result, as compared with today’s
standards, but some Roman concrete structures are still in existence today. One example is
the Pantheon (a building dedicated to all gods), which is located in Rome and was completed
in a.d. 126.

The art of making pozzolanic concrete was lost during the Dark Ages and was not revived
until the eighteenth and nineteenth centuries. A deposit of natural cement rock was discovered
in England in 1796 and was sold as “Roman cement.” Various other deposits of natural cement
were discovered in both Europe and America and were used for several decades.
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The real breakthrough for concrete occurred in 1824, when an English bricklayer named
Joseph Aspdin, after long and laborious experiments, obtained a patent for a cement that he
called portland cement because its color was quite similar to that of the stone quarried on the
Isle of Portland off the English coast. He made his cement by taking certain quantities of clay
and limestone, pulverizing them, burning them in his kitchen stove, and grinding the resulting
clinker into a fine powder. During the early years after its development, his cement was used
primarily in stuccos.1 This wonderful product was adopted very slowly by the building industry
and was not even introduced in the United States until 1868; the first portland cement was not
manufactured in the United States until the 1870s.

The first uses of concrete are not very well known. Much of the early work was done
by the Frenchmen François Le Brun, Joseph Lambot, and Joseph Monier. In 1832, Le Brun
built a concrete house and followed it with the construction of a school and a church with
the same material. In about 1850, Lambot built a concrete boat reinforced with a network
of parallel wires or bars. Credit is usually given to Monier, however, for the invention of
reinforced concrete. In 1867, he received a patent for the construction of concrete basins or
tubs and reservoirs reinforced with a mesh of iron wire. His stated goal in working with this
material was to obtain lightness without sacrificing strength.2

From 1867 to 1881, Monier received patents for reinforced concrete railroad ties, floor
slabs, arches, footbridges, buildings, and other items in both France and Germany. Another
Frenchman, François Coignet, built simple reinforced concrete structures and developed basic
methods of design. In 1861, he published a book in which he presented quite a few applications.
He was the first person to realize that the addition of too much water to the mix greatly reduced
concrete’s strength. Other Europeans who were early experimenters with reinforced concrete
included the Englishmen William Fairbairn and William B. Wilkinson, the German G. A.
Wayss, and another Frenchman, François Hennebique.3,4

William E. Ward built the first reinforced concrete building in the United States in Port
Chester, New York, in 1875. In 1883, he presented a paper before the American Society of
Mechanical Engineers in which he claimed that he got the idea of reinforced concrete by
watching English laborers in 1867 trying to remove hardened cement from their iron tools.5

Thaddeus Hyatt, an American, was probably the first person to correctly analyze the
stresses in a reinforced concrete beam, and in 1877, he published a 28-page book on the
subject, entitled An Account of Some Experiments with Portland Cement Concrete, Combined
with Iron as a Building Material. In this book he praised the use of reinforced concrete and
said that “rolled beams (steel) have to be taken largely on faith.” Hyatt put a great deal of
emphasis on the high fire resistance of concrete.6

E. L. Ransome of San Francisco reportedly used reinforced concrete in the early 1870s
and was the originator of deformed (or twisted) bars, for which he received a patent in 1884.
These bars, which were square in cross section, were cold-twisted with one complete turn in
a length of not more than 12 times the bar diameter.7 (The purpose of the twisting was to
provide better bonding or adhesion of the concrete and the steel.) In 1890 in San Francisco,
Ransome built the Leland Stanford Jr. Museum. It is a reinforced concrete building 312 ft
long and 2 stories high in which discarded wire rope from a cable-car system was used as
tensile reinforcing. This building experienced little damage in the 1906 earthquake and the fire

1 Kirby, R. S. and Laurson, P. G., 1932, The Early Years of Modern Civil Engineering (New Haven: Yale University Press),
p. 266.
2 Ibid., pp. 273–275.
3 Straub, H., 1964, A History of Civil Engineering (Cambridge: MIT Press), pp. 205–215. Translated from the German Die
Geschichte der Bauingenieurkunst (Basel: Verlag Birkhauser), 1949.
4 Kirby and Laurson, The Early Years of Modern Civil Engineering, pp. 273–275.
5 Ward, W. E., 1883, “Béton in Combination with Iron as a Building Material,” Transactions ASME, 4, pp. 388–403.
6 Kirby and Laurson, The Early Years of Modern Civil Engineering, p. 275.
7 American Society for Testing Materials, 1911, Proceedings, 11, pp. 66–68.
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Installation of the concrete gravity base substructure (CGBS) for the LUNA oil-and-gas
platform in the Sea of Okhotsk, Sakhalin region, Russia.

that ensued. The limited damage to this building and other concrete structures that withstood
the great 1906 fire led to the widespread acceptance of this form of construction on the West
Coast. Since the early 1900s, the development and use of reinforced concrete in the United
States has been very rapid.8,9

1.5 Comparison of Reinforced Concrete and Structural Steel
for Buildings and Bridges

When a particular type of structure is being considered, the student may be puzzled by the
question, “Should reinforced concrete or structural steel be used?” There is much joking on this
point, with the proponents of reinforced concrete referring to steel as that material that rusts
and those favoring structural steel referring to concrete as the material that, when overstressed,
tends to return to its natural state—that is, sand and gravel.

There is no simple answer to this question, inasmuch as both of these materials have
many excellent characteristics that can be utilized successfully for so many types of structures.
In fact, they are often used together in the same structures with wonderful results.

The selection of the structural material to be used for a particular building depends on
the height and span of the structure, the material market, foundation conditions, local building
codes, and architectural considerations. For buildings of less than 4 stories, reinforced concrete,
structural steel, and wall-bearing construction are competitive. From 4 to about 20 stories,
reinforced concrete and structural steel are economically competitive, with steel having been
used in most of the jobs above 20 stories in the past. Today, however, reinforced concrete
is becoming increasingly competitive above 20 stories, and there are a number of reinforced
concrete buildings of greater height around the world. The 74-story, 859-ft-high Water Tower
Place in Chicago is the tallest reinforced concrete building in the world. The 1465-ft CN tower
(not a building) in Toronto, Canada, is the tallest reinforced concrete structure in the world.

8 Wang, C. K. and Salmon, C. G., 1998, Reinforced Concrete Design, 6th ed. (New York: HarperCollins), pp. 3–5.
9 “The Story of Cement, Concrete and Reinforced Concrete,” Civil Engineering, November 1977, pp. 63–65.
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Although we would all like to be involved in the design of tall, prestigious reinforced
concrete buildings, there are just not enough of them to go around. As a result, nearly all of
our work involves much smaller structures. Perhaps 9 out of 10 buildings in the United States
are 3 stories or fewer in height, and more than two-thirds of them contain 15,000 sq ft or less
of floor space.

Foundation conditions can often affect the selection of the material to be used for the
structural frame. If foundation conditions are poor, using a lighter structural steel frame may
be desirable. The building code in a particular city may favor one material over the other.
For instance, many cities have fire zones in which only fireproof structures can be erected—a
very favorable situation for reinforced concrete. Finally, the time element favors structural steel
frames, as they can be erected more quickly than reinforced concrete ones. The time advantage,
however, is not as great as it might seem at first because, if the structure is to have any type
of fire rating, the builder will have to cover the steel with some kind of fireproofing material
after it is erected.

Making decisions about using concrete or steel for a bridge involves several factors,
such as span, foundation conditions, loads, architectural considerations, and others. In general,
concrete is an excellent compression material and normally will be favored for short-span
bridges and for cases where rigidity is required (as, perhaps, for railway bridges).

1.6 Compatibility of Concrete and Steel
Concrete and steel reinforcing work together beautifully in reinforced concrete structures. The
advantages of each material seem to compensate for the disadvantages of the other. For instance,
the great shortcoming of concrete is its lack of tensile strength, but tensile strength is one of
the great advantages of steel. Reinforcing bars have tensile strengths equal to approximately
100 times that of the usual concretes used.

The two materials bond together very well so there is little chance of slippage between
the two; thus, they will act together as a unit in resisting forces. The excellent bond obtained
is the result of the chemical adhesion between the two materials, the natural roughness of the
bars, and the closely spaced rib-shaped deformations rolled onto the bars’ surfaces.

Reinforcing bars are subject to corrosion, but the concrete surrounding them provides
them with excellent protection. The strength of exposed steel subjected to the temperatures
reached in fires of ordinary intensity is nil, but enclosing the reinforcing steel in concrete
produces very satisfactory fire ratings. Finally, concrete and steel work well together in relation
to temperature changes because their coefficients of thermal expansion are quite close. For steel,
the coefficient is 0.0000065 per unit length per degree Fahrenheit, while it varies for concrete
from about 0.000004 to 0.000007 (average value: 0.0000055).

1.7 Design Codes
The most important code in the United States for reinforced concrete design is the American
Concrete Institute’s Building Code Requirements for Structural Concrete (ACI 318-11).10 This
code, which is used primarily for the design of buildings, is followed for the majority of the
numerical examples given in this text. Frequent references are made to this document, and
section numbers are provided. Design requirements for various types of reinforced concrete
members are presented in the code along with a “commentary” on those requirements. The com-
mentary provides explanations, suggestions, and additional information concerning the design
requirements. As a result, users will obtain a better background and understanding of the code.

10 American Concrete Institute, 2011, Building Code Requirements for Structural Concrete (ACI 318-11), Farmington Hills,
Michigan.
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The ACI Code is not in itself a legally enforceable document. It is merely a statement
of current good practice in reinforced concrete design. It is, however, written in the form of
a code or law so that various public bodies, such as city councils, can easily vote it into their
local building codes, and then it becomes legally enforceable in that area. In this manner, the
ACI Code has been incorporated into law by countless government organizations throughout
the United States. The International Building Code (IBC), which was first published in 2000
by the International Code Council, has consolidated the three regional building codes (Building
Officials and Code Administrators, International Conference of Building Officials, and Southern
Building Code Congress International) into one national document. The IBC Code is updated
every three years and refers to the most recent edition of ACI 318 for most of its provisions
related to reinforced concrete design, with only a few modifications. It is expected that IBC
2012 will refer to ACI 318-11 for most of its reinforced concrete provisions. The ACI 318
Code is also widely accepted in Canada and Mexico and has had tremendous influence on the
concrete codes of all countries throughout the world.

As more knowledge is obtained pertaining to the behavior of reinforced concrete, the
ACI revises its code. The present objective is to make yearly changes in the code in the form
of supplements and to provide major revisions of the entire code every three years.

Other well-known reinforced concrete specifications are those of the American Associ-
ation of State Highway and Transportation Officials (AASHTO) and the American Railway
Engineering Association (AREA).

1.8 SI Units and Shaded Areas
Most of this book is devoted to the design of reinforced concrete structures using U.S.
customary units. The authors, however, feel that it is absolutely necessary for today’s
engineer to be able to design in either customary or SI units. Thus, SI equations, where
different from those in customary units, are presented herein, along with quite a few
numerical examples using SI units. The equations are taken from the American Concrete
Institute’s metric version of Building Code Requirements for Structural Concrete (ACI
318M-11).11

For many people it is rather distracting to read a book in which numbers, equations,
and so on are presented in two sets of units. To try to reduce this annoyance, the authors
have placed a shaded area around any items pertaining to SI units throughout the text.

If readers are working at a particular time with customary units, they can completely
ignore the shaded areas. It is hoped, however, that the same shaded areas will enable a
person working with SI units to easily find appropriate equations, examples, and so on.

1.9 Types of Portland Cement
Concretes made with normal portland cement require about 2 weeks to achieve a sufficient
strength to permit the removal of forms and the application of moderate loads. Such concretes
reach their design strengths after about 28 days and continue to gain strength at a slower rate
thereafter.

11 Ibid.
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One Peachtree Center in Atlanta, Georgia, is 854 ft high; built for
the 1996 Olympics.

On many occasions it is desirable to speed up construction by using high-early-strength
cements, which, although more expensive, enable us to obtain desired strengths in 3 to 7
days rather than the normal 28 days. These cements are particularly useful for the fabrication
of precast members, in which the concrete is placed in forms where it quickly gains desired
strengths and is then removed from the forms and the forms are used to produce more members.
Obviously, the quicker the desired strength is obtained, the more efficient the operation. A
similar case can be made for the forming of concrete buildings floor by floor. High-early-
strength cements can also be used advantageously for emergency repairs of concrete and for
shotcreting (where a mortar or concrete is blown through a hose at a high velocity onto a
prepared surface).

There are other special types of portland cements available. The chemical process that
occurs during the setting or hardening of concrete produces heat. For very massive concrete
structures such as dams, mat foundations, and piers, the heat will dissipate very slowly and can
cause serious problems. It will cause the concrete to expand during hydration. When cooling,
the concrete will shrink and severe cracking will often occur.

Concrete may be used where it is exposed to various chlorides and/or sulfates. Such
situations occur in seawater construction and for structures exposed to various types of soil.
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Some portland cements are manufactured that have lower heat of hydration, and others are
manufactured with greater resistance to attack by chlorides and sulfates.

In the United States, the American Society for Testing and Materials (ASTM) recognizes
five types of portland cement. These different cements are manufactured from just about the
same raw materials, but their properties are changed by using various blends of those materials.
Type I cement is the normal cement used for most construction, but four other types are useful
for special situations in which high early strength or low heat or sulfate resistance is needed:

Type I—The common, all-purpose cement used for general construction work.

Type II—A modified cement that has a lower heat of hydration than does Type I cement
and that can withstand some exposure to sulfate attack.

Type III—A high-early-strength cement that will produce in the first 24 hours a concrete
with a strength about twice that of Type I cement. This cement does have a much
higher heat of hydration.

Type IV—A low-heat cement that produces a concrete which generates heat very slowly.
It is used for very large concrete structures.

Type V—A cement used for concretes that are to be exposed to high concentrations of
sulfate.

Should the desired type of cement not be available, various admixtures may be purchased
with which the properties of Type I cement can be modified to produce the desired effect.

1.10 Admixtures
Materials added to concrete during or before mixing are referred to as admixtures. They are
used to improve the performance of concrete in certain situations as well as to lower its cost.
There is a rather well-known saying regarding admixtures, to the effect that they are to concrete
as beauty aids are to the populace. Several of the most common types of admixtures are listed
and briefly described here.

• Air-entraining admixtures, conforming to the requirements of ASTM C260 and C618, are
used primarily to increase concrete’s resistance to freezing and thawing and provide better
resistance to the deteriorating action of deicing salts. The air-entraining agents cause the
mixing water to foam, with the result that billions of closely spaced air bubbles are
incorporated into the concrete. When concrete freezes, water moves into the air bubbles,
relieving the pressure in the concrete. When the concrete thaws, the water can move out
of the bubbles, with the result that there is less cracking than if air entrainment had not
been used.

• The addition of accelerating admixtures, such as calcium chloride, to concrete will accel-
erate its early strength development. The results of such additions (particularly useful
in cold climates) are reduced times required for curing and protection of the concrete
and the earlier removal of forms. (Section 3.6.3 of the ACI Code states that because
of corrosion problems, calcium chloride may not be added to concretes with embedded
aluminum, concretes cast against stay-in-place galvanized steel forms, or prestressed con-
cretes.) Other accelerating admixtures that may be used include various soluble salts as
well as some other organic compounds.

• Retarding admixtures are used to slow the setting of the concrete and to retard temperature
increases. They consist of various acids or sugars or sugar derivatives. Some concrete
truck drivers keep sacks of sugar on hand to throw into the concrete in case they get
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caught in traffic jams or are otherwise delayed. Retarding admixtures are particularly
useful for large pours where significant temperature increases may occur. They also
prolong the plasticity of the concrete, enabling better blending or bonding of successive
pours. Retarders can also slow the hydration of cement on exposed concrete surfaces or
formed surfaces to produce attractive exposed aggregate finishes.

• Superplasticizers are admixtures made from organic sulfonates. Their use enables engi-
neers to reduce the water content in concretes substantially while at the same time
increasing their slumps. Although superplasticizers can also be used to keep water–cement
ratios constant while using less cement, they are more commonly used to produce work-
able concretes with considerably higher strengths while using the same amount of cement.
(See Section 1.13.) A relatively new product, self-consolidating concrete, uses superplas-
ticizers and modifications in mix designs to produce an extremely workable mix that
requires no vibration, even for the most congested placement situations.

• Waterproofing materials usually are applied to hardened concrete surfaces, but they may
be added to concrete mixes. These admixtures generally consist of some type of soap or
petroleum products, as perhaps asphalt emulsions. They may help retard the penetration
of water into porous concretes but probably don’t help dense, well-cured concretes very
much.

1.11 Properties of Concrete
A thorough knowledge of the properties of concrete is necessary for the student before he or she
begins to design reinforced concrete structures. An introduction to several of these properties
is presented in this section.

Compressive Strength

The compressive strength of concrete, f ′
c , is determined by testing to failure 28-day-old 6-in.

diameter by 12-in. concrete cylinders at a specified rate of loading (4-in. diameter by 8-in.
cylinders were first permitted in the 2008 code in lieu of the larger cylinders). For the 28-day
period, the cylinders are usually kept under water or in a room with constant temperature
and 100% humidity. Although concretes are available with 28-day ultimate strengths from
2500 psi up to as high as 10,000 psi to 20,000 psi, most of the concretes used fall into the
3000-psi to 7000-psi range. For ordinary applications, 3000-psi and 4000-psi concretes are
used, whereas for prestressed construction, 5000-psi and 6000-psi strengths are common. For
some applications, such as for the columns of the lower stories of high-rise buildings, concretes
with strengths up to 9000 psi or 10,000 psi have been used and can be furnished by ready-
mix companies. As a result, the use of such high-strength concretes is becoming increasingly
common. At Two Union Square in Seattle, concrete with strengths up to 19,000 psi was used.

The values obtained for the compressive strength of concretes, as determined by testing,
are to a considerable degree dependent on the sizes and shapes of the test units and the
manner in which they are loaded. In many countries, the test specimens are cubes, 200 mm
(7.87 in.) on each side. For the same batches of concrete, the testing of 6-in. by 12-in. cylinders
provides compressive strengths only equal to about 80% of the values in psi determined with
the cubes.

It is quite feasible to move from 3000-psi concrete to 5000-psi concrete without requiring
excessive amounts of labor or cement. The approximate increase in material cost for such a
strength increase is 15% to 20%. To move above 5000-psi or 6000-psi concrete, however,
requires very careful mix designs and considerable attention to such details as mixing, placing,
and curing. These requirements cause relatively larger increases in cost.
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Several comments are made throughout the text regarding the relative economy of using
different strength concretes for different applications, such as those for beams, columns, foot-
ings, and prestressed members.

To ensure that the compressive strength of concrete in the structure is at least as strong as
the specified value, f ′

c , the design of the concrete mix must target a higher value, f ′
cr . Section

5.3 of the ACI Code requires that the concrete compressive strengths used as a basis for
selecting the concrete proportions exceed the specified 28-day strengths by fairly large values.
For concrete production facilities that have sufficient field strength test records not older than
24 months to enable them to calculate satisfactory standard deviations (as described in ACI
Section 5.3.1.1), a set of required average compressive strengths (f ′

cr ) to be used as the basis
for selecting concrete properties is specified in ACI Table 5.3.2.1. For facilities that do not
have sufficient records to calculate satisfactory standard deviations, ACI Table 5.3.2.2 pro-
vides increases in required average design compressive strength (f ′

cr ) of 1000 psi for specified
concrete strength (f ′

c ) of less than 3000 psi and appreciably higher increases for higher f ′
c

concretes.
The stress–strain curves of Figure 1.1 represent the results obtained from compression

tests of sets of 28-day-old standard cylinders of varying strengths. You should carefully study
these curves because they bring out several significant points:

(a) The curves are roughly straight while the load is increased from zero to about one-third
to one-half the concrete’s ultimate strength.

(b) Beyond this range the behavior of concrete is nonlinear. This lack of linearity of concrete
stress–strain curves at higher stresses causes some problems in the structural analysis of
concrete structures because their behavior is also nonlinear at higher stresses.

(c) Of particular importance is the fact that regardless of strengths, all the concretes reach
their ultimate strengths at strains of about 0.002.

(d) Concrete does not have a definite yield strength; rather, the curves run smoothly on
to the point of rupture at strains of from 0.003 to 0.004. It will be assumed for the
purpose of future calculations in this text that concrete fails at 0.003 (ACI 10.2.3). The
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reader should note that this value, which is conservative for normal-strength concretes,
may not be conservative for higher-strength concretes in the 8000-psi-and-above range.
The European code uses a different value for ultimate compressive strain for columns
(0.002) than for beams and eccentrically loaded columns (0.0035).12

(e) Many tests have clearly shown that stress–strain curves of concrete cylinders are almost
identical to those for the compression sides of beams.

(f) It should be further noticed that the weaker grades of concrete are less brittle than the
stronger ones—that is, they will take larger strains before breaking.

Static Modulus of Elasticity

Concrete has no clear-cut modulus of elasticity. Its value varies with different concrete
strengths, concrete age, type of loading, and the characteristics and proportions of the cement
and aggregates. Furthermore, there are several different definitions of the modulus:

(a) The initial modulus is the slope of the stress–strain diagram at the origin of the curve.

(b) The tangent modulus is the slope of a tangent to the curve at some point along the
curve—for instance, at 50% of the ultimate strength of the concrete.

(c) The slope of a line drawn from the origin to a point on the curve somewhere between
25% and 50% of its ultimate compressive strength is referred to as a secant modulus.

(d) Another modulus, called the apparent modulus or the long-term modulus, is determined
by using the stresses and strains obtained after the load has been applied for a certain
length of time.

Section 8.5.1 of the ACI Code states that the following expression can be used for
calculating the modulus of elasticity of concretes weighing from 90 lb/ft3 to 155 lb/ft3:

Ec = w1.5
c 33

√
f ′
c

In this expression, Ec is the modulus of elasticity in psi, wc is the weight of the concrete in
pounds per cubic foot, and f ′

c is its specified 28-day compressive strength in psi. This is actually
a secant modulus with the line (whose slope equals the modulus) drawn from the origin to a
point on the stress–strain curve corresponding approximately to the stress (0.45 f ′

c ) that would
occur under the estimated dead and live loads the structure must support.

For normal-weight concrete weighing approximately 145 lb/ft3, the ACI Code states that
the following simplified version of the previous expression may be used to determine the
modulus:

Ec = 57,000
√

f ′
c

Table A.1 (see Appendix A at the end of the book) shows values of Ec for different
strength concretes having normal-weight aggregate. These values were calculated with the first
of the preceding formulas assuming 145 lb/ft3 concrete.

12 MacGregor, J. G. and Wight, J. K., 2005, Reinforced Concrete Mechanics and Design, 4th ed. (Upper Saddle River, NJ:
Pearson Prentice Hall), p. 111.
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In SI units, Ec = w1.5
c (0.043)

√
f ′
c with wc varying from 1500 to 2500 kg/m3 and with f ′

c
in N/mm2 or MPa (megapascals). Should normal crushed stone or gravel concrete (with a
mass of approximately 2320 kg/m3) be used, Ec = 4700

√
f ′
c . Table B.1 of Appendix B of

this text provides moduli values for several different strength concretes.
The term unit weight is constantly used by structural engineers working with U.S.

customary units. When using the SI system, however, this term should be replaced by the
term mass density A kilogram is not a force unit and only indicates the amount of matter
in an object. The mass of a particular object is the same anywhere on Earth, whereas the
weight of an object in our customary units varies depending on altitude because of the
change in gravitational acceleration.

Concretes with strength above 6000 psi are referred to as high-strength concretes. Tests
have indicated that the usual ACI equations for Ec when applied to high-strength concretes
result in values that are too large. Based on studies at Cornell University, the expression to
follow has been recommended for normal-weight concretes with f ′

c values greater than 6000 psi
and up to 12,000 psi and for lightweight concretes with f ′

c greater than 6000 psi and up to
9000 psi.13,14

Ec(psi) =
[
40,000

√
f ′
c + 106

] ( wc

145

)1.5

In SI units with f ′
c in MPa and wc in kg/m3, the expression is

Ec(MPa) =
[
3.32

√
f ′
c + 6895

] ( wc

2320

)1.5

Dynamic Modulus of Elasticity

The dynamic modulus of elasticity, which corresponds to very small instantaneous strains, is
usually obtained by sonic tests. It is generally 20% to 40% higher than the static modulus and
is approximately equal to the initial modulus. When structures are being analyzed for seismic
or impact loads, the use of the dynamic modulus seems appropriate.

Poisson’s Ratio

As a concrete cylinder is subjected to compressive loads, it not only shortens in length but also
expands laterally. The ratio of this lateral expansion to the longitudinal shortening is referred
to as Poisson’s ratio. Its value varies from about 0.11 for the higher-strength concretes to as
high as 0.21 for the weaker-grade concretes, with average values of about 0.16. There does
not seem to be any direct relationship between the value of the ratio and the values of items
such as the water–cement ratio, amount of curing, aggregate size, and so on.

13 Nawy, E. G., 2006, Prestressed Concrete: A Fundamental Approach, 5th ed. (Upper Saddle River, NJ: Prentice-Hall),
p. 38.
14 Carrasquillol, R., Nilson, A., and Slate, F., 1981, “Properties of High-Strength Concrete Subject to Short-Term Loads.”
Journal of ACI Proceedings, 78(3), May–June.
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Concert at Naumburg bandshell in Central Park, New York, New York.

For most reinforced concrete designs, no consideration is given to the so-called Poisson
effect. It may very well have to be considered, however, in the analysis and design of arch
dams, tunnels, and some other statically indeterminate structures. Spiral reinforcing in columns
takes advantage of Poisson’s ratio and will be discussed in Chapter 9.

Shrinkage

When the materials for concrete are mixed, the paste consisting of cement and water fills
the voids between the aggregate and bonds the aggregate together. This mixture needs to be
sufficiently workable or fluid so that it can be made to flow in between the reinforcing bars and
all through the forms. To achieve this desired workability, considerably more water (perhaps
twice as much) is used than is necessary for the cement and water to react (called hydration).

After the concrete has been cured and begins to dry, the extra mixing water that was
used begins to work its way out of the concrete to the surface, where it evaporates. As a result,
the concrete shrinks and cracks. The resulting cracks may reduce the shear strength of the
members and be detrimental to the appearance of the structure. In addition, the cracks may
permit the reinforcing to be exposed to the atmosphere or chemicals, such as deicers, thereby
increasing the possibility of corrosion. Shrinkage continues for many years, but under ordinary
conditions probably about 90% of it occurs during the first year. The amount of moisture that
is lost varies with the distance from the surface. Furthermore, the larger the surface area of
a member in proportion to its volume, the larger the rate of shrinkage; that is, members with
small cross sections shrink more proportionately than do those with large cross sections.

The amount of shrinkage is heavily dependent on the type of exposure. For instance, if
concrete is subjected to a considerable amount of wind during curing, its shrinkage will be
greater. In a related fashion, a humid atmosphere means less shrinkage, whereas a dry one
means more.

It should also be realized that it is desirable to use low-absorptive aggregates such as those
from granite and many limestones. When certain absorptive slates and sandstone aggregates are
used, the result may be one and a half or even two times the shrinkage with other aggregates.
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To minimize shrinkage it is desirable to: (1) keep the amount of mixing water to a
minimum; (2) cure the concrete well; (3) place the concrete for walls, floors, and other large
items in small sections (thus allowing some of the shrinkage to take place before the next
section is placed); (4) use construction joints to control the position of cracks; (5) use shrinkage
reinforcement; and (6) use appropriate dense and nonporous aggregates.15

Creep

Under sustained compressive loads, concrete will continue to deform for long periods of time.
After the initial deformation occurs, the additional deformation is called creep, or plastic flow.
If a compressive load is applied to a concrete member, an immediate or instantaneous elastic
shortening occurs. If the load is left in place for a long time, the member will continue to shorten
over a period of several years, and the final deformation will usually be two to three times the
initial deformation. You will find in Chapter 6 that this means that long-term deflections may
also be as much as two or three times initial deflections. Perhaps 75% of the total creep will
occur during the first year.

Should the long-term load be removed, the member will recover most of its elastic strain
and a little of its creep strain. If the load is replaced, both the elastic and creep strains will
again develop.

The amount of creep is largely dependent on the amount of stress. It is almost directly
proportional to stress as long as the sustained stress is not greater than about one-half of f ′

c .
Beyond this level, creep will increase rapidly.

Long-term loads not only cause creep but also can adversely affect the strength of the
concrete. For loads maintained on concentrically loaded specimens for a year or longer, there
may be a strength reduction of perhaps 15% to 25%. Thus a member loaded with a sustained
load of, say, 85% of its ultimate compression strength, f ′

c , may very well be satisfactory for a
while but may fail later.16

Several other items affecting the amount of creep are:

• The longer the concrete cures before loads are applied, the smaller will be the creep.
Steam curing, which causes quicker strengthening, will also reduce creep.

• Higher-strength concretes have less creep than do lower-strength concretes stressed at the
same values. However, applied stresses for higher-strength concretes are, in all probabil-
ity, higher than those for lower-strength concretes, and this fact tends to cause increasing
creep.

• Creep increases with higher temperatures. It is highest when the concrete is at about
150◦F to 160◦F.

• The higher the humidity, the smaller will be the free pore water that can escape from the
concrete. Creep is almost twice as large at 50% humidity than at 100% humidity. It is
obviously quite difficult to distinguish between shrinkage and creep.

• Concretes with the highest percentage of cement–water paste have the highest creep
because the paste, not the aggregate, does the creeping. This is particularly true if a
limestone aggregate is used.

• Obviously, the addition of reinforcing to the compression areas of concrete will greatly
reduce creep because steel exhibits very little creep at ordinary stresses. As creep tends

15 Leet, K., 1991, Reinforced Concrete Design, 2nd ed. (New York: McGraw-Hill), p. 35.
16 Rüsch, H., 1960, “Researches Toward a General Flexure Theory for Structural Concrete,” Journal ACI, 57(1), pp. 1–28.
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to occur in the concrete, the reinforcing will block it and pick up more and more of the
load.

• Large concrete members (i.e., those with large volume-to-surface area ratios) will creep
proportionately less than smaller thin members where the free water has smaller distances
to travel to escape.

Tensile Strength

The tensile strength of concrete varies from about 8% to 15% of its compressive strength. A
major reason for this small strength is the fact that concrete is filled with fine cracks. The
cracks have little effect when concrete is subjected to compression loads because the loads
cause the cracks to close and permit compression transfer. Obviously, this is not the case for
tensile loads.

Although tensile strength is normally neglected in design calculations, it is nevertheless
an important property that affects the sizes and extent of the cracks that occur. Furthermore,
the tensile strength of concrete members has a definite reduction effect on their deflections.
(Because of the small tensile strength of concrete, little effort has been made to determine
its tensile modulus of elasticity. Based on this limited information, however, it seems that its
value is equal to its compression modulus.)

You might wonder why concrete is not assumed to resist a portion of the tension in a
flexural member and the steel the remainder. The reason is that concrete cracks at such small
tensile strains that the low stresses in the steel up to that time would make its use uneconomical.
Once tensile cracking has occurred, concrete has no more tensile strength.

The tensile strength of concrete doesn’t vary in direct proportion to its ultimate compres-
sion strength, f ′

c . It does, however, vary approximately in proportion to the square root of f ′
c .

This strength is quite difficult to measure with direct axial tension loads because of problems
in gripping test specimens so as to avoid stress concentrations and because of difficulties in
aligning the loads. As a result of these problems, two indirect tests have been developed to
measure concrete’s tensile strength. These are the modulus of rupture and the split-cylinder
tests.

The tensile strength of concrete in flexure is quite important when considering beam
cracks and deflections. For these considerations, the tensile strengths obtained with the modulus
of rupture test have long been used. The modulus of rupture (which is defined as the flexural
tensile strength of concrete) is usually measured by loading a 6-in. × 6-in. × 30-in. plain
(i.e., unreinforced) rectangular beam (with simple supports placed 24 in. on center) to failure
with equal concentrated loads at its one-third points as per ASTM C78-2002.17 The load is
increased until failure occurs by cracking on the tensile face of the beam. The modulus of
rupture, fr, is then determined from the flexure formula. In the following expressions, b is the
beam width, h is its depth, and M is PL/6, which is the maximum computed moment:

fr = Mc

I
= M (h/2)

1
12 bh3

fr = modulus of rupture = 6M

bh2
= PL

bh2

17 American Society for Testing and Materials, 2002, Standard Test Method for Flexural Strength of Concrete (Using Simple
Beam with Third-Point Loading) (ASTM C78-2002), West Conshohocken, Pennsylvania.
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FI GU RE 1.2 Split-cylinder test.

The stress determined in this manner is not very accurate because, in using the flexure
formula, we are assuming the concrete stresses vary in direct proportion to distances from the
neutral axis. This assumption is not very good.

Based on hundreds of tests, the code (Section 9.5.2.3) provides a modulus of rupture fr
equal to 7.5λ

√
f ′
c , where fr and f ′

c are in units of psi.18 The λ term reduces the modulus of
rupture when lightweight aggregates are used (see Section 1.12).

The tensile strength of concrete may also be measured with the split-cylinder test.19

A cylinder is placed on its side in the testing machine, and a compressive load is applied
uniformly along the length of the cylinder, with support supplied along the bottom for the
cylinder’s full length (see Figure 1.2). The cylinder will split in half from end to end when its
tensile strength is reached. The tensile strength at which splitting occurs is referred to as the
split-cylinder strength and can be calculated with the following expression, in which P is the
maximum compressive force, L is the length, and D is the diameter of the cylinder:

ft = 2P

πLD

Even though pads are used under the loads, some local stress concentrations occur during
the tests. In addition, some stresses develop at right angles to the tension stresses. As a result,
the tensile strengths obtained are not very accurate.

Shear Strength

It is extremely difficult in laboratory testing to obtain pure shear failures unaffected by other
stresses. As a result, the tests of concrete shearing strengths through the years have yielded

18 In SI units, fr = 0.7
√

fc MPa.
19 American Society for Testing and Materials, Standard Test Method.
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values all the way from one-third to four-fifths of the ultimate compressive strengths. You will
learn in Chapter 8 that you do not have to worry about these inconsistent shear strength tests
because design approaches are based on very conservative assumptions of that strength.

1.12 Aggregates
The aggregates used in concrete occupy about three-fourths of the concrete volume. Since
they are less expensive than the cement, it is desirable to use as much of them as possible.
Both fine aggregates (usually sand) and coarse aggregates (usually gravel or crushed stone)
are used. Any aggregate that passes a No. 4 sieve (which has wires spaced 1

4 in. on centers in
each direction) is said to be fine aggregate. Material of a larger size is coarse aggregate.

The maximum-size aggregates that can be used in reinforced concrete are specified in
Section 3.3.2 of the ACI Code. These limiting values are as follows: one-fifth of the narrowest
dimensions between the sides of the forms, one-third of the depth of slabs, or three-quarters of
the minimum clear spacing between reinforcing. Larger sizes may be used if, in the judgment
of the engineer, the workability of the concrete and its method of consolidation are such that
the aggregate used will not cause the development of honeycomb or voids.

Aggregates must be strong, durable, and clean. Should dust or other particles be present,
they may interfere with the bond between the cement paste and the aggregate. The strength
of the aggregate has an important effect on the strength of the concrete, and the aggregate
properties greatly affect the concrete’s durability.

Concretes that have 28-day strengths equal to or greater than 2500 psi and air-dry weights
equal to or less than 115 lb/ft3 are said to be structural lightweight concretes. The aggregates
used for these concretes are made from expanded shales of volcanic origin, fired clays, or
slag. When lightweight aggregates are used for both fine and coarse aggregate, the result is
called all-lightweight concrete. If sand is used for fine aggregate and if the coarse aggregate
is replaced with lightweight aggregate, the result is referred to as sand-lightweight concrete.
Concretes made with lightweight aggregates may not be as durable or tough as those made
with normal-weight aggregates.

Some of the structural properties of concrete are affected by the use of lightweight
aggregates. ACI 318-11 Section 8.4 requires that the modulus of rupture be reduced by the
introduction of the term λ in the equation

fr = 7.5λ
√

f ′
c (ACI Equation 9-10)

or, in SI units with f ′
c in N/mm2, fr = 0.7λ

√
f ′
c

The value of λ depends on the aggregate that is replaced with lightweight material. If only the
coarse aggregate is replaced (sand-lightweight concrete), λ is 0.85. If the sand is also replaced
with lightweight material (all-lightweight concrete), λ is 0.75. Linear interpolation is permitted
between the values of 0.85 and 1.0 as well as from 0.75 to 0.85 when partial replacement
with lightweight material is used. Alternatively, if the average splitting tensile strength of
lightweight concrete, fct, is specified, ACI 318-11 Section 8.6.1 defines λ as

λ = fct

6.7
√

f ′
c

≤ 1.0

For normal-weight concrete and for concrete having normal-weight fine aggregate and a blend
of lightweight and normal-weight coarse aggregate, λ = 1.0. Use of lightweight aggregate
concrete can affect beam deflections, shear strength, coefficient of friction, development lengths
of reinforcing bars and hooked bars, and prestressed concrete design.
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1.13 High-Strength Concretes
Concretes with compression strengths exceeding 6000 psi are referred to as high-strength
concretes. Another name sometimes given to them is high-performance concretes because
they have other excellent characteristics besides just high strengths. For instance, the low
permeability of such concretes causes them to be quite durable as regards the various physical
and chemical agents acting on them that may cause the material to deteriorate.

Up until a few decades ago, structural designers felt that ready-mix companies could
not deliver concretes with compressive strengths much higher than 4000 psi or 5000 psi.
This situation, however, is no longer the case as these same companies can today deliver
concretes with compressive strengths up to at least 9000 psi. Even stronger concretes than
these have been used. At Two Union Square in Seattle, 19,000-psi concrete was obtained
using ready-mix concrete delivered to the site. Furthermore, concretes have been produced in
laboratories with strengths higher than 20,000 psi. Perhaps these latter concretes should be
called super-high-strength concretes or super-high-performance concretes.

If we are going to use a very high-strength cement paste, we must not forget to use a
coarse aggregate that is equally as strong. If the planned concrete strength is, say, 15,000 psi
to 20,000 psi, equally strong aggregate must be used, and such aggregate may very well not
be available within reasonable distances. In addition to the strengths needed for the coarse
aggregate, their sizes should be well graded, and their surfaces should be rough so that better
bonding to the cement paste will be obtained. The rough surfaces of aggregates, however, may
decrease the concrete’s workability.

From an economical standpoint, you should realize that though concretes with 12,000-
psi to 15,000-psi strengths cost approximately three times as much to produce as do 3000-psi
concretes, their compressive strengths are four to five times as large.

High-strength concretes are sometimes used for both precast and prestressed members.
They are particularly useful in the precast industry where their strength enables us to produce
smaller and lighter members, with consequent savings in storage, handling, shipping, and
erection costs. In addition, they have sometimes been used for offshore structures, but their
common use has been for columns of tall reinforced concrete buildings, probably over 25 to
30 stories in height where the column loads are very large, say, 1000 kips or more. Actually,
for such buildings, the columns for the upper floors, where the loads are relatively small, are
probably constructed with conventional 4000-psi or 5000-psi concretes, while high-strength
concretes are used for the lower heavily loaded columns. If conventional concretes were used
for these lower columns, the columns could very well become so large that they would occupy
excessive amounts of rentable floor space. High-strength concretes are also of advantage in
constructing shear walls. (Shear walls are discussed in Chapter 18.)

To produce concretes with strengths above 6000 psi, it is first necessary to use more
stringent quality control of the work and to exercise special care in the selection of the mate-
rials to be used. Strength increases can be made by using lower water–cement ratios, adding
admixtures, and selecting good clean and solid aggregates. The actual concrete strengths used
by the designer for a particular job will depend on the size of the loads and the quality of the
aggregate available.

In recent years, appreciable improvements have been made in the placing, vibrating,
and finishing of concrete. These improvements have resulted in lower water–cement ratios
and, thus, higher strengths. The most important factor affecting the strength of concrete is its
porosity, which is controlled primarily by the water–cement ratio. This ratio should be kept
as small as possible as long as adequate workability is maintained. In this regard, there are
various water-reducing admixtures with which the ratios can be appreciably reduced, while at
the same time maintaining suitable workability.

Concretes with strengths from 6000 psi to 10,000 psi or 12,000 psi can easily be obtained
if admixtures such as silica fume and superplasticizers are used. Silica fume, which is more
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than 90% silicon dioxide, is an extraordinarily fine powder that varies in color from light to
dark gray and can even be blue-green-gray. It is obtained from electric arc furnaces as a by-
product during the production of metallic silicon and various other silicon alloys. It is available
in both powder and liquid form. The amount of silica fume used in a mix varies from 5% to
30% of the weight of the cement.

Silica fume particles have diameters approximately 100 times smaller than the average
cement particle, and their surface areas per unit of weight are roughly 40 to 60 times those
of portland cement. As a result, they hold more water. (By the way, this increase of surface
area causes the generation of more heat of hydration.) The water–cement ratios are smaller,
and strengths are higher. Silica fume is a pozzolan: a siliceous material that by itself has no
cementing quality, but when used in concrete mixes its extraordinarily fine particles react with
the calcium hydroxide in the cement to produce a cementious compound. Quite a few pozzolans
are available that can be used satisfactorily in concrete. Two of the most common ones are fly
ash and silica fume. Here, only silica fume is discussed.

When silica fume is used, it causes increases in the density and strength of the concrete.
These improvements are due to the fact that the ultrafine silica fume particles are dispersed
between the cement particles. Unfortunately, this causes a reduction in the workability of the
concrete, and it is necessary to add superplasticizers to the mix. Superplasticizers, also called
high-range water reducers, are added to concretes to increase their workability. They are made
by treating formaldehyde or napthaline with sulfuric acid. Such materials used as admixtures
lower the viscosity or resistance to flow of the concrete. As a result, less water can be used,
thus yielding lower water–cement ratios and higher strengths.

Organic polymers can be used to replace a part of the cement as the binder. An organic
polymer is composed of molecules that have been formed by the union of thousands of
molecules. The most commonly used polymers in concrete are latexes. Such additives improve
concrete’s strength, durability, and adhesion. In addition, the resulting concretes have excellent
resistance to abrasion, freezing, thawing, and impact.

Another procedure that can increase the strength of concrete is consolidation. When pre-
cast concrete products are consolidated, excess water and air are squeezed out, thus producing
concretes with optimum air contents. In a similar manner, the centrifugal forces caused by the
spinning of concrete pipes during their manufacture consolidate the concrete and reduce the
water and air contents. Not much work has been done in the consolidation area for cast-in-place
concrete because of the difficulty of applying the squeezing forces. To squeeze such concretes,
it is necessary to apply pressure to the forms. One major difficulty in doing this is that very
special care must be used to prevent distortion of the wet concrete members.

1.14 Fiber-Reinforced Concretes
In recent years, a great deal of interest has been shown in fiber-reinforced concrete, and today
there is much ongoing research on the subject. The fibers used are made from steel, plastics,
glass, and other materials. Various experiments have shown that the addition of such fibers in
convenient quantities (normally up to about 1% or 2% by volume) to conventional concretes
can appreciably improve their characteristics.

The compressive strengths of fiber-reinforced concretes are not significantly greater than
they would be if the same mixes were used without the fibers. The resulting concretes, however,
are substantially tougher and have greater resistance to cracking and higher impact resistance.
The use of fibers has increased the versatility of concrete by reducing its brittleness. The reader
should note that a reinforcing bar provides reinforcing only in the direction of the bar, while
randomly distributed fibers provide additional strength in all directions.

Steel is the most commonly used material for the fibers. The resulting concretes seem
to be quite durable, at least as long as the fibers are covered and protected by the cement
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mortar. Concretes reinforced with steel fibers are most often used in pavements, thin shells,
and precast products as well as in various patches and overlays. Glass fibers are more often
used for spray-on applications as in shotcrete. It is necessary to realize that ordinary glass will
deteriorate when in contact with cement paste. As a result, using alkali-resistant glass fibers is
necessary.

The fibers used vary in length from about 0.25 in. up to about 3 in. while their diameters
run from approximately 0.01 in. to 0.03 in. For improving the bond with the cement paste, the
fibers can be hooked or crimped. In addition, the surface characteristics of the fibers can be
chemically modified in order to increase bonding.

The improvement obtained in the toughness of the concrete (the total energy absorbed
in breaking a member in flexure) by adding fibers is dependent on the fibers’ aspect ratio
(length/diameter). Typically, the aspect ratios used vary from about 25 up to as much as 150,
with 100 being about an average value. Other factors affecting toughness are the shape and
texture of the fibers. ASTM C101820 is the test method for determining the toughness of
fiber-reinforced concrete using the third-point beam-loading method described earlier.

When a crack opens up in a fiber-reinforced concrete member, the few fibers bridging
the crack do not appreciably increase the strength of the concrete. They will, however, provide
resistance to the opening up of the crack because of the considerable work that would be
necessary to pull them out. As a result, the ductility and toughness of the concrete is increased.
The use of fibers has been shown to increase the fatigue life of beams and lessen the widths
of cracks when members are subject to fatigue loadings.

The use of fibers does significantly increase costs. It is probably for this reason that fiber-
reinforced concretes have been used for overlays for highway pavements and airport runways
rather than for whole concrete projects. Actually in the long run, if the increased service lives of
fiber-reinforced concretes are considered, they may very well prove to be quite cost-effective.
For instance, many residential contractors use fiber-reinforced concrete to construct driveways
instead of regular reinforced concrete.

Some people have the feeling that the addition of fibers to concrete reduces its slump
and workability as well as its strength. Apparently, they feel this way because the concrete
looks stiffer to them. Actually, the fibers do not reduce the slump unless the quantity is too
great—that is, much above about one pound per cubic yard. The fibers only appear to cause
a reduction in workability, but as a result concrete finishers will often add more water so that
water-cement ratios are increased and strengths decreased. ASTM C1018 uses the third-point
beam-loading method described earlier to measure the toughness and first-crack strength of
fiber-reinforced concrete.

1.15 Concrete Durability
The compressive strength of concrete may be dictated by exposure to freeze-thaw conditions
or chemicals such as deicers or sulfates. These conditions may require a greater compressive
strength or lower water–cement ratio than those required to carry the calculated loads. Chapter 4
of the 2008 code imposes limits on water–cement ratio, f ′

c , and entrained air for elements
exposed to freeze-thaw cycles. For concrete exposed to deicing chemicals, the amount of fly
ash or other pozzolans is limited in this chapter. Finally, the water–cement ratio is limited by
exposure to sulfates as well. The designer is required to determine whether structural load-
carrying requirements or durability requirements are more stringent and to specify the more
restrictive requirements for f ′

c , water–cement ratio, and air content.

20 American Society for Testing and Materials, 1997, Standard Test Method for Flexural Toughness and First-Crack Strength
of Fiber-Reinforced Concrete (Using Simple Beam with Third-Point Loading) (ASTM C1018-1997), West Conshohocken,
Pennsylvania.
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1.16 Reinforcing Steel
The reinforcing used for concrete structures may be in the form of bars or welded wire fabric.
Reinforcing bars are referred to as plain or deformed. The deformed bars, which have ribbed
projections rolled onto their surfaces (patterns differing with different manufacturers) to provide
better bonding between the concrete and the steel, are used for almost all applications. Instead
of rolled-on deformations, deformed wire has indentations pressed into it. Plain bars are not
used very often except for wrapping around longitudinal bars, primarily in columns.

Plain round bars are indicated by their diameters in fractions of an inch as 3 in.
8 φ, 1 in.

2 φ,
and 5 in.

8 φ. Deformed bars are round and vary in sizes from #3 to #11, with two very large sizes,
#14 and #18, also available. For bars up to and including #8, the number of the bar coincides
with the bar diameter in eighths of an inch. For example, a #7 bar has a diameter of 7

8 in. and a
cross-sectional area of 0.60 in.2 (which is the area of a circle with a 7

8 -in. diameter). Bars were
formerly manufactured in both round and square cross sections, but today all bars are round.

The #9, #10, and #11 bars have diameters that provide areas equal to the areas of the
old 1-in. × 1-in. square bars, 1 1

8 -in. × 11
8 -in. square bars, and 1 1

4 -in. × 11
4 -in. square bars,

respectively. Similarly, the #14 and #18 bars correspond to the old 11
2 -in. × 1 1

2 -in. square bars
and 2-in. × 2-in. square bars, respectively. Table A.2 (see Appendix A) provides details as
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Round forms for grandstand support columns at the Texas
Motor Speedway, Fort Worth, Texas.
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to areas, diameters, and weights of reinforcing bars. Although #14 and #18 bars are shown in
this table, the designer should check his or her suppliers to see if they have these very large
sizes in stock. Reinforcing bars may be purchased in lengths up to 60 ft. Longer bars have to
be specially ordered. In general, longer bars are too flexible and difficult to handle.

Welded wire fabric is also frequently used for reinforcing slabs, pavements, and shells,
and places where there is normally not sufficient room for providing the necessary concrete
cover required for regular reinforcing bars. The mesh is made of cold-drawn wires running
in both directions and welded together at the points of intersection. The sizes and spacings
of the wire may be the same in both directions or may be different, depending on design
requirements. Wire mesh is easily placed and has excellent bond with the concrete, and the
spacing of the wires is well controlled.

Table A.3(A) in Appendix A provides information concerning certain styles of welded
wire fabric that have been recommended by the Wire Reinforcement Institute as common
stock styles (normally carried in stock at the mills or at warehousing points and, thus, usually
immediately available). Table A.3(B) provides detailed information about diameters, areas,
weights, and spacings of quite a few wire sizes normally used to manufacture welded wire
fabric. Smooth and deformed wire fabric is made from wires whose diameters range from
0.134 in. to 0.628 in. for plain wire and from 0.225 in. to 0.628 in. for deformed wires.

Smooth wire is denoted by the letter W followed by a number that equals the cross-
sectional area of the wire in hundredths of a square inch. Deformed wire is denoted by the
letter D followed by a number giving the area. For instance, a D4 wire is a deformed wire
with a cross-sectional area equal to 0.04 in.2 Smooth wire fabric is actually included within
the ACI Code’s definition of deformed reinforcement because of its mechanical bonding to the
concrete caused by the wire intersections. Wire fabric that actually has deformations on the
wire surfaces bonds even more to the concrete because of the deformations as well as the wire
intersections. According to the code, deformed wire is not permitted to be larger than D31 or
smaller than D4.

Headed Steel Bars for Concrete Reinforcement (ASTM A970/970M) were added to
the ACI 318 Code in 2008. Headed bars can be used instead of straight or hooked bars,
with considerably less congestion in crowded areas such as beam–column intersections. The
specification covers plain and deformed bars cut to lengths and having heads either forged or
welded to one or both ends. Alternatively, heads may be connected to the bars by internal
threads in the head mating to threads on the bar end or by a separate threaded nut to secure the
head to the bar. Heads are forge formed, machined from bar stock, or cut from plate. Figure 1.3
illustrates a headed bar detail. The International Code Council has published acceptance criteria
for headed ends of concrete reinforcement (ACC 347).

db

FI GU RE 1.3 Headed deformed
reinforcing bar.



McCormac c01.tex V2 - January 9, 2013 2:57 P.M. Page 24

24 CHA P T E R 1 Introduction

1.17 Grades of Reinforcing Steel
Reinforcing bars may be rolled from billet steel, axle steel, or rail steel. Only occasionally,
however, are they rolled from old train rails or locomotive axles. These latter steels have been
cold-worked for many years and are not as ductile as the billet steels.

There are several types of reinforcing bars, designated by the ASTM, which are listed
after this paragraph. These steels are available in different grades as Grade 50, Grade 60, and
so on, where Grade 50 means the steel has a specified yield point of 50,000 psi, Grade 60
means 60,000 psi, and so on.

• ASTM A615: Deformed and plain billet steel bars. These bars, which must be marked
with the letter S (for type of steel), are the most widely used reinforcing bars in the
United States. Bars are of four minimum yield strength levels: 40,000 psi (280 MPa);
60,000 psi (420 MPa); 75,000 psi (520 MPa); and 80,000 psi (550 MPa).

• ASTM A706: Low-alloy deformed and plain bars. These bars, which must be marked
with the letter W (for type of steel), are to be used where controlled tensile properties
and/or specially controlled chemical composition is required for welding purposes. They
are available in two grades: 60,000 psi (420 MPa) and 80,000 psi (550 MPa), designated
as Grade 60 (420) and Grade 80 (550), respectively.

• ASTM A996: Deformed rail steel or axle steel bars. They must be marked with the letter
R (for type of steel).

• When deformed bars are produced to meet both the A615 and A706 specifications, they
must be marked with both the letters S and W.

Designers in almost all parts of the United States will probably never encounter rail or
axle steel bars (A996) because they are available in such limited areas of the country. Of the
23 U.S. manufacturers of reinforcing bars listed by the Concrete Reinforcing Steel Institute,21

only five manufacture rail steel bars and not one manufactures axle bars.
Almost all reinforcing bars conform to the A615 specification, and a large proportion of

the material used to make them is not new steel but is melted reclaimed steel, such as that from
old car bodies. Bars conforming to the A706 specification are intended for certain uses when
welding and/or bending are of particular importance. Bars conforming to this specification may
not always be available from local suppliers.

There is only a small difference between the prices of reinforcing steel with yield strengths
of 40 ksi and 60 ksi. As a result, the 60-ksi bars are the most commonly used in reinforced
concrete design.

When bars are made from steels with fy of 60 ksi or more, the ACI (Section 3.5.3.2)
states that the specified yield strength must be the stress corresponding to a strain of 0.35%.
For bars with fy less than 60 ksi, the yield strength shall be taken as the stress corresponding
to a strain of 0.5%. The ACI (Section 9.4) has established an upper limit of 80 ksi on yield
strengths permitted for design calculations for reinforced concrete. If the ACI were to permit
the use of steels with yield strengths greater than 80 ksi, it would have to provide other design
restrictions, since the yield strain of 80 ksi steel is almost equal to the ultimate concrete strain
in compression. (This last sentence will make sense after the reader has studied Chapter 2.)

There has been gradually increasing demand through the years for Grade 75 and Grade
80 steel, particularly for use in high-rise buildings, where it is used in combination with high-
strength concretes. The results are smaller columns, more rentable floor space, and smaller
foundations for the resulting lighter buildings.

21 Concrete Reinforcing Steel Institute, 2001, Manual of Standard Practice, 27th ed., Chicago. Appendix A, pp. A-1 to A-5.
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Grade 75 and Grade 80 steel are appreciably higher in cost, and the #14 and #18 bars
are often unavailable from stock and will probably have to be specially ordered from the steel
mills. This means that there may have to be a special rolling to supply the steel. As a result,
its use may not be economically justified unless at least 50 or 60 tons are ordered.

Yield stresses above 60 ksi are also available in welded wire fabric, but the specified
stresses must correspond to strains of 0.35%. Smooth fabric must conform to ASTM A185,
whereas deformed fabric cannot be smaller than size D4 and must conform to ASTM A496.

The modulus of elasticity for nonprestressed steels is considered to be equal to 29 × 106

psi. For prestressed steels, it varies somewhat from manufacturer to manufacturer, with a value
of 27 × 106 psi being fairly common.

Stainless steel reinforcing (ASTM A955) was introduced in the 2008 code. It is highly
resistant to corrosion, especially pitting and crevice corrosion from exposure to chloride-
containing solutions such as deicing salts. While it is more expensive than normal carbon
steel reinforcement, its life-cycle cost may be less when the costs of maintenance and repairs
are considered.

1.18 SI Bar Sizes and Material Strengths
The metric version of the ACI Code 318M-11 makes use of the same reinforcing bars used
for designs using U.S. customary units. The metric bar dimensions are merely soft conver-
sions (i.e., almost equivalent) of the customary sizes. The SI concrete strengths (f ′

c ) and
the minimum steel yield strengths (fy) are converted from the customary values into metric
units and rounded off a bit. A brief summary of metric bar sizes and material strengths
is presented in the following paragraphs. These values are used for the SI examples and
homework problems throughout the text.

1. The bar sizes used in the metric version of the code correspond to U.S. sizes
#3 through #18 bars. They are numbered 10, 13, 16, 19, 22, 25, 29, 32, 36, 43,
and 57. These numbers represent the U.S. customary bar diameters rounded to
the nearest millimeter (mm). For instance, the metric #10 bar has a diameter
equal to 9.5 mm, the metric #13 bar has a diameter equal to 12.7 mm, and
so on. Detailed information concerning metric reinforcing bar diameters, cross-
sectional areas, masses, and ASTM classifications is provided in Appendix B,
Tables B.2 and B.3.

2. The steel reinforcing grades, or minimum steel yield strengths, referred to in
the code are 300, 350, 420, and 520 MPa. These correspond, respectively, to
43,511, 50,763, 60,916, and 75,420 psi and, thus, correspond approximately to
Grade 40, 50, 60, and 75 bars. Appendix B, Table B.3 provides ASTM numbers,
steel grades, and bar sizes available in each grade.

3. The concrete strengths in metric units referred to in the code are 17, 21, 24, 28, 35,
and 42 MPa. These correspond respectively to 2466, 3046, 3481, 4061, 5076, and
6092 psi, that is, to 2500-, 3000-, 3500-, 4000-, 5000-, and 6000-psi concretes.

In 1997, the producers of steel reinforcing bars in the United States began to produce
soft metric bars. These are the same bars we have long called standard inch-pound bars, but
they are marked with metric units. Today, the large proportion of metric bars manufactured in
the United States are soft metric. By producing the exact same bars, the industry does not have
to keep two different inventories (one set of inch-pound bar sizes and another set of different
bar sizes in metric units). Table 1.1 shows the bar sizes given in both sets of units.
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TABLE 1.1 Reinforcement Bar Sizes and Areas

Standard Inch-Pound Bars Soft Metric Bars

Bar No. Diameter (in.) Area (in.2) Bar No. Diameter (mm) Area (mm2)

3 0.375 0.11 10 9.5 71

4 0.500 0.20 13 12.7 129

5 0.625 0.31 16 15.9 199

6 0.750 0.44 19 19.1 284

7 0.875 0.60 22 22.2 387

8 1.000 0.79 25 25.4 510

9 1.128 1.00 29 28.7 645

10 1.270 1.27 32 32.3 819

11 1.410 1.56 36 35.8 1006

14 1.693 2.25 43 43.0 1452

18 2.257 4.00 57 57.3 2581

1.19 Corrosive Environments
When reinforced concrete is subjected to deicing salts, seawater, or spray from these substances,
it is necessary to provide special corrosion protection for the reinforcing. The structures usually
involved are bridge decks, parking garages, wastewater treatment plants, and various coastal
structures. We must also consider structures subjected to occasional chemical spills that involve
chlorides.

Should the reinforcement be insufficiently protected, it will corrode; as it corrodes, the
resulting oxides occupy a volume far greater than that of the original metal. The results are
large outward pressures that can lead to severe cracking and spalling of the concrete. This
reduces the concrete protection, or cover, for the steel, and corrosion accelerates. Also, the
bond, or sticking of the concrete to the steel, is reduced. The result of all of these factors is a
decided reduction in the life of the structure.

Section 7.7.6 of the code requires that for corrosive environments, more concrete cover
must be provided for the reinforcing; it also requires that special concrete proportions or mixes
be used.

The lives of such structures can be greatly increased if epoxy-coated reinforcing bars are
used. Such bars need to be handled very carefully so as not to break off any of the coating.
Furthermore, they do not bond as well to the concrete, and their embedment lengths will have
to be increased somewhat for that reason, as you will learn in Chapter 7. A new type of bar
coating, a dual coating of a zinc alloy and an epoxy coating, was introduced in the 2011 ACI
318 Code: ASTM A1055. Use of stainless steel reinforcing, as described in Section 1.14, can
also significantly increase the service life of structures exposed to corrosive environments.

1.20 Identifying Marks on Reinforcing Bars
It is essential for people in the shop and the field to be able to identify at a glance the sizes
and grades of reinforcing bars. If they are not able to do this, smaller and lower-grade bars
other than those intended by the designer may be used. To prevent such mistakes, deformed
bars have rolled-in identification markings on their surfaces. These markings are described in
the following list and are illustrated in Figure 1.4.

1. The producing company is identified with a letter.

2. The bar size number (3 to 18) is given next.
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Main ribs

Letter or symbol
for producing mill

Bar size #11

Type steel*

GRADE 60

Grade mark
Grade line (one line only)

S for billet-steel (A615)
    for rail-steel (A996)
R for rail-steel (A996)
A for axle-steel (A996)
W for low-alloy steel (A706)

*Bars marked with an S and W meet both A615 and A706

Main ribs

Letter or symbol
for producing mill

Bar size #14

Type steel

GRADE 75

Grade mark
Grade line (two lines only)

S for billet-steel (A615)

Main rib

Letter or symbol
for producing mill

Bar size #6

Type steel

GRADES 40 and 50

S for billet-steel (A615)
    for rail-steel (A996)
R for rail-steel (A996)
A for axle-steel (A996)

Main ribs

Letter or symbol
for producing mill

Bar size #36

Type steel*

GRADE 420

Grade mark
Grade line (one line only)

S for billet-steel (A615M)
    for rail-steel (A996M)
R for rail-steel (A996M)
A for axle-steel (A996M)
W for low-alloy steel (A706M)

*Bars marked with an S and W meet both A615 and A706

Main ribs

Letter or symbol
for producing mill

Bar size #43

Type steel

GRADE 520

Grade mark
Grade line (two lines only)

S for billet-steel (A615M)

Main rib

Letter or symbol
for producing mill

Bar size #19

Type steel

GRADES 300 AND 350

S for billet-steel (A615M)
    for rail-steel (A996M)
R for rail-steel (A996M)
A for axle-steel (A996M)
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FI GU RE 1.4 Identification marks for ASTM standard bars.

3. Another letter is shown to identify the type of steel (S for billet, R in addition to a rail
sign for rail steel, A for axle, and W for low alloy).

4. Finally, the grade of the bars is shown either with numbers or with continuous lines. A
Grade 60 bar has either the number 60 on it or a continuous longitudinal line in addition
to its main ribs. A Grade 75 bar will have the number 75 on it or two continuous lines
in addition to the main ribs.
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1.21 Introduction to Loads
Perhaps the most important and most difficult task faced by the structural designer is the
accurate estimation of the loads that may be applied to a structure during its life. No loads
that may reasonably be expected to occur may be overlooked. After loads are estimated,
the next problem is to decide the worst possible combinations of these loads that might
occur at one time. For instance, would a highway bridge completely covered with ice and
snow be simultaneously subjected to fast-moving lines of heavily loaded trailer trucks in
every lane and to a 90-mile lateral wind, or is some lesser combination of these loads more
reasonable?

The next few sections of this chapter provide a brief introduction to the types of loads
with which the structural designer must be familiar. The purpose of these sections is not to
discuss loads in great detail but rather to give the reader a feel for the subject. As will be seen,
loads are classed as being dead, live, or environmental.

1.22 Dead Loads
Dead loads are loads of constant magnitude that remain in one position. They include the weight
of the structure under consideration as well as any fixtures that are permanently attached to
it. For a reinforced concrete building, some dead loads are the frames, walls, floors, ceilings,
stairways, roofs, and plumbing.

To design a structure, it is necessary for the weights or dead loads of the various parts
to be estimated for use in the analysis. The exact sizes and weights of the parts are not known
until the structural analysis is made and the members of the structure are selected. The weights,
as determined from the actual design, must be compared with the estimated weights. If large
discrepancies are present, it will be necessary to repeat the analysis and design using better
estimated weights.

Reasonable estimates of structure weights may be obtained by referring to similar struc-
tures or to various formulas and tables available in most civil engineering handbooks. An
experienced designer can estimate very closely the weights of most structures and will spend
little time repeating designs because of poor estimates.

The approximate weights of some common materials used for floors, walls, roofs, and
the like are given in Table 1.2.

TABLE 1.2 Weights of Some Common Building Materials

Reinforced concrete (12 in.) 150 psf 2 × 12 @ 16-in. double wood floor 7 psf

Acoustical ceiling tile 1 psf Linoleum or asphalt tile 1 psf

Suspended ceiling 2 psf Hardwood flooring ( 7
8 in.) 4 psf

Plaster on concrete 5 psf 1-in. cement on stone-concrete fill 32 psf

Asphalt shingles 2 psf Movable steel partitions 4 psf

3-ply ready roofing 1 psf Wood studs with 1
2 -in. gypsum 8 psf

Mechanical duct allowance 4 psf Clay brick wythes (4 in.) 39 psf
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1.23 Live Loads
Live loads are loads that can change in magnitude and position. They include occupancy loads,
warehouse materials, construction loads, overhead service cranes, equipment operating loads,
and many others. In general, they are induced by gravity.

Some typical floor live loads that act on building structures are presented in Table 1.3.
These loads, which are taken from Table 4-1 in ASCE 7-10,22 act downward and are distributed
uniformly over an entire floor. By contrast, roof live loads are 20 psf (pounds per square feet)
maximum distributed uniformly over the entire roof.

Among the many other types of live loads are:

Traffic loads for bridges—Bridges are subjected to series of concentrated loads of varying
magnitude caused by groups of truck or train wheels.

Impact loads—Impact loads are caused by the vibration of moving or movable loads.
It is obvious that a crate dropped on the floor of a warehouse or a truck bouncing
on uneven pavement of a bridge causes greater forces than would occur if the loads
were applied gently and gradually. Impact loads are equal to the difference between
the magnitude of the loads actually caused and the magnitude of the loads had they
been dead loads.

Longitudinal loads—Longitudinal loads also need to be considered in designing some
structures. Stopping a train on a railroad bridge or a truck on a highway bridge causes
longitudinal forces to be applied. It is not difficult to imagine the tremendous longi-
tudinal force developed when the driver of a 40-ton trailer truck traveling at 60 mph
suddenly has to apply the brakes while crossing a highway bridge. There are other
longitudinal load situations, such as ships running into docks and the movement of
traveling cranes that are supported by building frames.

Miscellaneous loads—Among the other types of live loads with which the structural
designer will have to contend are soil pressures (such as the exertion of lateral earth
pressures on walls or upward pressures on foundations), hydrostatic pressures (such as
water pressure on dams, inertia forces of large bodies of water during earthquakes, and
uplift pressures on tanks and basement structures), blast loads (caused by explosions,
sonic booms, and military weapons), and centrifugal forces (such as those caused on
curved bridges by trucks and trains or similar effects on roller coasters).

TABLE 1.3 Some Typical Uniformly Distributed Live Loads

Lobbies of assembly areas 100 psf Classrooms in schools 40 psf

Dance hall and ballrooms 100 psf Upper-floor corridors in schools 80 psf

Library reading rooms 60 psf Stairs and exitways 100 psf

Library stack rooms 150 psf Heavy storage warehouse 250 psf

Light manufacturing 125 psf Retail stores—first floor 100 psf

Offices in office buildings 50 psf Retail stores—upper floors 75 psf

Residential dwelling areas 40 psf Walkways and elevated platforms 60 psf

psf = pounds per square foot

22 American Society of Civil Engineers, 2010, Minimum Design Loads for Buildingsand Other Structures, ASCE 7-10 (Reston,
VA: American Society of Civil Engineers), pp. 17–19.
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Sewage treatment plant, Redwood City, California.

Live load reductions are permitted, according to Section 4.8 of ASCE 7, because is it
unlikely that the entire structure will be subjected to its full design live load over its entire
floor area all at one time. This reduction can significantly reduce the total design live load on
a structure, resulting in much lower column loads at lower floors and footing loads.

1.24 Environmental Loads
Environmental loads are loads caused by the environment in which the structure is located. For
buildings, they are caused by rain, snow, wind, temperature change, and earthquake. Strictly
speaking, these are also live loads, but they are the result of the environment in which the
structure is located. Although they do vary with time, they are not all caused by gravity or
operating conditions, as is typical with other live loads. In the next few paragraphs, a few
comments are made about the various kinds of environmental loads.

1. Snow and ice. In the colder states, snow and ice loads are often quite important. One
inch of snow is equivalent to approximately 0.5 psf, but it may be higher at lower elevations
where snow is denser. For roof designs, snow loads of from 10 psf to 40 psf are used, the
magnitude depending primarily on the slope of the roof and to a lesser degree on the character
of the roof surface. The larger values are used for flat roofs, the smaller ones for sloped roofs.
Snow tends to slide off sloped roofs, particularly those with metal or slate surfaces. A load of
approximately 10 psf might be used for 45◦ slopes, and a 40-psf load might be used for flat
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roofs. Studies of snowfall records in areas with severe winters may indicate the occurrence of
snow loads much greater than 40 psf, with values as high as 80 psf in northern Maine.

Snow is a variable load, which may cover an entire roof or only part of it. There may be
drifts against walls or buildup in valleys or between parapets. Snow may slide off one roof and
onto a lower one. The wind may blow it off one side of a sloping roof, or the snow may crust
over and remain in position even during very heavy winds. The snow loads that are applied to
a structure are dependent upon many factors, including geographic location, the pitch of the
roof, sheltering, and the shape of the roof.

2. Rain. Although snow loads are a more severe problem than rain loads for the usual
roof, the situation may be reversed for flat roofs—particularly those in warmer climates. If
water on a flat roof accumulates faster than it runs off, the result is called ponding because
the increased load causes the roof to deflect into a dish shape that can hold more water, which
causes greater deflections, and so on. This process continues until equilibrium is reached or
until collapse occurs. Ponding is a serious matter, as illustrated by the large number of flat-roof
failures that occur as a result of ponding every year in the United States. It has been claimed that
almost 50% of the lawsuits faced by building designers are concerned with roofing systems.23

Ponding is one of the common subjects of such litigation.

3. Wind. A survey of engineering literature for the past 150 years reveals many references
to structural failures caused by wind. Perhaps the most infamous of these have been bridge
failures such as those of the Tay Bridge in Scotland in 1879 (which caused the deaths of 75
persons) and the Tacoma Narrows Bridge (Tacoma, Washington) in 1940. There have also
been some disastrous building failures from wind during the same period, such as that of the
Union Carbide Building in Toronto in 1958. It is important to realize that a large percentage
of building failures from wind have occurred during the buildings’ erection.24

A great deal of research has been conducted in recent years on the subject of wind
loads. Nevertheless, more study is needed because the estimation of wind forces can by no
means be classified as an exact science. The magnitude and duration of wind loads vary with
geographical locations, the heights of structures aboveground, the types of terrain around the
structures, the proximity of other buildings, the location within the structure, and the character
of the wind itself.

Chapters 26 to 31 of the ASCE 7-10 specification provide a rather lengthy procedure
for estimating the wind pressures applied to buildings. The procedure involves several factors
with which we attempt to account for the terrain around the building, the importance of the
building regarding human life and welfare, and of course the wind speed at the building site.
Although use of the equations is rather complex, the work can be greatly simplified with the
tables presented in the specification. The reader is cautioned, however, that the tables presented
are for buildings of regular shapes. If a building having an irregular or unusual geometry is
being considered, wind tunnel studies may be necessary.

The basic form of the equation presented in the specification is

p = qCG

In this equation, p is the estimated wind load (in psf) acting on the structure. This wind
load will vary with height above the ground and with the location on the structure. The
quantity, q, is the reference velocity pressure. It varies with height and with exposure to

23 Van Ryzin, Gary, 1980, “Roof Design: Avoid Ponding by Sloping to Drain,” Civil Engineering (January), pp. 77–81.
24 Task Committee on Wind Forces, Committee on Loads and Stresses, Structural Division, ASCE, 1961, “Wind Forces on
Structures,” Final Report, Transactions ASCE 126, Part II, pp. 1124–1125.
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the wind. The aerodynamic shape factor, C, is dependent upon the shape and orientation
of the building with respect to the direction from which the wind is blowing. Lastly,
the gust response factor, G, is dependent upon the nature of the wind and the location
of the building. Other considerations in determining design wind pressure include importance
factor and surface roughness.

4. Seismic loads. Many areas of the world are in earthquake territory, and in those
areas, it is necessary to consider seismic forces in design for all types of structures. Through
the centuries, there have been catastrophic failures of buildings, bridges, and other structures
during earthquakes. It has been estimated that as many as 50,000 people lost their lives in
the 1988 earthquake in Armenia.25 The 1989 Loma Prieta and 1994 Northridge earthquakes
in California caused many billions of dollars of property damage as well as considerable loss
of life. The 2008 earthquake in Sichuan Province, China, caused 69,000 fatalities and another
18,000 missing.

Recent earthquakes have clearly shown that the average building or bridge that has not
been designed for earthquake forces can be destroyed by an earthquake that is not particularly
severe. Most structures can be economically designed and constructed to withstand the forces
caused during most earthquakes. The cost of providing seismic resistance to existing structures
(called retrofitting), however, can be extremely high.

Some engineers seem to think that the seismic loads to be used in design are merely
percentage increases of the wind loads. This assumption is incorrect, however, as seismic loads
are different in their action and are not proportional to the exposed area of the building but
rather are proportional to the distribution of the mass of the building above the particular level
being considered.

Another factor to be considered in seismic design is the soil condition. Almost all of the
structural damage and loss of life in the Loma Prieta earthquake occurred in areas that have
soft clay soils. Apparently these soils amplified the motions of the underlying rock.26

It is well to understand that earthquakes load structures in an indirect fashion. The ground
is displaced, and because the structures are connected to the ground, they are also displaced and
vibrated. As a result, various deformations and stresses are caused throughout the structures.

From the preceding information, you can understand that no external forces are applied
aboveground by earthquakes to structures. Procedures for estimating seismic forces such as
the ones presented in Chapters 11 to 23 of ASCE 7-10 are very complicated. As a result, they
usually are addressed in advanced structural analysis courses, such as structural dynamics or
earthquake resistance design courses.

1.25 Selection of Design Loads
To assist the designer in estimating the magnitudes of live loads with which he or she should
proportion structures, various records have been assembled through the years in the form of
building codes and specifications. These publications provide conservative estimates of live-
load magnitudes for various situations. One of the most widely used design-load specifications
for buildings is that published by the American Society of Civil Engineers (ASCE).27

25 Fairweather, V., 1990, “The Next Earthquake,” Civil Engineering (March), pp. 54–57.
26 Ibid.
27 American Society of Civil Engineers, 2010, Minimum Design Loads for Buildingsand Other Structures, ASCE 7-10 (Reston,
VA: American Society of Civil Engineers), 608 pages.
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Croke Park Stadium, Dublin, Ireland.

The designer is usually fairly well controlled in the design of live loads by the building
code requirements in his or her particular area. Unfortunately, the values given in these various
codes vary from city to city, and the designer must be sure to meet the requirements of a
particular locality. In the absence of a governing code, the ASCE Code is an excellent one to
follow.

Some other commonly used specifications are:

• For railroad bridges, American Railway Engineering Association (AREA).28

• For highway bridges, American Association of State Highway and Transportation Officials
(AASHTO).29

• For buildings, the International Building Code (IBC).30

These specifications will on many occasions clearly prescribe the loads for which struc-
tures are to be designed. Despite the availability of this information, the designer’s ingenuity
and knowledge of the situation are often needed to predict what loads a particular structure
will have to support in years to come. Over the past several decades, insufficient estimates of
future traffic loads by bridge designers have resulted in a great number of replacements with
wider and stronger structures.

1.26 Calculation Accuracy
A most important point, which many students with their amazing computers and pocket cal-
culators have difficulty in understanding, is that reinforced concrete design is not an exact
science for which answers can be confidently calculated to six or eight places. The reasons

28 American Railway Engineering Association (AREA), 2003, Manual for Railway Engineering (Chicago: AREA).
29 Standard Specifications for Highway Bridges, 2002, 17th ed. (Washington, DC: American Association of State Highway
and Transportation Officials [AASHTO]).
30 International Building Code, 2006, International Code Council, Inc.
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for this statement should be quite obvious: The analysis of structures is based on partly true
assumptions; the strengths of materials used vary widely; structures are not built to the exact
dimensions shown on the plans; and maximum loadings can only be approximated. With respect
to this last sentence, how many users of this book could estimate to within 10% the maximum
live load in pounds per square foot that will ever occur on the building floor they are now
occupying? Calculations to more than two or three significant figures are obviously of little
value and may actually mislead students into a false sense of accuracy.

1.27 Impact of Computers on Reinforced Concrete Design
The availability of personal computers has drastically changed the way in which reinforced
concrete structures are analyzed and designed. In nearly every engineering school and office,
computers are routinely used to handle structural design problems.

Many calculations are involved in reinforced concrete design, and many of these calcu-
lations are quite time consuming. With a computer, the designer can reduce the time required
for these calculations tremendously and, thus, supposedly have time to consider alternative
designs.

Although computers do increase design productivity, they do undoubtedly tend at the
same time to reduce the designer’s “feel” for structures. This can be a special problem for
young engineers with little previous design experience. Unless designers have this “feel,”
computer usage, though expediting the work and reducing many errors, may occasionally
result in large mistakes.

It is interesting to note that up to the present time, the feeling at most engineering schools
has been that the best way to teach reinforced concrete design is with chalk and blackboard,
supplemented with some computer examples.

Accompanying this text are several Excel spreadsheets that can be downloaded from this
book’s website at: www.wiley.com/college/mccormac.

These spreadsheets are intended to allow the student to consider multiple alternative
designs and not as a tool to work basic homework problems.

P R O B L E M S

Problem 1.1 Name several of the admixtures that are used in
concrete mixes. What is the purpose of each?

Problem 1.2 What is Poisson’s ratio, and where can it be of
significance in concrete work?

Problem 1.3 What factors influence the creep of concrete?

Problem 1.4 What steps can be taken to reduce creep?

Problem 1.5 What is the effect of creep in reinforced concrete
columns that are subjected to axial compression loads?

Problem 1.6 Why is silica fume used in high-strength
concrete? What does it do?

Problem 1.7 Why do the surfaces of reinforcing bars have
rolled-on deformations?

Problem 1.8 What are “soft metric” reinforcing bars?

Problem 1.9 What are three factors that influence the
magnitude of the earthquake load on a structure?

Problem 1.10 Why are epoxy-coated bars sometimes used in
the construction of reinforced concrete?

Problem 1.11 What is the diameter and cross-sectional area of
a #5 reinforcing bar?

http://www.wiley.com/college/mccormac


McCormac c02.tex V2 - January 10, 2013 6:34 P.M. Page 35

CHAPTER 2Flexural Analysis of Beams

2.1 Introduction
In this section, it is assumed that a small transverse load is placed on a concrete beam with
tensile reinforcing and that the load is gradually increased in magnitude until the beam fails. As
this takes place, the beam will go through three distinct stages before collapse occurs. These
are: (1) the uncracked concrete stage, (2) the concrete cracked–elastic stresses stage, and (3)
the ultimate-strength stage. A relatively long beam is considered for this discussion so that
shear will not have a large effect on its behavior.

Uncracked Concrete Stage

At small loads when the tensile stresses are less than the modulus of rupture (the bending
tensile stress at which the concrete begins to crack), the entire cross section of the beam resists
bending, with compression on one side and tension on the other. Figure 2.1 shows the variation
of stresses and strains for these small loads; a numerical example of this type is presented in
Section 2.2.

Concrete Cracked–Elastic Stresses Stage

As the load is increased after the modulus of rupture of the concrete is exceeded, cracks begin
to develop in the bottom of the beam. The moment at which these cracks begin to form—that
is, when the tensile stress in the bottom of the beam equals the modulus of rupture—is referred
to as the cracking moment, Mcr. As the load is further increased, these cracks quickly spread up
to the vicinity of the neutral axis, and then the neutral axis begins to move upward. The cracks
occur at those places along the beam where the actual moment is greater than the cracking
moment, as shown in Figure 2.2(a).

Now that the bottom has cracked, another stage is present because the concrete in the
cracked zone obviously cannot resist tensile stresses—the steel must do it. This stage will

²c in compression

²s for steel in tension

²c in tension

strains stresses

fc in compression

ft tension in concrete

(This term is defined
 in Section 2.3.)

fs
n

FI GU RE 2.1 Uncracked concrete stage.

35
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FI GU RE 2.2 Concrete cracked–elastic stresses stage.

continue as long as the compression stress in the top fibers is less than about one-half of the
concrete’s compression strength, f ′

c , and as long as the steel stress is less than its yield stress.
The stresses and strains for this range are shown in Figure 2.2(b). In this stage, the compressive
stresses vary linearly with the distance from the neutral axis or as a straight line.

The straight-line stress–strain variation normally occurs in reinforced concrete beams
under normal service-load conditions because at those loads, the stresses are generally less
than 0.50f ′

c . To compute the concrete and steel stresses in this range, the transformed-area
method (to be presented in Section 2.3) is used. The service or working loads are the loads that
are assumed to actually occur when a structure is in use or service. Under these loads, moments
develop that are considerably larger than the cracking moments. Obviously, the tensile side
of the beam will be cracked. You will learn to estimate crack widths and methods of limiting
their widths in Chapter 6.

Beam Failure—Ultimate-Strength Stage

As the load is increased further so that the compressive stresses are greater than 0.50f ′
c , the

tensile cracks move farther upward, as does the neutral axis, and the concrete compression
stresses begin to change appreciably from a straight line. For this initial discussion, it is
assumed that the reinforcing bars have yielded. The stress variation is much like that shown in
Figure 2.3. You should relate the information shown in this figure to that given in Figure 1.1
in Chapter 1 as to the changing ratio of stress to strain at different stress levels.

To further illustrate the three stages of beam behavior that have just been described, a
moment–curvature diagram is shown in Figure 2.4.1 For this diagram, θ is defined as the angle

1 MacGregor, J. G., 2005, Reinforced Concrete Mechanics and Design, 4th ed. (Upper Saddle River, NJ: Prentice Hall), p. 109.
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θ

When failure occurs, concrete
is crushed here.

concrete
compressive
stress

stressesstrains (steel
has yielded)

fy
²y

²c

FI GU RE 2.3 Ultimate-strength stage.

reinforcing bars yield

failure

approximate service or
working load range

M
om

en
t

tensile concrete cracksMcr

Mservice

Myield

Curvature, θ

FI GU RE 2.4 Moment–curvature diagram for reinforced concrete beam with
tensile reinforcing only.

change of the beam section over a certain length and is computed by the following expression
in which ε is the strain in a beam fiber at some distance, y, from the neutral axis of the beam:

θ = ε

y

The first stage of the diagram is for small moments less than the cracking moment, Mcr,
where the entire beam cross section is available to resist bending. In this range, the strains are
small, and the diagram is nearly vertical and very close to a straight line. When the moment is
increased beyond the cracking moment, the slope of the curve will decrease a little because the
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Construction of Kingdome, Seattle, Washington.

beam is not quite as stiff as it was in the initial stage before the concrete cracked. The diagram
will follow almost a straight line from Mcr to the point where the reinforcing is stressed to
its yield point. Until the steel yields, a fairly large additional load is required to appreciably
increase the beam’s deflection.

After the steel yields, the beam has very little additional moment capacity, and only a
small additional load is required to substantially increase rotations as well as deflections. The
slope of the diagram is now very flat.

2.2 Cracking Moment
The area of reinforcing as a percentage of the total cross-sectional area of a beam is quite
small (usually 2% or less), and its effect on the beam properties is almost negligible as long
as the beam is uncracked. Therefore, an approximate calculation of the bending stresses in
such a beam can be obtained based on the gross properties of the beam’s cross section. The
stress in the concrete at any point a distance y from the neutral axis of the cross section can
be determined from the following flexure formula in which M is the bending moment equal to
or less than the cracking moment of the section and Ig is the gross moment of inertia of the
cross section:

f = My

Ig

Section 9.5.2.3 of the ACI Code states that the cracking moment of a section may be
determined with ACI Equation 9-9, in which fr is the modulus of rupture of the concrete and
yt is the distance from the centroidal axis of the section to its extreme fiber in tension. In this
section, with its equation 9-10, the code states that fr may be taken equal to 7.5λ

√
f ′
c with f ′

c
in psi.

Or in SI units with f ′
c in N/mm2 or MPa, fr = 0.7λ

√
f ′
c
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The “lambda” term is 1.0 for normal-weight concrete and is less than 1.0 for lightweight
concrete, as described in Section 1.12. The cracking moment is as follows:

Mcr = fr Ig

yt
(ACI Equation 9-9)

Example 2.1 presents calculations for a reinforced concrete beam where tensile stresses
are less than its modulus of rupture. As a result, no tensile cracks are assumed to be present,
and the stresses are similar to those occurring in a beam constructed with a homogeneous
material.

Example 2.1

(a) Assuming the concrete is uncracked, compute the bending stresses in the extreme fibers of
the beam of Figure 2.5 for a bending moment of 25 ft-k. The normal-weight concrete has an
f ′
c of 4000 psi and a modulus of rupture fr = 7.5(1.0)

√
4000 psi = 474 psi.

(b) Determine the cracking moment of the section.

SOLUTION

(a) Bending stresses:

Ig = 1
12

bh3 with b = 12 in. and h = 18 in.

Ig =
(

1
12

)
(12 in.) (18 in.)3 = 5832 in.4

f = My
Ig

with M = 25 ft-k = 25,000 ft-lb

Next, multiply the 25,000 ft-lb by 12 in/ft to obtain in-lb as shown here:

f = (12 in/ft × 25,000 ft-lb) (9.00 in.)

5832 in.4
= 463 psi

Since this stress is less than the tensile strength or modulus of rupture of the concrete of
474 psi, the section is assumed not to have cracked.

(b) Cracking moment:

Mcr = fr Ig
yt

= (474 psi) (5832 in.4)
9.00 in.

= 307,152 in-lb = 25.6 ft-k

15 in.
18 in.

3 in.

12 in.

3 #9 bars
(As = 3.00 in.2)

FI GU RE 2.5 Beam cross section for Example 2.1.
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Example 2.2

(a) If the T-beam shown is uncracked, calculate the stress in the concrete at the top and bottom
extreme fibers under a positive bending moment of 80 ft-k.

(b) If f ′
c = 3000 psi and normal-weight concrete is used, what is the maximum uniformly

distributed load the beam can carry if it is used as a simple beam with 24-ft span without
exceeding the modulus of rupture of the concrete?

(c) Repeat part (b) if the beam is inverted.

centroid

21.19 in.

y = 10.81 in.

bf = 60 in.

bw = 12 in.

hf = 5 in.

27 in.

SOLUTION

(a) Locate the neutral axis with respect to the top of the section:

y =
bfhf

(
hf

2

)
+ (bf ) (h − hf )

(
hf − h − hf

2

)
bfhf + (bf ) (h − hf )

=
(60 in.) (5 in.) (2.5 in.) + (12 in.) (27 in.)

(
5 in. + 27 in.

2

)
(60 in.) (5 in.) + (12 in.) (27 in.)

= 10.81 in.

The moment of inertia is:

Ig = bfh
3

f

12
+ bf hf

[(
y − hf

2

)2

+ bw(h − hf )
3

12
+ bw(h − hf )

][
y − hf −

(
h − hf

)
2

]2

= (60 in.) (5 in.)3

12
+ (60 in.) (5 in.)

(
10.81 in. − 5 in.

2

)2

+ (12 in.) (32 in. − 5 in.)3

12

+ (12 in.) (32 in. − 5 in.)
(

10.81 in. − 5 in. − 27 in.
2

)2

= 60,185 in.4

The stress in the bottom fiber under the given moment of 80 ft-k is:

ftop = Mc
I

= (80 ft-k) (12 in/ft) (32 in. − 10.81 in.)

60,185 in.4
= 0.338 k/in.2 = 338 lb/in.2

The stress in the top fiber is:

ftop = Mc
I

= (80 ft-k) (12 in/ft) (10.81 in.)

60,185 in.4
= 0.172 k/in.2 = 172 lb/in.2
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(b) The modulus of rupture, fr, of normal-weight concrete with f ′
c = 3000 psi is:

fr = 7.5λ
√

f ′
c = 7.5(1.0)

√
3000 = 411 lb/in.2

The moment that causes a stress equal to the modulus of rupture is:

Mcr = fr Ig
c

= (411 lb/in.2) (60,185 in.4)
(32 in. − 10.81 in.)

= 1167.344 in-lb = 97.28 ft-k

The uniformly distributed load on a simple span that causes this much moment is:

w = 8M
l2

= 8(97.28 ft-k)
(24 ft)2

= 1.351 k/ft = 1351 lb/ft

(c) If the beam is inverted, then the c term used to calculate Mcr is 10.81 in. instead of 21.19 in.,
hence:

Mcr = fr Ig
c

= (411 lb/in.2) (60,185 in.4)
(10.81 in.)

= 2,288,255 in-lb = 190.69 ft-k

The uniformly distributed load on a simple span that causes this much moment is:

w = 8M
l2

= 8(190.69 ft-k)
(24 ft)2

= 2.648 k/ft = 2648 lb/ft

This is almost double the load that the beam can carry if oriented the opposite way. Don’t
get the impression that this is the best orientation for a T beam, however. In the next section,
when we examine reinforced sections, the opposite will be true.

2.3 Elastic Stresses—Concrete Cracked
When the bending moment is sufficiently large to cause the tensile stress in the extreme fibers
to be greater than the modulus of rupture, it is assumed that all of the concrete on the tensile
side of the beam is cracked and must be neglected in the flexure calculations.

The cracking moment of a beam is normally quite small compared to the service load
moment. Thus, when the service loads are applied, the bottom of the beam cracks. The cracking
of the beam does not necessarily mean that the beam is going to fail. The reinforcing bars on
the tensile side begin to pick up the tension caused by the applied moment.

On the tensile side of the beam, an assumption of perfect bond is made between the
reinforcing bars and the concrete. Thus, the strain in the concrete and in the steel will be equal
at equal distances from the neutral axis. If the strains in the two materials at a particular point
are the same, however, their stresses cannot be the same since they have different moduli of
elasticity. Thus, their stresses are in proportion to the ratio of their moduli of elasticity. The
ratio of the steel modulus to the concrete modulus is called the modular ratio, n:

n = Es

Ec

If the modular ratio for a particular beam is 10, the stress in the steel will be 10 times
the stress in the concrete at the same distance from the neutral axis. Another way of say-
ing this is that when n = 10, 1 in.2 of steel will carry the same total force as 10 in.2 of
concrete.

For the beam of Figure 2.6, the steel bars are replaced with an equivalent area of fictitious
concrete (nAs), which supposedly can resist tension. This area is referred to as the transformed
area. The resulting revised cross section or transformed section is handled by the usual methods
for elastic homogeneous beams. Also shown in the figure is a diagram showing the stress
variation in the beam. On the tensile side, a dashed line is shown because the diagram is



McCormac c02.tex V2 - January 10, 2013 6:34 P.M. Page 42

42 CHA P T E R 2 Flexural Analysis of Beams

FI GU RE 2.6 Cracked, transformed section.

discontinuous. There, the concrete is assumed to be cracked and unable to resist tension. The
value shown opposite the steel is the fictitious stress in the concrete if it could carry tension.
This value is shown as fs/n because it must be multiplied by n to give the steel stress fs.

Examples 2.3, 2.4, and 2.5 are transformed-area problems that illustrate the calculations
necessary for determining the stresses and resisting moments for reinforced concrete beams.
The first step to be taken in each of these problems is to locate the neutral axis, which is assumed
to be located a distance x from the compression surface of the beam. The first moment of the
compression area of the beam cross section about the neutral axis must equal the first moment
of the tensile area about the neutral axis. The resulting quadratic equation can be solved by
completing the squares or by using the quadratic formula.
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Bridge construction on an expressway interchange.
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After the neutral axis is located, the moment of inertia of the transformed section
is calculated, and the stresses in the concrete and the steel are computed with the flexure
formula.

Example 2.3

Calculate the bending stresses in the beam shown in Figure 2.7 by using the transformed area
method, f ′

c = 3000 psi, n = 9, and M = 70 ft-k.

SOLUTION

Taking Moments about Neutral Axis (Referring to Figure 2.8)

(12 in.) (x)
( x

2

)
= (9) (3.00 in.) (17 in. − x)

6x2 = 459 − 27.00x

Solving by Completing the Square

6x2 + 27.00x = 459

x2 + 4.50x = 76.5

(x + 2.25) (x + 2.25) = 76.5 + (2.25)2

x = 2.25 +
√

76.5 + (2.25)2

x = 6.780 in.

Moment of Inertia

I =
(

1
3

)
(12 in.) (6.78 in.)3 + (9) (3.00 in.2) (10.22 in.)2 = 4067 in.4

Bending Stresses

fc = My
I

= (12) (70,000 ft-lb) (6.78 in.)

4067 in.4
= 1400 psi

fs = n
My

I
= (9)

(12) (70,000 ft-lb) (10.22 in.)

4067 in.4
= 18,998 psi

17 in.
20 in.

3 in.

12 in.

3 #9 bars
(As = 3.00 in.2)

FI GU RE 2.7 Beam cross section for
Example 2.3.

12 in.

17 in.
N.A.

nAs = 27 in.2

x

17 in. − x

FI GU RE 2.8 Cracked, transformed section for
Example 2.3.



McCormac c02.tex V2 - January 10, 2013 6:34 P.M. Page 44

44 CHA P T E R 2 Flexural Analysis of Beams

Example 2.4

Determine the allowable resisting moment of the beam of Example 2.3, if the allowable stresses
are fc = 1350 psi and fs = 20,000 psi.

SOLUTION

Mc = fcI
y

= (1350 psi) (4067 in.4)
6.78 in.

= 809,800 in-lb = 67.5 ft-k ←

Ms = fsI
ny

= (20,000 psi) (4067 in.4)
(9) (10.22 in.)

= 884,323 in-lb = 73.7 ft-k

Discussion

For a given beam, the concrete and steel will not usually reach their maximum allowable
stresses at exactly the same bending moments. Such is the case for this example beam, where
the concrete reaches its maximum permissible stress at 67.5 ft-k, while the steel does not reach
its maximum value until 73.7 ft-k is applied. The resisting moment of the section is 67.5 ft-k
because if that value is exceeded, the concrete becomes overstressed even though the steel
stress is less than its allowable stress.

Example 2.5

Compute the bending stresses in the beam shown in Figure 2.9 by using the transformed-area
method; n = 8 and M = 110 ft-k.

SOLUTION

Locating Neutral Axis (Assuming Neutral Axis below Hole)

(18 in.) (x)
( x

2

)
− (6 in.) (6 in.) (x − 3 in.) = (8) (5.06 in.2) (23 in. − x)

9x2 − 36x + 108 = 931 − 40.48x

9x2 + 4.48x = 823

x2 + 0.50x = 91.44

(x + 0.25) (x + 0.25) = 91.44 + (0.25)2 = 91.50

x + 0.25 =
√

91.50 = 9.57

x = 9.32 in. > 6 in. ∴ N.A. below hole as assumed

Moment of Inertia

I =
(

1
3

)
(6 in.) (9.32 in.)3(2) +

(
1
3

)
(6 in.) (3.32 in.)3 + (8) (5.06 in.2) (13.68 in.)2 = 10,887 in.4

Computing Stresses

fc = (12) (110,000 ft-lb) (9.32 in.)

10,887 in.4
= 1130 psi

fs = (8)
(12) (110,000 ft-lb) (13.68 in.)

10,887 in.4
= 13,269 psi
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18 in.

6 in. 6 in. 6 in.

6 in.

N.A.

x

23 in. − x

4 #10
(5.06 in.2)

23 in.

3 in.

FI GU RE 2.9 Beam cross section for Example 2.5.

Example 2.6

Calculate the bending stresses in the concrete and the reinforcing steel, using the transformed
area method: f ′

c = 3000 psi, normal-weight concrete, n = 9, M = 250 ft-k.

bf = 60 in.

hf = 5 in.

bf = 60 in.

d = 28 in.

hf = 5 in.

transformed section

d = 28 in.
As = 6 #8 bars

bw = 12 in. bw = 12 in.

nAs = 42.39 in.2

SOLUTION

Assume the neutral axis is in the web, and take moments about the neutral axis of the transformed
section for this example:

(bf − bw)hf

(
x − hf

2

)
+ bwx2

2
= nAs(d − x)

(60 in. − 12 in.) (5 in.)
(

x − 5 in.
2

)
+ (12 in.) (x)2

2
= (9) (4.71 in.2) (28 in. − x)

Using a calculator with a solver for quadratic equations results in x = 5.65 in. Since this value
of x exceeds hf of 5 in., the assumption that the neutral axis is in the web is valid. If x had been
smaller than 5 in., then the value we obtained would not have been valid, and the preceding
equations would have to be rewritten and solved assuming x < hf.

Icr = (bf − bw)h3
f

12
+ (bf − bw)hf

(
x − hf

2

)2

+ bwx3

12
+ bwx

( x
2

)
+ nAs(d − x)2

= (60 in. − 12 in.) (5 in.)3

12
+ (60 in. − 12 in.) (5 in.)

(
5.65 in. − 5 in.

2

)2

+ (12 in.) (5.65 in.)3

3
+ (9) (4.71 in.2) (28 in. − 5.65 in.)

= 24,778 in.4
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The T-shaped part of the transformed section could be divided into rectangles in other ways
besides the one shown. The resulting answer would still be the same.

The stress in the concrete can now be calculated:

fc = Mx
Icr

= (250 ft-k) (5.65 in.) (12 in/ft)

24,778 in.4
= 0.684 k/in.2 = 684 lb/in.2

This concrete stress is well below the allowable values that were once in the ACI Code. They
used to be 0.45f ′

c = (0.45) (3000 lb/in.2) = 1350 lb/in.2.
The stress in the reinforcing steel can now be calculated:

fs = nM(d − x)
Icr

= (9) (250 ft-k) (28 in. − 5.65 in.) (12 in/ft)

24,778 in.4
= 24.354 k/in.2 = 24,354 lb/in.2

This reinforcing steel stress is slightly greater than the allowable values that were once in
the ACI Code. They used to be 24,000 lb/in.2 for Grade 60 reinforcing steel. This is about a
1.5% overstress in the steel, and many engineers would accept this much overstress as being
within the accuracy of their other assumptions. This beam would be called ‘‘tension controlled’’
because the moment capacity is controlled by the steel, not the concrete. This same beam
could be compression controlled if a lot more steel were used. Tension-controlled beams are
preferable to compression-controlled ones, as will be discussed later in this text.

Example 2.7 illustrates the analysis of a doubly reinforced concrete beam—that is, one
that has compression steel as well as tensile steel. Compression steel is generally thought to
be uneconomical, but occasionally its use is quite advantageous.

Compression steel will permit the use of appreciably smaller beams than those that make
use of tensile steel only. Reduced sizes can be very important where space or architectural
requirements limit the sizes of beams. Compression steel is quite helpful in reducing long-term
deflections, and such steel is useful for positioning stirrups or shear reinforcing, a subject to
be discussed in Chapter 8. A detailed discussion of doubly reinforced beams is presented in
Chapter 5.

The creep or plastic flow of concrete was described in Section 1.11. Should the com-
pression side of a beam be reinforced, the long-term stresses in that reinforcing will be greatly
affected by the creep in the concrete. As time goes by, the compression concrete will compact
more tightly, leaving the reinforcing bars (which themselves have negligible creep) to carry
more and more of the load.

As a consequence of this creep in the concrete, the stresses in the compression bars
computed by the transformed-area method are assumed to double as time goes by. In
Example 2.7, the transformed area of the compression bars is assumed to equal 2n times their
area, A′

s .
On the subject of “hairsplitting,” it will be noted in the example that the compression

steel area is really multiplied by 2n − 1. The transformed area of the compression side equals
the gross compression area of the concrete plus 2nA′

s minus the area of the holes in the concrete
(1A′

s ), which theoretically should not have been included in the concrete part. This equals the
compression concrete area plus (2n − 1)A′

s . Similarly, 2n − 1 is used in the moment of inertia
calculations. The stresses in the compression bars are determined by multiplying 2n times the
stresses in the concrete located at the same distance from the neutral axis.
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Example 2.7

Compute the bending stresses in the beam shown in Figure 2.10; n = 10 and M = 118 ft-k.

SOLUTION

Locating Neutral Axis

(14 in.) (x)
( x

2

)
+ (20 − 1) (2.00 in.2) (x − 2.5 in.) = (10) (4.00 in.2) (17.5 in. − x)

7x2 + 38x − 95 = 700 − 40x

7x2 + 78x = 795

x2 + 11.14x = 113.57

x + 5.57 =
√

113.57 + (5.57)2 = 12.02

x = 6.45 in.

Moment of Inertia

I =
(

1
3

)
(14 in.) (6.45 in.)3 + (20 − 1) (2.00 in.2) (3.95 in.)2 + (10) (4.00 in.2) (11.05 in.)2

= 6729 in.4

Bending Stresses

fc = (12) (118,000 ft-lb) (6.45 in.)

6729 in.4
= 1357 psi

f ′
s = 2n

My
I

= (2) (10)
(12) (118,000 ft-lb) (3.95 in.)

6729 in.4
= 16,624 psi

fs = (10)
(12) (118,000 ft-lb) (11.05 in.)

6729 in.4
= 23,253 psi

(b)  Transformed section(a)  Actual section

(2n – 1) A's

n As

14 in.

in.

20 in.
15 in.

14 in.

2 1
2

in.2 1
2

2 #9
(As = 2.00 in.2)

4 #9
(As = 4.00 in.2)

17.5 in. − x

x

FI GU RE 2.10 Beam cross section for Example 2.7.
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2.4 Ultimate or Nominal Flexural Moments
In this section, a very brief introduction to the calculation of the ultimate or nominal flexural
strength of beams is presented. This topic is continued at considerable length in the next chapter,
where formulas, limitations, designs, and other matters are presented. For this discussion, it is
assumed that the tensile reinforcing bars are stressed to their yield point before the concrete on
the compressive side of the beam is crushed. You will learn in Chapter 3 that the ACI Code
requires all beam designs to fall into this category.

After the concrete compression stresses exceed about 0.50f ′
c , they no longer vary directly

as the distance from the neutral axis or as a straight line. Rather, they vary much as shown
in Figure 2.11(b). It is assumed for the purpose of this discussion that the curved com-
pression diagram is replaced with a rectangular one with a constant stress of 0.85f ′

c , as
shown in part (c) of the figure. The rectangular diagram of depth a is assumed to have
the same c.g. (center of gravity) and total magnitude as the curved diagram. (In Section
3.4 of Chapter 3 of this text, you will learn that this distance a is set equal to β1c, where
β1 is a value determined by testing and specified by the code.) These assumptions will
enable us to easily calculate the theoretical or nominal flexural strength of reinforced concrete
beams. Experimental tests show that with the assumptions used here, accurate flexural strengths
are determined.

To obtain the nominal or theoretical moment strength of a beam, the simple steps to
follow are illustrated in Figure 2.11 and Example 2.8.

1. Compute total tensile force T = As fy .

2. Equate total compression force C = 0.85f ′
c ab to As fy and solve for a. In this expression,

ab is the assumed area stressed in compression at 0.85f ′
c . The compression force C and

the tensile force T must be equal to maintain equilibrium at the section.

3. Calculate the distance between the centers of gravity of T and C. (For a rectangular beam
cross section, it equals d − a/2.)

4. Determine Mn, which equals T or C times the distance between their centers of
gravity.

FI GU RE 2.11 Compression and tension couple at nominal moment.
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Example 2.8

Determine Mn, the nominal or theoretical ultimate moment strength of the beam section shown
in Figure 2.12, if fy = 60,000 psi and f ′

c = 3000 psi.

SOLUTION

Computing Tensile and Compressive Forces T and C

T = Asfy = (3.00 in.2) (60 k/in.2) = 180 k

C = 0.85f ′
cab = (0.85) (3 k/in.2) (a) (14 in.) = 35.7a

Equating T and C and Solving for a

T = C for equilibrium

180 k = 35.7a

a = 5.04 in.

Computing the Internal Moment Arm and Nominal Moment Capacity

d − a
2

= 21 in. − 5.04 in.
2

= 18.48 in.

Mn = (180 k) (18.48 in.) = 3326.4 in-k = 277.2 ft-k

d = 21 in.

b = 14 in.

24 in.

0.85 fc′

a

d − a
2

C

T
3 in.

3 #9 bars
(As = 3.00 in.2)

FI GU RE 2.12 Beam cross section for Example 2.8.

In Example 2.9, the nominal moment capacity of another beam is determined much as
it was in Example 2.8. The only difference is that the cross section of the compression area
(Ac) stressed at 0.85f ′

c is not rectangular. As a result, once this area is determined, we need to
locate its center of gravity. The c.g. for the beam of Figure 2.13 is shown as being a distance
y from the top of the beam in Figure 2.14. The lever arm from C to T is equal to d − y (which
corresponds to d − a/2 in Example 2.8) and Mn equals As fy(d − y).

With this very simple procedure, values of Mn can be computed for tensilely reinforced
beams of any cross section.
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6 in. 6 in. 6 in.

6 in.

24 in.
15 in.

18 in.

3 in.

4 #9 bars
(As = 4.00 in.2)

FI GU RE 2.13 Beam cross section for
Example 2.9.

36 in.2

a = 9.23 in.

d − y

y 6 in.

c.g. of
compression

area Ac

18 in.

= 3.23 in.

58.12 in.2

58.12 in.
18 in.

FI GU RE 2.14 Area under compression stress
block for Example 2.9.

Example 2.9

Calculate the nominal or theoretical ultimate moment strength of the beam section shown in
Figure 2.13, if fy = 60,000 psi and f ′

c = 3000 psi. The 6-in.-wide ledges on top are needed for
the support of precast concrete slabs.

SOLUTION

T = Asfy = (4.00 in.2) (60 k/in.2) = 240 k

C = (0.85f ′
c) (area of concrete Ac stressed to 0.85f ′

c)

= 0.85f ′
cAc

C
o

ur
te

sy
 o

f 
E

FC
O

 C
o

rp
.

Finger piers for U.S. Coast Guard base, Boston, Massachusetts.
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Equating T and C and Solving for Ac

Ac = T
0.85f ′

c
= 240 k

(0.85) (3 k/in.2)
= 94.12 in.2

The top 94.12 in.2 of the beam in Figure 2.14 is stressed in compression to 0.85f ′
c. This area

can be shown to extend 9.23 in. down from the top of the beam. Its c.g. is located by taking
moments at the top of the beam as follows:

y =
(36 in.2) (3 in.) + (58.12 in.2)

(
6 in. + 3.23 in.

2

)
94.12

= 5.85 in.

d − y = 21 in. − 5.85 in. = 15.15 in.

Mn = (240 k) (15.15 in.) = 3636 in-k = 303 ft-k

2.5 SI Example
In Example 2.10, the nominal moment strength of a beam is computed using SI units.
Appendix B, Tables B.1 to B.9 provide information concerning various concrete and steel
grades, as well as bar diameters, areas, and so on, all given in SI units.

Example 2.10

Determine the nominal moment strength of the beam shown in Figure 2.15 if f ′
c = 28 MPa

and fy = 420 MPa.

SOLUTION

T = C

Asfy = 0.85f ′
cab

a = Asfy
0.85f ′

cb
= (1530 mm2) (420 MPa)

(0.85) (28 MPa) (300 mm)
= 90 mm

Mn = T
(

d − a
2

)
= C

(
d − a

2

)
= Asfy

(
d − a

2

)

= (1530 mm2) (420 MPa)
(

430 mm − 90 mm
2

)

= 2.474 × 108 N •mm = 247.4 kN •m

430 mm
500 mm

70 mm

(As = 1530 mm2 from Appendix B, Table B.4)

300 mm

3 #25 bars

FI GU RE 2.15 Beam cross section for
Example 2.10.
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2.6 Computer Examples
On the John Wiley website for this textbook, several spreadsheets have been provided for
the student to use in assisting in the solution of problems. They are categorized by chapter.
Note that most of the spreadsheets have multiple worksheets indicated by tabs at the bottom.
The three worksheets available for Chapter 2 include (1) calculation of cracking moment, (2)
stresses in singly reinforced rectangular beams, and (3) nominal strength of singly reinforced
rectangular beams.

Example 2.11

Repeat Example 2.1 using the spreadsheet provided for Chapter 2.

SOLUTION

Open the Chapter 2 spreadsheet and select the worksheet called Cracking Moment. Input only
the cells highlighted in yellow (only in the Excel spreadsheets, not in the printed example), the
first six values below.

f ′
c = 4000 psi

M = 25 ft-k

b = 12 in.

h = 18 in.

γ c = 145 pcf

λ = 1.00

Ig = bh3/12 = 5832 in.4

fr = 7.5λ SQRT(f ′
c) = 474 psi

f = 463 psi

Mcr = 307,373 in-lb

Mcr = 25.6 ft-k

The last five values are the same as calculated in Example 2.1.

Example 2.12

Repeat Example 2.3 using the spreadsheet provided for Chapter 2.

SOLUTION

Open the Chapter 2 spreadsheet and select the worksheet called Elastic Stresses. Input only the
cells highlighted in yellow, the first seven values below.

b = 12 in.

d = 17 in.

n = 9

As = 3 in.2
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M = 70 ft-k

f ′
c = 3000 psi

γ c = 145 pcf

Ec = 3,155,924 psi

n = 9.19

nρ = 0.132

x = 6.78 in.

Icr = 4067 in.4

fc = Mx/I = 1401 psi

fs = nM(d − x)/I = 18,996 psi

The last four values are the same (within a small roundoff) as calculated in Example 2.2.

Example 2.13

Repeat Example 2.8 using the spreadsheet provided for Chapter 2.

SOLUTION

Open the Chapter 2 spreadsheet, and select the worksheet called Nominal Moment Strength.
Input only the cells highlighted in yellow, the first five values below.

f ′
c = 3000 psi

b = 14 in.

d = 21 in.

As = 3 in.2

fy = 60 ksi

a = 5.04

Mn = 3326.2 in-k

= 277.2 ft-k

The third worksheet, called Nominal Moment Strength, can be used to easily work Example
2.8. In this case, enter the first five values, and the results are the same as in the example.
The process can be reversed if ‘‘goal seek’’ is used. Suppose that you would like to
know how much reinforcing steel, As, is needed to resist a moment, Mn, of 320 ft-k
for the beam shown in Example 2.8. Highlight the
cell where Mn is calculated in ft-k (cell C11), then
go to ‘‘Data’’ at the top of the Excel window and
select ‘‘What-If Analysis’’ and ‘‘Goal seek . . . ’’ The
Goal Seek window shown will open. In ‘‘Set cell,’’
C11 appears because it was highlighted when
you selected ‘‘Goal seek . . . ’’. In ‘‘To value,’’ type
320 because that is the moment you are seeking.
Finally, for ‘‘By changing cell,’’ insert C7 because
the area of reinforcing steel is what you want to
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vary to produce a moment of 320 ft-k. Click OK, and the value of As will change to 3.55. This
means that a steel area of 3.55 in.2 is required to produce a moment capacity Mn of 320 ft-k.
The Goal Seek feature can be used in a similar manner for most of the spreadsheets provided in
this text.

P R O B L E M S

Cracking Moments

For Problems 2.1 to 2.5, determine the cracking moments for the
sections shown if f ′

c = 4000 psi and fr = 7.5
√

f ′
c.

Problem 2.1 (Ans. 34.8 ft-k)

4 #9

18 in.
21 in.

3 in.

12 in.

Problem 2.2

3 in.

18 in.
21 in.

14 in.

2 #9

Problem 2.3 (Ans. 31.6 ft-k)

6 in.

3 in.  

17 in. 24 in.

4 in.

1 #11

30 in.

Problem 2.4

6 in.

20 in.

26 in.

3 in.

3 in.

18 in.

4 #8

Problem 2.5 (Ans. 85.3 ft-k)

27 in.

9 in.

9 in.

9 in.

6 in. 6 in. 6 in.

18 in.

3 in.

3 #10
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For Problems 2.6 and 2.7, calculate the uniform load (in addi-
tion to the beam weight) that will cause the sections to begin
to crack if they are used for 28-ft simple spans. f ′

c = 4000 psi,
fr = 7.5

√
f ′
c , and reinforced concrete weight = 150 lb/ft3 .

Problem 2.6

21 in.
24 in.

3 in.

14 in.

4 #7

Problem 2.7 (Ans. 0.343 k/ft)

12 in.

4 in. 22 in. 30 in.

3 #9

4 in.

2 in.
2 in.

Transformed-Area Method

For Problems 2.8 to 2.14, assume the sections have cracked and
use the transformed-area method to compute their flexural stresses
for the loads or moments given.

Problem 2.8

20 in.
17 in.

3 in.

14 in.

4 #8

M = 60 ft-k
n = 8

Problem 2.9 Repeat Problem 2.8 if four #6 bars are used.
(Ans. fc = 1356 psi, fs = 26,494 psi)

Problem 2.10

18 in.

3 in.

3 in.

21 in.

27 in.

8 #9

M = 120 ft-k
n = 9

Problem 2.11 (Ans. fc = 1258 psi, fs = 14,037 psi in
bottom layer, fs = 12,889 psi at steel centroid)

18 in.

24 in.

3 in.

3 in.

14 in.

6 #9

M = 110 ft-k
n = 8
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Problem 2.12

1.5 k/ft (including beam weight)

24 ft 2    in.

20 in.

12 in.

4 #8

n = 10
17    in.1

2

1
2

Problem 2.13 (Ans. fc = 2369 psi, fs = 32,574 psi at the steel centroid, 36,255 psi in the bottom layer)

2 k/ft (including beam weight)

10 ft 20 ft

30 ft

28 in.
32 in.

4 in.

6 #9

n = 8

16 in.

30k

Problem 2.14

30 in.
23 in.

5 in. 5 in. 5 in.

4 in.

3 in.

15 in.

4 #9

M = 70 ft-k
n = 9

Problem 2.15 Using the transformed-area method, compute
the resisting moment of the beam of Problem 2.10 if
fs = 24,000 psi and fc = 1800 psi. (Ans. 258.8 ft-k)

Problem 2.16 Compute the resisting moment of the beam
of Problem 2.13 if eight #10 bars are used and n = 10,
fs = 20,000 psi, and fc = 1125 psi. Use the transformed-
area method.

Problem 2.17 Using transformed area, what allowable
uniform load can this beam support in addition to its own
weight for a 28-ft simple span? Concrete weight = 150 lb/ft3 ,
fs = 24,000 psi, and fc = 1800 psi. (Ans. 2.757 k/ft)

6 in. 8 in. 6 in.

4 in.

8 in.

17 in.

3 in.

32 in.

5 #10

20 in.

n = 8
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For Problems 2.18 to 2.21, determine the flexural stresses in these members using the transformed-area method.

Problem 2.18

48 in.

12 in.

4 in.

14 in.

3 in.

21 in.

3 #9   

M = 100 ft-k

n = 10

Problem 2.19 (Ans. fc = 1374 psi, fs = 32,611 psi at the steel centroid)

5 in. 5 in.28 in.

3 in.

2 #8 2 #8
20 in.

2 in.

15 in.1
2

2
1
2 in.

M = 130 ft-k

n = 8 

Problem 2.20

2 #8

15 in.

24 in.

3 in.

6 in.

10 in.10 in. M = 90 ft-k
n = 9

Problem 2.21 (Ans. fc = 1406 psi, f ′
s = 16,886 psi,

fs = 36,217 psi)

4 #8

4 #9

32 in.

3 in.

18 in.

M = 320 ft-k
n = 9

26 in.1
2

2
1
2 in.
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Problem 2.22 Compute the allowable resisting moment of the
section shown using transformed area if allowable stresses are
fc = 1800 psi, fs = f ′

s = 24,000 psi, and n = 8.

10 in.

2 in.

2 in.

16 in.

2 in.

2 in.

12 in.

4 in.

4 in.

2 #10

1 #10

4 in.

For Problems 2.23 to 2.25, using the transformed-area method, determine the allowable resisting moments of the sections shown.

Problem 2.23 (Ans. 140.18 ft-k)

E = 29 × 106 psi, fallow tension or compression = 30,000 psi

E = 20 × 106 psi,  fallow tension or compression = 20,000 psi

1 in.

1 in.

8 in.

4 in.
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Problem 2.24

wood beams dressed dimensions

(Ew = 1.76 × 106 psi,  fallow tension or compression = 1875 psi)

× 9
1
2 -in. steel plate (Es = 29 × 106 psi, fallow tension or compression = 24,000 psi)

1
2 -in.

9
1
2 in.1

1
4 in. ×

Problem 2.25 (Ans. 124.4 ft-k)

1-in. × 5-in. steel plate (Es = 29 × 106 psi, fallow tension or compression = 24,000 psi)

(Ew = 1.76 × 106 psi, fallow tension or compression = 1800 psi)

1 in.

1 in.

1
4
 in.11

5 in.

four wood planks dressed dimensions ×1
1
4 in. 11

1
4 in.

Nominal Strength Analysis

For Problems 2.26 to 2.29, determine the nominal or theoretical moment capacity Mn of each beam if fy = 60,000 psi and
f ′
c = 4000 psi.

Problem 2.26

3 #8

21 in.
24 in.

3 in.16 in.

Problem 2.27 (Ans. 688.2 ft-k)

25 in.

30 in.

6 #9

16 in.

2
1
2 in.

2
1
2 in.
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Problem 2.28

16 in.

3 in.

25 in.
28 in.

4 #10

Problem 2.29 (Ans. 845.5 ft-k)

24 in.
30 in.

3 in.

3 in.

18 in.

6 #10

For Problems 2.30 to 2.34, determine the nominal moment capacity Mn for each of the rectangular beams.

Problem
No.

b (in.) d (in.) Bars f ′
c (ksi) fy (ksi) Ans.

2.30 14 21 3 #9 4.0 60 —

2.31 16 27 8 #9 4.0 60 903.6 ft-k

2.32 14 20.5 4 #10 5.0 60 —

2.33 21 28 4 #10 5.0 75 818.3 ft-k

2.34 22 36 6 #11 3.0 60 —

For Problems 2.35 to 2.39, determine Mn if fy = 60,000 psi and f ′
c = 4000 psi.

Problem 2.35 (Ans. 704 ft-k)

24 in.

5 #9

16 in.

3 in.

26 in.

4 in.

33 in.

Problem 2.36

4 #8

10 in. 14 in. 10 in.

4 in.

3 in.

8 in.

7 in.

24 in.

Problem 2.37 Repeat Problem 2.35 if four #11 bars are used.
(Ans. 865 ft-k)

Problem 2.38 Compute Mn for the beam of Problem 2.36 if
six #8 bars are used.
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Problem 2.39 (Ans. 763.3 ft-k)

18 in.

3 in.

24 in.
33 in.

3 in.

3 in.

4 #11

6 in.
3 in.3 in.3 in.3 in.

Problem 2.40 Determine the nominal uniform load wn (including beam weight) that will cause a bending moment equal to Mn.
fy = 60,000 psi and f ′

c = 4000 psi.

3 #9

14 in.

23 in.
26 in.

3 in.

18 ft

wn k/ft

Problem 2.41 Determine the nominal uniform load wn (including beam weight) that will cause a bending moment equal to Mn .
f ′
c = 3000 psi and fy = 60,000 psi. (Ans. 6.77 k/ft)

4 #10

16 in.

4 in.

23 in.

27 in.

24 ft

wn k/ft
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Problems in SI Units

For Problems 2.42 to 2.44, determine the cracking moments for
the sections shown if f ′

c = 28 MPa and the modulus of rupture
is fr = 0.7

√
f ′
c with f ′

c in MPa.

Problem 2.42

350 mm

3 #19

80 mm

600 mm
520 mm

Problem 2.43 (Ans. 46.30 kN-m)

2 #25

300 mm

420 mm
500 mm

80 mm

Problem 2.44

600 mm

200 mm

2 #19

320 mm

100 mm

500 mm

80 mm

For Problems 2.45 to 2.47, compute the flexural stresses
in the concrete and steel for the beams shown using the
transformed-area method.

Problem 2.45 (Ans. f ′
c = 7.785 MPa, fs = 109.31 MPa)

4 #29

350 mm

530 mm
600 mm

70 mm

M = 130 kN·m 

n = 9

Problem 2.46

300 mm

4 #36

420 mm

500 mm

80 mm

8 m

n = 9

20 kN/m (including beam weight)
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Problem 2.47 (Ans. fc = 10.20 MPa, f ′
s = 103.10 MPa,

fs = 188.56 MPa)

2 #25

4 #29

70 mm

560 mm

700 mm

70 mm

400 mm

M = 275 kN·m
n = 8

For Problems 2.48 to 2.55, compute Mn values.

Problem
No.

b (mm) d (mm) Bars f ′
c (MPa) fy (MPa) Ans.

2.48 300 600 3 #36 35 350 —

2.49 320 600 3 #36 28 350 560.5 kN-m

2.50 350 530 3 #25 24 420 —

2.51 370 530 3 #25 24 420 313 kN-m

Problem 2.52

6 #25

350 mm

460 mm

600 mm

70 mm

70 mm

fy = 420 MPa

f ' = 24 MPac

Problem 2.53 Repeat Problem 2.48 if four #36 bars
are used. (Ans. 734 kN •m)
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Problem 2.54

1.200 m

2 #36

250 mm

330 mm

100 mm

500 mm

70 mm

f' = 28 MPa

fy = 350 MPa
c

Problem 2.55 (Ans. 689.7 kN •m)

800 mm

350 mm

6 #36

80 mm

300 mm

100 mm

80 mm

560 mm

fy = 300 MPa

f' = 28 MPac

Problem 2.56 Repeat Problem 2.27 using Chapter 2
spreadsheets.

Problem 2.57 Repeat Problem 2.28 using Chapter 2
spreadsheets. (Ans. 561.9 ft-k)

Problem 2.58 Prepare a flowchart for the determination of Mn
for a rectangular tensilely reinforced concrete beam.
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CHAPTER 3Strength Analysis of Beams
According to ACI Code

3.1 Design Methods
From the early 1900s until the early 1960s, nearly all reinforced concrete design in the United
States was performed by the working-stress design method (also called allowable-stress design
or straight-line design). In this method, frequently referred to as WSD, the dead and live loads
to be supported, called working loads or service loads, were first estimated. Then the members
of the structure were proportioned so that stresses calculated by a transformed area did not
exceed certain permissible or allowable values.

After 1963, the ultimate-strength design method rapidly gained popularity because (1) it
makes use of a more rational approach than does WSD, (2) it uses a more realistic consideration
of safety, and (3) it provides more economical designs. With this method (now called strength
design), the working dead and live loads are multiplied by certain load factors (equivalent
to safety factors), and the resulting values are called factored loads. The members are then
selected so they will theoretically just fail under the factored loads.

Even though almost all of the reinforced concrete structures the reader will encounter
will be designed by the strength design method, it is still useful to be familiar with WSD for
several reasons:

1. Some designers use WSD for proportioning fluid-containing structures (such as water
tanks and various sanitary structures). When these structures are designed by WSD,
stresses are kept at fairly low levels, with the result that there is appreciably less cracking
and less consequent leakage. (If the designer uses strength design and makes use of
proper crack control methods, as described in Chapter 6, there should be few leakage
problems.)

2. The ACI method for calculating the moments of inertia to be used for deflection calcu-
lations requires some knowledge of the working-stress procedure.

3. The design of prestressed concrete members is based not only on the strength method
but also on elastic stress calculations at service load conditions.

The reader should realize that working-stress design has several disadvantages. When
using the method, the designer has little knowledge about the magnitudes of safety factors
against collapse; no consideration is given to the fact that different safety factors are desirable
for dead and live loads; the method does not account for variations in resistances and loads,
nor does it account for the possibility that as loads are increased, some increase at different
rates than others.

In 1956, the ACI Code for the first time included ultimate-strength design, as an appendix,
although the concrete codes of several other countries had been based on such considera-
tions for several decades. In 1963, the code gave ultimate-strength design equal status with
working-stress design; the 1971 code made the method the predominant method and only briefly
mentioned the working-stress method. From 1971 until 1999, each issue of the code permit-
ted designers to use working-stress design and set out certain provisions for its application.
Beginning with the 2002 code, however, permission is not included for using the method.

65
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Today’s design method was called ultimate-strength design for several decades, but, as
mentioned, the code now uses the term strength design. The strength for a particular reinforced
concrete member is a value given by the code and is not necessarily the true ultimate strength of
the member. Therefore, the more general term strength design is used whether beam strength,
column strength, shear strength, or others are being considered.

3.2 Advantages of Strength Design
Among the several advantages of the strength design method as compared to the no-longer-
permitted working-stress design method are the following:

1. The derivation of the strength design expressions takes into account the nonlinear shape
of the stress–strain diagram. When the resulting equations are applied, decidedly better
estimates of load-carrying ability are obtained.

2. With strength design, a more consistent theory is used throughout the designs of rein-
forced concrete structures. For instance, with working-stress design the transformed-area
or straight-line method was used for beam design, and a strength design procedure was
used for columns.

3. A more realistic factor of safety is used in strength design. The designer can certainly
estimate the magnitudes of the dead loads that a structure will have to support more
accurately than he or she can estimate the live and environmental loads. With working-
stress design, the same safety factor was used for dead, live, and environmental loads.
This is not the case for strength design. For this reason, use of different load or safety
factors in strength design for the different types of loads is a definite improvement.

4. A structure designed by the strength method will have a more uniform safety factor
against collapse throughout. The strength method takes considerable advantage of higher-
strength steels, whereas working-stress design did so only partly. The result is better
economy for strength design.

5. The strength method permits more flexible designs than did the working-stress method.
For instance, the percentage of steel may be varied quite a bit. As a result, large sections
may be used with small percentages of steel, or small sections may be used with large
percentages of steel. Such variations were not the case in the relatively fixed working-
stress method. If the same amount of steel is used in strength design for a particular
beam as would have been used with WSD, a smaller section will result. If the same size
section is used as required by WSD, a smaller amount of steel will be required.

3.3 Structural Safety
The structural safety of a reinforced concrete structure can be calculated with two methods.
The first method involves calculations of the stresses caused by the working or service loads
and their comparison with certain allowable stresses. Usually the safety factor against collapse
when the working-stress method was used was said to equal the smaller of f ′

c /fc or f ′
y /fs .

The second approach to structural safety is the one used in strength design in which
uncertainty is considered. The working loads are multiplied by certain load factors that are
larger than 1. The resulting larger or factored loads are used for designing the structure. The
values of the load factors vary depending on the type and combination of the loads.

To accurately estimate the ultimate strength of a structure, it is necessary to take into
account the uncertainties in material strengths, dimensions, and workmanship. This is done
by multiplying the theoretical ultimate strength (called the nominal strength herein) of each
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Water Tower Place, Chicago, Illinois, tallest reinforced concrete building in the
United States (74 stories, 859 ft).

member by the strength reduction factor, φ, which is less than 1. These values generally vary
from 0.90 for bending down to 0.65 for some columns.

In summary, the strength design approach to safety is to select a member whose computed
ultimate load capacity multiplied by its strength reduction factor will at least equal the sum of
the service loads multiplied by their respective load factors.

Member capacities obtained with the strength method are appreciably more accurate than
member capacities predicted with the working-stress method.

3.4 Derivation of Beam Expressions
Tests of reinforced concrete beams confirm that strains vary in proportion to distances from
the neutral axis even on the tension sides and even near ultimate loads. Compression stresses
vary approximately in a straight line until the maximum stress equals about 0.50f ′

c . This is not
the case, however, after stresses go higher. When the ultimate load is reached, the strain and
stress variations are approximately as shown in Figure 3.1.

The compressive stresses vary from zero at the neutral axis to a maximum value at or
near the extreme fiber. The actual stress variation and the actual location of the neutral axis
vary somewhat from beam to beam, depending on such variables as the magnitude and history
of past loadings, shrinkage and creep of the concrete, size and spacing of tension cracks, speed
of loading, and so on.

If the shape of the stress diagram were the same for every beam, it would be possible
to derive a single rational set of expressions for flexural behavior. Because of these stress
variations, however, it is necessary to base the strength design on a combination of theory and
test results.

Although the actual stress distribution given in Figure 3.2(b) may seem to be important,
in practice any assumed shape (rectangular, parabolic, trapezoidal, etc.) can be used if the
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²s ≥ ²yield

²c

FI GU RE 3.1 Nonlinear stress distribution at ultimate conditions.

resulting equations compare favorably with test results. The most common shapes proposed
are the rectangle, parabola, and trapezoid, with the rectangular shape used in this text as shown
in Figure 3.2(c) being the most common one.

If the concrete is assumed to crush at a strain of about 0.003 (which is a little conservative
for most concretes) and the steel to yield at fy, it is possible to make a reasonable derivation
of beam formulas without knowing the exact stress distribution. However, it is necessary to
know the value of the total compression force and its centroid.

Whitney1 replaced the curved stress block [Figure 3.2(b)] with an equivalent rectangular
block of intensity 0.85f ′

c and depth α = β1c, as shown in Figure 3.2(c). The area of this
rectangular block should equal that of the curved stress block, and the centroids of the two
blocks should coincide. Sufficient test results are available for concrete beams to provide the
depths of the equivalent rectangular stress blocks. The values of β1 given by the code (10.2.7.3)
are intended to give this result. For f ′

c values of 4000 psi or less, β1 = 0.85, and it is to be
reduced continuously at a rate of 0.05 for each 1000-psi increase in f ′

c above 4000 psi. Their
value may not be less than 0.65. The values of β1 are reduced for high-strength concretes
primarily because of the shapes of their stress–strain curves (see Figure 1.1 in Chapter 1).

For concretes with f ′
c > 4000 psi, β1 can be determined with the following formula:

β1 = 0.85 −
(

f ′
c − 4000 psi

1000

)
(0.05) ≥ 0.65

a = β1c
c

(a) (b) (c)

T = As fy T = As fy

f'c f'c0.85

FI GU RE 3.2 Some possible stress distribution shapes.

1 Whitney, C. S., 1942, “Plastic Theory of Reinforced Concrete Design,” Transactions ASCE, 107, pp. 251–326.
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In SI units, β1 is to be taken equal to 0.85 for concrete strengths up to and including
30 MPa. For strengths above 30 MPa, β1 is to be reduced continuously at a rate of 0.05
for each 7 MPa of strength in excess of 30 MPa but shall not be taken less than 0.65.

For concretes with f ′
c > 30 MPa, β1 can be determined with the following expres-

sion:
β1 = 0.85 − 0.008 (f ′

c − 30 MPa) ≥ 0.65

Based on these assumptions regarding the stress block, statics equations can easily be
written for the sum of the horizontal forces and for the resisting moment produced by the
internal couple. These expressions can then be solved separately for a and for the moment, Mn.

A very clear statement should be made here regarding the term Mn because it otherwise
can be confusing to the reader. Mn is defined as the theoretical or nominal resisting moment of
a section. In Section 3.3, it was stated that the usable strength of a member equals its theoretical
strength times the strength reduction factor, or, in this case, φMn. The usable flexural strength
of a member, φMn, must at least be equal to the calculated factored moment, Mu, caused by
the factored loads

φMn ≥ Mu

For writing the beam expressions, reference is made to Figure 3.3. Equating the horizontal
forces C and T and solving for a, we obtain

0.85f ′
c ab = As fy

a = As fy

0.85f ′
c b

= ρfyd

0.85f ′
c

, where ρ = As

bd
= percentage of tensile steel

Because the reinforcing steel is limited to an amount such that it will yield well before the
concrete reaches its ultimate strength, the value of the nominal moment, Mn, can be written as

Mn = T
(

d − a

2

)
= As fy

(
d − a

2

)
and the usable flexural strength is

φMn = φAs fy

(
d − a

2

)
(Eq. 3-1)

If we substitute into this expression the value previously obtained for a (it was ρfy d/0.85f ′
c ),

replace As with ρbd, and equate φMn to Mu, we obtain the following expression:

φMn = Mu = φbd2fyρ

(
1 − ρfy

1.7f ′
c

)
(Eq. 3-2)

0.85f'c 

a⎜2 C = 0.85f 'c ab

T = As fy
As

b

c

d

a

FI GU RE 3.3 Beam internal forces at ultimate conditions.
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Replacing As with ρbd and letting Rn = Mu/φbd2, we can solve this expression for ρ (the
percentage of steel required for a particular beam) with the following results:

ρ = 0.85f ′
c

fy

(
1 −

√
1 − 2Rn

0.85f ′
c

)
(Eq. 3-3)

Instead of substituting into this equation for ρ when rectangular sections are involved, the
reader will find Tables A.8 to A.13 in Appendix A of this text to be quite convenient.
(For SI units, refer to Tables B.8 and B.9 in Appendix B.) Another way to obtain the same
information is to refer to Graph 1 in Appendix A. The user, however, will have some
difficulty in reading this small-scale graph accurately. This expression for ρ is also very
useful for tensilely reinforced rectangular sections that do not fall into the tables. An iter-
ative technique for determination of reinforcing steel area is also presented later in this
chapter.

3.5 Strains in Flexural Members
As previously mentioned, Section 10.2.2 of the code states that the strains in concrete members
and their reinforcement are to be assumed to vary directly with distances from their neutral
axes. (This assumption is not applicable to deep flexural members whose depths over their clear
spans are greater than 0.25.) Furthermore, in Section 10.2.3 the code states that the maximum
usable strain in the extreme compression fibers of a flexural member is to be 0.003. Finally,
Section 10.3.3 states that for Grade 60 reinforcement and for all prestressed reinforcement we
may set the strain in the steel equal to 0.002 at the balanced condition. (Theoretically, for
60,000-psi steel, it equals fy/Es = 60,000 psi/29 × 106 psi = 0.00207.)

In Section 3.4, a value was derived for a, the depth of the equivalent stress block of a
beam. It can be related to c with the factor β1 also given in that section:

a = Asfy

0.85f ′
c b

= β1c

Then the distance c from the extreme concrete compression fibers to the neutral axis is

c = a

β1

In Example 3.1, the values of a and c are determined for the beam previously considered
in Example 2.8, and by straight-line proportions the strain in the reinforcing εt is computed.

Example 3.1

Determine the values of a, c, and εt for the beam shown in Figure 3.4. fy = 60,000 psi and
f ′
c = 3000 psi.

SOLUTION

a = Asfy
0.85f ′

cb
= (3.00 in.2) (60 ksi)

(0.85) (3 ksi) (14 in.)
= 5.04 in.

β1 = 0.85 for 3000-psi concrete
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14 in.

21 in.

c

d – c

d – c²t = (0.003)c

0.003

3 #9 bars
(3.00 in.2)

FI GU RE 3.4 Beam cross section for
Example 3.1.

c = a
β1

= 5.04 in.
0.85

= 5.93 in.

εt = d − c
c

(0.003) =
(

21 in. − 5.93 in.
5.93 in.

)
(0.003) = 0.00762

This value of strain is much greater than the yield strain of 0.002. This is an indication of ductile
behavior of the beam, because the steel is well into its yield plateau before concrete crushes.

3.6 Balanced Sections, Tension-Controlled Sections,
and Compression-Controlled or Brittle Sections

A beam that has a balanced steel ratio is one for which the tensile steel will theoretically just
reach its yield point at the same time the extreme compression concrete fibers attain a strain
equal to 0.003. Should a flexural member be so designed that it has a balanced steel ratio or
be a member whose compression side controls (i.e., if its compression strain reaches 0.003
before the steel yields), the member can suddenly fail without warning. As the load on such a
member is increased, its deflections will usually not be particularly noticeable, even though the
concrete is highly stressed in compression and failure will probably occur without warning to
users of the structure. These members are compression controlled and are referred to as brittle
members. Obviously, such members must be avoided.

The code, in Section 10.3.4, states that members whose computed tensile strains are equal
to or greater than 0.0050 at the same time the concrete strain is 0.003 are to be referred to as
tension-controlled sections. For such members, the steel will yield before the compression side
crushes and deflections will be large, giving users warning of impending failure. Furthermore,
members with εt ≥ 0.005 are considered to be fully ductile. The ACI chose the 0.005 value
for εt to apply to all types of steel permitted by the code, whether regular or prestressed. The
code further states that members that have net steel strains or εt values between εy and 0.005
are in a transition region between compression-controlled and tension-controlled sections. For
Grade 60 reinforcing steel, which is quite common, εy is approximated by 0.002.

3.7 Strength Reduction or φ Factors
Strength reduction factors are used to take into account the uncertainties of material strengths,
inaccuracies in the design equations, approximations in analysis, possible variations in dimen-
sions of the concrete sections and placement of reinforcement, the importance of members in
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the structures of which they are part, and so on. The code (9.3) prescribes φ values or strength
reduction factors for most situations. Among these values are the following:

0.90 for tension-controlled beams and slabs

0.75 for shear and torsion in beams

0.65 or 0.75 for columns

0.65 or 0.75 to 0.9 for columns supporting very small axial loads

0.65 for bearing on concrete

The sizes of these factors are rather good indications of our knowledge of the subject in
question. For instance, calculated nominal moment capacities in reinforced concrete members
seem to be quite accurate, whereas computed bearing capacities are more questionable.

For ductile or tension-controlled beams and slabs where εt ≥ 0.005, the value of φ for
bending is 0.90. Should εt be less than 0.005, it is still possible to use the sections if εt is
not less than certain values. This situation is shown in Figure 3.5, which is similar to Figure
R.9.3.2 in the ACI Commentary to the 2011 code.

Members subject to axial loads equal to or less than 0.10f ′
c Ag may be used only when

εt is no lower than 0.004 (ACI Section 10.3.5). An important implication of this limit is that
reinforced concrete beams must have a tension strain of at least 0.004. Should the members be
subject to axial loads ≥ 0.10f ′

c Ag, then εt is not limited. When εt values fall between 0.002 and
0.005, they are said to be in the transition range between tension-controlled and compression-
controlled sections. In this range, φ values will fall between 0.65 or 0.70 and 0.90, as shown
in Figure 3.5. When εt ≤ 0.002, the member is compression controlled, and the column φ

factors apply.
The procedure for determining φ values in the transition range is described later in this

section. You must clearly understand that the use of flexural members in this range is usually
uneconomical, and it is probably better, if the situation permits, to increase member depths
and/or decrease steel percentages until εt is equal to or larger than 0.005. If this is done, not
only will φ values equal 0.9 but also steel percentages will not be so large as to cause crowding
of reinforcing bars. The net result will be slightly larger concrete sections, with consequent
smaller deflections. Furthermore, as you will learn in subsequent chapters, the bond of the
reinforcing to the concrete will be increased as compared to cases where higher percentages
of steel are used.

150
3

φ

0.90

0.75

0.65

compression
controlled transition tension controlled

Spiral 2011 code

other lower bound on ²t for
members with factored axial
compressive load < 0.10 f 'cAg 

250
3

²t = 0.002 ²t = 0.004 ²t = 0.005
c⎢dt = 0.600 c⎢dt = 3⎢7 c⎢dt = 0.375

(²t – 0.002)

(²t – 0.002)

FI GU RE 3.5 Variation of φ with net tensile strain εt and c/dt for
Grade 60 reinforcement and for prestressing steel.
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We have computed values of steel percentages for different grades of concrete and steel
for which εt will exactly equal 0.005 and present them in Appendix Tables A.7 and B.7 of this
textbook. It is desirable, under ordinary conditions, to design beams with steel percentages that
are no larger than these values, and we have shown them as suggested maximum percentages
to be used.

The horizontal axis of Figure 3.5 gives values also for c/dt ratios. If c/dt for a particular
flexural member is ≤ 0.375, the beam will be ductile, and if it is > 0.600, it will be brittle. In
between is the transition range. You may prefer to compute c/dt for a particular beam to check
its ductility rather than computing ρ or εt. In the transition region, interpolation to determine
φ using c/dt instead of εt, when 0.375 < c/dt < 0.600, can be performed using the equations

φ = 0.75 + 0.15

(
1

c/dt
− 5

3

)
for spiral members

φ = 0.65 + 0.25

(
1

c/dt
− 5

3

)
for other members

The equations for φ here and in Figure 3.5 are for the special case where fy = 60 ksi and for
prestressed concrete. For other cases, replace 0.002 with εy = fy/Es . Figure 10.25 in Chapter
10 shows Figure 3.5 for the general case, where εy is not assumed to be 0.002.

The resulting general equations in the range εy < εt < 0.005 are

φ = 0.75 + (εt − εy)
0.15

(0.005 − εy)
for spiral members

and

φ = 0.65 + (εt − εy )
0.25

(0.005 − εy)
for other members

The impact of the variable φ factor on moment capacity is shown in Figure 3.6. The two
curves show the moment capacity with and without the application of the φ factor. Point A
corresponds to a tensile strain, εt, of 0.005 and ρ = 0.0181 (Appendix A, Table A.7). This
is the largest value of ρ for φ = 0.9. Above this value of ρ, φ decreases to as low as 0.65
as shown by point B, which corresponds to εt of εy. ACI 10.3.5 requires εt not be less than
0.004 for flexural members with compressive axial loads less than 0.10 f ′

mAg. This situation
corresponds to point C in Figure 3.6. The only allowable range for ρ is below point C. From
the figure, it is clear that little moment capacity is gained in adding steel area above point A.
The variable φ factor provisions essentially permit a constant value of φMn when εt is less

0
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FI GU RE 3.6 Moment capacity versus ρ.
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than 0.005. It is important for the designer to know this because often actual bar selections
result in more steel area than theoretically required. If the slope between points A and C were
negative, the designer could not use a larger area. Knowing the slope is slightly positive, the
designer can use the larger bar area with confidence that the design capacity is not reduced.

For values of fy of 75 ksi and higher, the slope between point A and B in Figure 3.6
is actually negative. It is therefore especially important, when using high-strength reinforcing
steel, to verify your final design to be sure the bars you have selected do not result in a moment
capacity less than the design value.

Continuing our consideration of Figure 3.5, you can see that when εt is less than 0.005,
the values of φ will vary along a straight line from their 0.90 value for ductile sections to 0.65
at balanced conditions where εt is 0.002. Later you will learn that φ can equal 0.75 rather than
0.65 at this latter strain situation if spirally reinforced sections are being considered.

3.8 Minimum Percentage of Steel
A brief discussion of the modes of failure that occur for various reinforced beams was pre-
sented in Section 3.6. Sometimes, because of architectural or functional requirements, beam
dimensions are selected that are much larger than are required for bending alone. Such members
theoretically require very small amounts of reinforcing.

Actually, another mode of failure can occur in very lightly reinforced beams. If the
ultimate resisting moment of the section is less than its cracking moment, the section will fail
immediately when a crack occurs. This type of failure may occur without warning. To prevent
such a possibility, the ACI (10.5.1) specifies a certain minimum amount of reinforcing that
must be used at every section of flexural members where tensile reinforcing is required by
analysis, whether for positive or negative moments. In the following equations, bw represents
the web width of beams.

As min = 3
√

f ′
c

fy
bw d

nor less than
200bw d

fy
(ACI Equation 10-3)

In SI units, these expressions are

(√
f ′
c

4fy

)
bw d and

(
1.4bw d

fy

)
, respectively.

The (200bw d)/ fy value was obtained by calculating the cracking moment of a plain
concrete section and equating it to the strength of a reinforced concrete section of the same
size, applying a safety factor of 2.5 and solving for the steel required. It has been found,
however, that when f ′

c is higher than about 5000 psi, this value may not be sufficient. Thus, the(
3
√

f ′
c/fy

)
bw d value is also required to be met, and it will actually control when f ′

c is greater
than 4440 psi.

This ACI equation (10-3) for the minimum amount of flexural reinforcing can be written
as a percentage, as follows:

ρmin for flexure = 3
√

f ′
c

fy
≥ 200

fy

Values of ρmin for flexure have been calculated by the authors and are shown for several grades of
concrete and steel in Appendix A, Table A.7 of this text. They are also included in Tables A.8 to
A.13. (For SI units, the appropriate tables are in Appendix B, Tables B.7 to B.9.)
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Wastewater treatment plant, Fountain Hills, Arizona.

Section 10.5.3 of the code states that the preceding minimums do not have to be met if
the area of the tensile reinforcing furnished at every section is at least one-third greater than the
area required by moment. Furthermore, ACI Section 10.5.4 states that for slabs and footings
of uniform thickness, the minimum area of tensile reinforcing in the direction of the span is
that specified in ACI Section 7.12 for shrinkage and temperature steel which is much lower.
When slabs are overloaded in certain areas, there is a tendency for those loads to be distributed
laterally to other parts of the slab, thus substantially reducing the chances of sudden failure.
This explains why a reduction of the minimum reinforcing percentage is permitted in slabs of
uniform thickness. Supported slabs, such as slabs on grade, are not considered to be structural
slabs in this section unless they transmit vertical loads from other parts of the structure to the
underlying soil.

3.9 Balanced Steel Percentage
In this section, an expression is derived for ρb, the percentage of steel required for a balanced
design. At ultimate load for such a beam, the concrete will theoretically fail (at a strain of
0.00300), and the steel will simultaneously yield (see Figure 3.7).

The neutral axis is located by the triangular strain relationships that follow, noting that
Es = 29 × 106 psi for the reinforcing bars:

c

d
= 0.00300

0.00300 + (fy/Es)
= 0.00300

0.003 + (fy/29 × 106 psi)

This expression is rearranged and simplified, giving

c = 87,000

87,000 + fy
d
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0.003 in./in.

FI GU RE 3.7 Balanced conditions.

In Section 3.4 of this chapter, an expression was derived for depth of the compression
stress block, a, by equating the values of C and T. This value can be converted to the neutral
axis depth, c, by dividing it by β1:

a = ρfy d

0.85f ′
c

c = a

β1
= ρfy d

0.85β1f ′
c

Two expressions are now available for c, and they are equated to each other and solved for
the percentage of steel. This is the balanced percentage, ρb:

ρfy d

0.85β1f ′
c

= 87,000

87,000 + fy
d

ρb =
(

0.85β1f ′
c

fy

)(
87,000

87,000 + fy

)

or in SI units

(
0.85β1f ′

c

fy

)(
600

600 + fy

)

Values of ρb can easily be calculated for different values of f ′
c and fy and tabulated for U.S.

customary units as shown in Appendix A, Table A.7. For SI units, it’s Appendix B, Table B.7.
Previous codes (1963–1999) limited flexural members to 75% of the balanced steel

ratio, ρb. However, this approach was changed in the 2002 code to the new philosophy
explained in Section 3.7, whereby the member capacity is penalized by reducing the φ factor
when the strain in the reinforcing steel at ultimate is less than 0.005.

3.10 Example Problems
Examples 3.2 to 3.4 present the computation of the design moment capacities of three beams
using the ACI Code limitations. Remember that, according to the code (10.3.5), beams whose
axial load is less than 0.10f ′

c Ay may not, when loaded to their nominal strengths, have net
tensile calculated strains less than 0.004.
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Example 3.2

Determine the ACI design moment capacity, φMn, of the beam shown in Figure 3.8 if f ′
c = 4000 psi

and fy = 60,000 psi.

SOLUTION

Checking Steel Percentage

ρ = As

bd
= 4.00 in.2

(15 in.) (24 in.)
= 0.0111

> ρmin = 0.0033

< ρmax = 0.0181

}
both from

Appendix A, Table A.7

a = Asfy
0.85f ′

cb
= (4.00 in.2) (60,000 psi)

(0.85)(4000 psi) (15 in.)
= 4.71 in.

β1 = 0.85 for 4000 psi concrete

c = a
β1

= 4.71 in.
0.85

= 5.54 in.

Drawing Strain Diagram (Figure 3.9)

εt = d − c
c

(0.003) = 18.46 in.
5.54 in.

(0.003) = 0.0100

> 0.005 ∴ tension controlled

Mn = Asfy
(

d − a
2

)
= (4.00 in.2) (60 ksi)

(
24 in. − 4.71 in.

2

)
= 5194.8 in-k = 432.9 ft-k

φMn = (0.9) (432.9 ft-k) = 389.6 ft-k

15 in.

24 in.
27 in.

3 in.

4 #9 bars
(4.00 in.2)

FI GU RE 3.8 Beam cross section for
Example 3.2.

d = 24 in.

c = 5.54 in.

d – c = 18.46 in.

²c = 0.003

FI GU RE 3.9 Neutral axis location for
Example 3.2.
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Example 3.3

Determine the ACI design moment capacity, φMn, of the beam shown in Figure 3.10 if
f ′
c = 4000 psi and fy = 60,000 psi.

SOLUTION

Checking Steel Percentage

ρ = As

bd
= 4.68 in.2

(12 in.) (15 in.)
= 0.026 > ρmin = 0.0033

> ρmax = 0.0181 (from Appendix A, Table A.7). As a result, we know that εt will be < 0.005.

Computing Value of εt

a = Asfy
0.85f ′

cb
= (4.68 in.2) (60,000 psi)

(0.85) (4000 psi) (12 in.)
= 6.88 in.

β1 = 0.85 for 4000 psi concrete

c = a
β1

= 6.88 in.
0.85

= 8.09 in.

εt = d − c
c

(0.003) = 15 in. − 8.09 in.
8.09 in.

(0.003)

= 0.00256 < 0.004

∴ Section is not ductile and may not be used as per ACI Section 10.3.5.

12 in.

15 in.
18 in.

3 in.

3 #11 bars
(4.68 in.2)

FI GU RE 3.10 Beam cross section for Example 3.3.

Example 3.4

Determine the ACI design moment capacity, φMn, for the beam of Figure 3.11 if f ′
c = 4000 psi

and fy = 60,000 psi.

SOLUTION

Checking Steel Percentage

ρ = As

bd
= 3.00 in.2

(10 in.) (15 in.)
= 0.020 > ρmin = 0.0033

but also < ρmax = 0.0181 (for εt = 0.005)
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Computing Value of εt

a = Asfy
0.85f ′

cb
= (3.00 in.2) (60,000 psi)

(0.85) (4000 psi) (10 in.)
= 5.29 in.

β1 = 0.85 for 4000 psi concrete

c = a
β1

= 5.29 in.
0.85

= 6.22 in.

εt = d − c
c

(0.003) =
(

15 in. − 6.22 in.
6.22 in.

)
(0.003) = 0.00423 > 0.004 and < 0.005

∴ Beam is in transition zone and

φ (from Figure 3.5) = 0.65 + (0.00423 − 0.002)
(

250
3

)
= 0.836

Mn = Asfy
(
d − a

2

)
= (3.00 in.2) (60 ksi)

(
15 in. − 5.29 in.

2

)
= 2223.9 in-k = 185.3 ft-k

φMn = (0.836) (185.3 ft-k) = 154.9 ft-k

10 in.

15 in.
18 in.

3 in.

3 #9 bars
(3.00 in.2)

FI GU RE 3.11 Beam cross section for Example 3.4.

3.11 Computer Examples

Example 3.5

Repeat Example 3.2 using the Excel spreadsheet provided for Chapter 3.

SOLUTION

Open the Chapter 3 spreadsheet, and open the Rectangular Beam worksheet. Enter values only
in the cells highlighted yellow (only in the Excel spreadsheet, not the printed example). The final
result is φMn = 389.6 ft-k (same answer as Example 3.2).
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Example 3.6

Repeat Example 3.3 using the Excel spreadsheet provided for Chapter 3.

SOLUTION

Open the Chapter 3 spreadsheet and the Rectangular Beam worksheet. Enter values only in
the cells highlighted yellow. The spreadsheet displays a message, ‘‘code violation . . . too much
steel.’’ This is an indication that the beam violates ACI Section 10.3.5 and is not ductile. This
beam is not allowed by the ACI Code.

Example 3.7

Repeat Example 3.4 using the Excel spreadsheet provided for Chapter 3.

SOLUTION

Open the Chapter 3 spreadsheet and the Rectangular Beam worksheet. Enter values only in the
cells highlighted yellow. The final result is φMn = 154.5 ft-k (nearly the same answer as Example
3.4). The φ factor is also nearly the same as Example 3.4 (0.0834 compared with 0.0836). The
difference is the result of the spreadsheet using the more general value for εy of fy/Es = 0.00207
instead of the approximate value of 0.002 permitted by the code for Grade 60 reinforcing steel.
A difference of this magnitude is not important, as discussed in Section 1.25, ‘‘Calculation
Accuracy.’’

P R O B L E M S

Problem 3.1 What are the advantages of the strength design
method as compared to the allowable stress or alternate design
method?

Problem 3.2 What is the purpose of strength reduction
factors? Why are they smaller for columns than for beams?

Problem 3.3 What are the basic assumptions of the strength
design theory?

Problem 3.4 Why does the ACI Code specify that a certain
minimum percentage of reinforcing be used in beams?

Problem 3.5 Distinguish between tension-controlled and
compression-controlled beams.

Problem 3.6 Explain the purpose of the minimum cover
requirements for reinforcing specified by the ACI Code.

For Problems 3.7 to 3.9, determine the values of εt, φ, and φMn
for the sections shown.

Problem 3.7 (Ans. φMn = 379.1 ft-k)

12 in.

fy = 60,000 psi

f 'c = 4,000 psi

24 in.
27 in.

3 in.

4 #9 bars
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Problem 3.8

14 in.

fy = 75,000 psi

f 'c = 5,000 psi

18 in.
21 in.

3 in.

3 #11 bars

Problem 3.9 (Ans. εt = 0.00408, φ = 0.797,
φMn = 1320.7 ft-k)

20 in.

fy = 80,000 psi

f 'c = 6,000 psi

27 in. 30 in.

3 in.

7 #11 bars

Problem 3.10

18 in.

fy = 60,000 psi

f 'c = 4,000 psi

12 in.
15 in.

3 in.

4 #10 bars
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CHAPTER 4 Design of Rectangular Beams
and One-Way Slabs

4.1 Load Factors
Load factors are numbers, almost always larger than 1.0, that are used to increase the estimated
loads applied to structures. They are used for loads applied to all types of members, not just
beams and slabs. The loads are increased to attempt to account for the uncertainties involved
in estimating their magnitudes. How close can you estimate the largest wind or seismic loads
that will ever be applied to the building that you are now occupying? How much uncertainty
is present in your answer?

You should note that the load factors for dead loads are much smaller than the ones used
for live and environmental loads. Obviously, the reason is that we can estimate the magnitudes
of dead loads much more accurately than we can the magnitudes of those other loads. In this
regard, you will notice that the magnitudes of loads that remain in place for long periods of
time are much less variable than are those loads applied for brief periods, such as wind and
snow.

Section 9.2 of the code presents the load factors and combinations that are to be used for
reinforced concrete design. The required strength, U, or the load-carrying ability of a particular
reinforced concrete member, must at least equal the largest value obtained by substituting
into ACI Equations 9-1 to 9-7. The following equations conform to the requirements of the
International Building Code (IBC)1 as well as to the values required by ASCE/SEI 7-10.2

U = 1.4D (ACI Equation 9-1)

U = 1.2D + 1.6L + 0.5(Lr or S or R) (ACI Equation 9-2)

U = 1.2D + 1.6(Lr or S or R) + (L or 0.5W ) (ACI Equation 9-3)

U = 1.2D + 1.0W + L + 0.5(Lr or S or R) (ACI Equation 9-4)

U = 1.2D + 1.0E + L + 0.2S (ACI Equation 9-5)

U = 0.9D + 1.0W (ACI Equation 9-6)

U = 0.9D + 1.0E (ACI Equation 9-7)

In the preceding expressions, the following values are used:

U = the design or ultimate load the structure needs to be able to resist

D = dead load

L = live load

1 International Code Council, 2012, International Building Code, Falls Church, Virginia 22041-3401.
2 American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE 7-10 (Reston, VA:
American Society of Civil Engineers), p. 7.

82
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Lr = roof live load

S = snow load

R = rain load

W = wind load

E = seismic or earthquake load effects

When impact effects need to be considered, they should be included with the live loads as
per ACI Section 9.2.2. Such situations occur when those loads are quickly applied, as they are
for parking garages, elevators, loading docks, cranes, and others.

The load combinations presented in ACI Equations 9-6 and 9-7 contain a 0.9D value.
This 0.9 factor accounts for cases where larger dead loads tend to reduce the effects of other
loads. One obvious example of such a situation may occur in tall buildings that are subject
to lateral wind and seismic forces where overturning may be a possibility. As a result, the
dead loads are reduced by 10% to take into account situations where they may have been
overestimated.

The reader must realize that the sizes of the load factors do not vary in relation to the
seriousness of failure. You may think that larger load factors should be used for hospitals or high-
rise buildings than for cattle barns, but such is not the case. The load factors were developed on
the assumption that designers would consider the seriousness of possible failure in specifying
the magnitude of their service loads. Furthermore, the ACI load factors are minimum values,
and designers are perfectly free to use larger factors as they desire. The magnitude of wind loads
and seismic loads, however, reflects the importance of the structure. For example, in ASCE-7,3

a hospital must be designed for an earthquake load 50% larger than a comparable building
with less serious consequences of failure.

For some special situations, ACI Section 9.2 permits reductions in the specified load
factors. These situations are as follows:

(a) In ACI Equations 9-3 to 9-5, the factor used for live loads may be reduced to 0.5 except
for garages, areas used for public assembly, and all areas where the live loads exceed
100 psf.

(b) If the load W is based on service-level wind loads, replace 1.0W in ACI Equations 9-4
and 9-6 with 1.6W. Also, replace 0.5W with 0.8W in ACI Equation 9-3.

(c) Frequently, building codes and design load references convert seismic loads to strength-
level values (i.e., in effect they have already been multiplied by a load factor). This is
the situation assumed in ACI Equations 9-5 and 9-7. If, however, service-load seismic
forces are specified, it will be necessary to replace 1.0E with 1.4E in these two equations.

(d) Self-restraining effects, T, in reinforced concrete structures include the effects of tem-
perature, creep, shrinkage, and differential settlement. In some cases, the effects can be
additive. For example, creep, shrinkage, and reduction in temperature all cause a reduc-
tion of concrete volume. Often such effects can be reduced or eliminated by proper use
of control joints.

(e) Fluid loads, F, resulting from the weight and pressure of fluids shall be included with
the same load factor as D in ACI Equations 9-5 through 9-7.

3 American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures. ASCE 7-10 (Reston, VA:
American Society of Civil Engineers), p. 5.
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(f) Where soil loads, H, are present, they must be added to the load combinations in accor-
dance with one of the following:

• where H acts alone or adds to the effects of other loads, it shall be included with a
load factor of 1.6;

• where the effect of H is permanent and counteracts the effects of other loads, it shall
be included with a load factor of 0.9;

• where the effect of H is not permanent but, when present, counteracts the effects of
other loads, H shall not be included.

Example 4.1 presents the calculation of factored loads for a reinforced concrete column
using the ACI load combinations. The largest value obtained is referred to as the critical or
governing load combination and is the value to be used in design. Notice that the values of
the wind and seismic loads can be different depending on the direction of those forces, and it
may be possible for the sign of those loads to be different (i.e., compression or tension). This is
the situation assumed to exist in the column of this example. These rather tedious calculations
can be easily handled with the Excel spreadsheet entitled Load Combinations on this book’s
website: www.wiley.com/college/mccormac.

Example 4.1

The compression gravity axial loads for a building column have been estimated with the
following results: D = 150 k; live load from roof, Lr = 60 k; and live loads from floors, L = 300 k.
Compression wind, W = 112 k; tensile wind, W = 96 k; seismic compression load = 50 k; and
tensile seismic load = 40 k. Determine the critical design load using the ACI load combinations.

SOLUTION

(9-1) U = 1.4D = (1.4) (150 k) = 210 k

(9-2) U = 1.2D + 1.6L + 0.5(Lr or S or R) = (1.2) (150 k) + (1.6) (300 k) + (0.5) (60 k) = 690 k

(9-3)(a) U = 1.2D + 1.6(Lr or S or R) + (L or 0.5W) = (1.2) (150 k) + (1.6) (60 k) + (300 k) = 576 k

(b) U = 1.2D + 1.6(Lr or S or R) + (L or 0.5W) = (1.2) (150 k) + (1.6) (60 k) + (0.5) (70 k) = 311 k

(c) U = 1.2D + 1.6(Lr or S or R) + (L or 0.5W) = (1.2) (150 k) + (1.6) (60 k) + (0.5) (−60 k) = 246 k

(9-4)(a) U = 1.2D + 1.0W + L + 0.5(Lr or S or R) = (1.2) (150 k) + (1.0) (70 k) + (300 k) + 0.5(60 k) = 580 k

(b) U = 1.2D + 1.0W + L + 0.5(Lr or S or R) = (1.2) (150 k) + (1.0) (−60 k) + (300 k) + 0.5(60 k) = 450 k

(9-5)(a) U = 1.2D + 1.0E + L + 0.2S = (1.2) (150 k) + (1.0) (50 k) + (300 k) + (0.2) (0 k) = 530 k

(b) U = 1.2D + 1.0E + L + 0.2S = (1.2) (150 k) + (1.0) (−40 k) + (300 k) + (0.2) (0 k) = 440 k

(9-6)(a) U = 0.9D + 1.0W = (0.9) (150 k) + (1.0) (70 k) = 205 k

(b) U = 0.9D + 1.0W = (0.9) (150 k) + (1.0) (−60 k) = 75 k

(9-7)(a) U = 0.9D + 1.0E = (0.9) (150) + (1.0) (50 k) = 185 k

(b) U = 0.9D + 1.0E = (0.9) (150) + (1.0) (−40 k) = 95 k

Answer: Largest value = 690 k from load case 9.2.

For most of the example problems presented in this textbook, in the interest of reducing
the number of computations, only dead and live loads are specified. As a result, the only
load factor combination usually applied herein is the one presented by ACI Equation 9-2.
Occasionally, when the dead load is quite large compared to the live load, it is also necessary
to consider Equation 9-1.

http://www.wiley.com/college/mccormac
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4.2 Design of Rectangular Beams
Before the design of an actual beam is attempted, several miscellaneous topics need to be
discussed. These include the following:

1. Beam proportions. Unless architectural or other requirements dictate the proportions of
reinforced concrete beams, the most economical beam sections are usually obtained for shorter
beams (up to 20 ft or 25 ft in length), when the ratio of d to b is in the range of 11

2 to 2.
For longer spans, better economy is usually obtained if deep, narrow sections are used. The
depths may be as large as three or four times the widths. However, today’s reinforced concrete
designer is often confronted with the need to keep members rather shallow to reduce floor
heights. As a result, wider and shallower beams are used more frequently than in the past. You
will notice that the overall beam dimensions are selected to whole inches. This is done for
simplicity in constructing forms or for the rental of forms, which are usually available in 1-in.
or 2-in. increments. Furthermore, beam widths are often selected in multiples of 2 in. or 3 in.

2. Deflections. Considerable space is devoted in Chapter 6 to the topic of deflections
in reinforced concrete members subjected to bending. However, the ACI Code in its Table
9.5(a) provides minimum thicknesses of beams and one-way slabs for which such deflection
calculations are not required. These values are shown in Table 4.1. The purpose of such
limitations is to prevent deflections of such magnitudes as would interfere with the use of or
cause injury to the structure. If deflections are computed for members of lesser thicknesses
than those listed in the table and are found to be satisfactory, it is not necessary to abide by
the thickness rules. For simply supported slabs, normal-weight concrete, and Grade 60 steel,
the minimum depth given when deflections are not computed equals l/20, where l is the span
length of the slab. For concrete of other weights and for steel of different yield strengths, the
minimum depths required by the ACI Code are somewhat revised, as indicated in the footnotes
to Table 4.1. The ACI does not specify changes in the table for concretes weighing between
120 lb/ft and 145 lb/ft because substitution into the correction expression given yields correction
factors almost equal to 1.0.

The minimum thicknesses provided apply only to members that are not supporting or
attached to partitions or other construction likely to be damaged by large deflections.

3. Estimated beam weight. The weight of the beam to be selected must be included in the
calculation of the bending moment to be resisted, because the beam must support itself as well
as the external loads. The weight estimates for the beams selected in this text are generally
very close because the authors were able to perform a little preliminary paperwork before

TABLE 4.1 Minimum Thickness of Nonprestressed Beams or One-Way Slabs Unless
Deflections Are Computed1,2

Minimum Thickness, h

Simply One end Both ends
supported continuous continuous Cantilever

Members not supporting or attached to partitions or other
Member construction likely to be damaged by large deflections

Solid one-way slabs l/20 l/24 l/28 l/10

Beams or ribbed
one-way slabs l/16 l/18.5 l/21 l/8

1Span length, l, is in inches.
2Values given shall be used directly for members with normal-weight concrete and Grade 60 reinforcement. For
other conditions, the values shall be modified as follows:

(a) For lightweight concrete having equilibrium density in the range 90 lb/ft3 to 115 lb/ft3, the values shall be
multiplied by (1.65 − 0.005wc ) but not less than 1.09, where wc is the unit weight in lb/ft3.

(b) For fy other than 60,000 psi, the values shall be multiplied by (0.4 + fy/100,000).
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making their estimates. You are not expected to be able to glance at a problem and give an
exact estimate of the weight of the beam required. Following the same procedures as did the
authors, however, you can do a little figuring on the side and make a very reasonable estimate.
For instance, you could calculate the moment due to the external loads only, select a beam
size, and calculate its weight. From this beam size, you should be able to make a very good
estimate of the weight of the final beam section.

Another practical method for estimating beam sizes is to assume a minimum overall
depth, h, equal to the minimum depth specified by Table 4.1 [ACI-318-11, Table 9.5(a)] if
deflections are not to be calculated. The ACI minimum for the beam in question may be
determined by referring to Table 4.1. Then the beam width can be roughly estimated equal to
about one-half of the assumed value of h and the weight of this estimated beam calculated =
bh/144 times the concrete weight per cubic foot. Because concrete weighs approximately 150
pcf (if the weight of steel is included), a quick-and-dirty calculation of self-weight is simply
b × h because the concrete weight approximately cancels the 144 conversion factor.

After Mu is determined for all of the loads, including the estimated beam weight, the
section is selected. If the dimensions of this section are significantly different from those
initially assumed, it will be necessary to recalculate the weight and Mu and repeat the beam
selection. At this point you may very logically ask, “What’s a significant change?” Well, you
must realize that we are not interested academically in how close our estimated weight is to
the final weight, but rather we are extremely interested in how close our calculated Mu is to
the actual Mu. In other words, our estimated weight may be considerably in error, but if it
doesn’t affect Mu by more than say 1% or 11

2 %, forget it.
In Example 4.2, beam proportions are estimated as just described, and the dimensions so

selected are taken as the final ones. As a result, you can see that it is not necessary to check
the beam weight and recalculate Mu and repeat the design.

In Example 4.3, a beam is designed for which the total value of Mu (including the beam
weight) has been provided, as well as a suggested steel percentage.

Finally, with Example 4.4, the authors have selected a beam whose weight is unknown.
Without a doubt, many students initially have a little difficulty understanding how to make
reasonable member weight estimates for cases such as this one. To show how easily, quickly,
and accurately this may be done for beams, this example is included.

We dreamed up a beam weight estimated out of the blue equal to 400 lb/ft. (We could
just as easily and successfully have made it 10 lb/ft or 1000 lb/ft.) With this value, a beam
section was selected and its weight calculated to equal 619 lb/ft. With this value, a very good
weight estimate was then made. The new section obviously would be a little larger than the first
one. So we estimated the weight a little above the 619 lb/ft value, recalculated the moment,
selected a new section, and determined its weight. The results were very satisfactory.

4. Selection of bars. After the required reinforcing area is calculated, Appendix A,
Table A.4 is used to select bars that provide the necessary area. For the usual situations, bars
of sizes #11 and smaller are practical. It is usually convenient to use bars of one size only in
a beam, although occasionally two sizes will be used. Bars for compression steel and stirrups
are usually a different size, however. Otherwise the ironworkers may become confused.

5. Cover. The reinforcing for concrete members must be protected from the surround-
ing environment; that is, fire and corrosion protection need to be provided. To do this, the
reinforcing is located at certain minimum distances from the surface of the concrete so that
a protective layer of concrete, called cover, is provided. In addition, the cover improves the
bond between the concrete and the steel. In Section 7.7 of the ACI Code, specified cover is
given for reinforcing bars under different conditions. Values are given for reinforced concrete
beams, columns, and slabs; for cast-in-place members; for precast members; for prestressed
members; for members exposed to earth and weather; for members not so exposed; and so on.
The concrete for members that are to be exposed to deicing salts, brackish water, seawater, or
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#10 bars

#4 hangers
#3 stirrups

gap

details for hooks
given in Chapter 7

in. minimum

2ds =

ds =

ds

minimum edge distance = cover + ds + 2ds
= 1.50 +     + (2) (   ) = 23

8
3
8

5
8

3
4

in.

2 5
8

3
8 in. 1 1

2 -in. clear cover

1 1
2 -in. clear cover

FI GU RE 4.1 Determining minimum edge distance.

spray from these sources must be especially proportioned to satisfy the exposure requirements
of Chapter 4 of the code. These requirements pertain to air entrainment, water–cement ratios,
cement types, concrete strength, and so on.

The beams designed in Examples 4.2, 4.3, and 4.4 are assumed to be located inside a
building and thus protected from the weather. For this case, the code requires a minimum cover
of 11

2 in. of concrete outside of any reinforcement.
In Chapter 8, you will learn that vertical stirrups are used in most beams for shear

reinforcing. A sketch of a stirrup is shown in the beam of Figure 4.1. The minimum stirrup
diameter (ds) that the code permits us to use is 3

8 in. when the longitudinal bars are #10 or
smaller; for #11 and larger bars, the minimum stirrup diameter is 1

2 in. The minimum inside
radius of the 90◦ stirrup bent around the outside longitudinal bars is two times the stirrup
diameter (2ds). As a result, when the longitudinal bars are #14 or smaller, there will be a gap
between the bars and the stirrups, as shown in the figure. This is based on the assumption that
each outside longitudinal bar is centered over the horizontal point of tangency of the stirrup
corner bend. For #18 bars, however, the half-bar diameter is larger than 2ds and controls.

For the beam of Figure 4.1 it is assumed that 1.50-in. clear cover, #3 stirrups, and #10
longitudinal bars are used. The minimum horizontal distance from the center of the outside
longitudinal bars to the edge of the concrete can be determined as follows:

Minimum edge distance = cover + ds + 2ds = 1.50 in. + 3

8
in. + (2)

(
3

8
in.

)
= 2

5

8
in.

The minimum cover required for concrete cast against earth, as in a footing, is 3 in., and for
concrete not cast against the earth but later exposed to it, as by backfill, 2 in. Precast and
prestressed concrete or other concrete cast under plant control conditions requires less cover,
as described in Sections 7.7.2 and 7.7.3 of the ACI Code.

Notice the two #4 bars called hangers placed in the compression side of this beam. Their
purpose is to provide support for the stirrups and to hold the stirrups in position.

If concrete members are exposed to very harsh surroundings, such as deicing salts, smoke,
or acid vapors, the cover should be increased above these minimums.

6. Minimum spacing of bars. The code (7.6) states that the clear distance between parallel
bars cannot be less than 1 in.[4] or less than the nominal bar diameter. If the bars are placed
in more than one layer, those in the upper layers are required to be placed directly over the
ones in the lower layers, and the clear distance between the layers must be not less than 1 in.

4 25 mm in SI.
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Reinforcing bars. Note the supporting metal chairs.

A major purpose of these requirements is to enable the concrete to pass between the
bars. The ACI Code further relates the spacing of the bars to the maximum aggregate sizes for
the same purpose. In the code Section 3.3.2, maximum permissible aggregate sizes are limited
to the smallest of (a) one-fifth of the narrowest distance between side forms, (b) one-third of
slab depths, and (c) three-fourths of the minimum clear spacing between bars.

A reinforcing bar must extend an appreciable length in both directions from its point of
highest stress in order to develop its stress by bonding to the concrete. The shortest length in
which a bar’s stress can be increased from 0 to fy is called its development length.

If the distance from the end of a bar to a point where it theoretically has a stress equal
to fy is less than its required development length, the bar may very well pull loose from the
concrete. Development lengths are discussed in detail in Chapter 7. There you will learn that
required development lengths for reinforcing bars vary appreciably with their spacings and
their cover. As a result, it is sometimes wise to use greater cover and larger bar spacings than
the specified minimum values in order to reduce development lengths.

When selecting the actual bar spacing, the designer will comply with the preceding code
requirements and, in addition, will give spacings and other dimensions in inches and fractions,
not in decimals. The workers in the field are accustomed to working with fractions and would
be confused by a spacing of bars such as 3 at 1.45 in. The designer should always strive for
simple spacings, for such dimensions will lead to better economy.

Each time a beam is designed, it is necessary to select the spacing and arrange-
ment of the bars. To simplify these calculations, Appendix A, Table A.5 is given.
Corresponding information is provided in SI units in Appendix B, Table B.5. These tables
show the minimum beam widths required for different numbers of bars. The values given are
based on the assumptions that 3

8 -in. stirrups and 1 1
2 -in. cover are required except for #18 bars,

where the stirrup diameter is 1
2 in. If three #10 bars are required, it can be seen from the table

that a minimum beam width of 10.4 in. (say 11 in.) is required.
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This value can be checked as follows, noting that 2ds is the radius of bend of the bar,
and the minimum clear spacing between bars in this case is db:

Minimum beam width = cover + ds + 2ds + db

2
+ db + db + db + db

2
+ 2ds + ds + cover

= 1.50 in. + 3

8
in. + (2)

(
3

8
in.

)
+ 1.27 in.

2
+ (3) (1.27 in.) + 1.27 in.

2

+(2)

(
3

8
in.

)
+ 3

8
in. + 1.50 in.

= 10.33 in. rounded to 10.4 in.

4.3 Beam Design Examples
Example 4.2 illustrates the design of a simple span rectangular beam. For this introductory
example, approximate dimensions are assumed for the beam cross section. The depth, h, is
assumed to equal about one-tenth of the beam span, while its width, b, is assumed to equal
about 1

2 h . Next the percentage of reinforcing needed is determined with the equation derived
in Section 3.4, and reinforcing bars are selected to satisfy that percentage. Finally, φMn is
calculated for the final design.

Example 4.2

Design a rectangular beam for a 22-ft simple span if a dead load of 1 k/ft (not including the beam
weight) and a live load of 2 k/ft are to be supported. Use f ′

c = 4000 psi and fy = 60,000 psi.

SOLUTION

Estimating Beam Dimensions and Weight

Assume h = (0.10) (22 ft) = 2.2 ft Say 27 in. (d = 24.5 in.)

Assume b = 1
2

h = 27 in.
2

Say 14 in.

Beam wt = (14 in.) (27 in.)

144 in2/ft2
(150 lb/ft3) = 394 lb/ft = 0.394 k/ft (klf)

Computing wu and Mu

wu = (1.2) (1 klf + 0.394 klf) + (1.6) (2 klf) = 4.873 klf

Mu = wuL2

8
= (4.873 klf) (22 ft)2

8
= 294.8 ft-k

Assuming φ = 0.90 and computing ρ with the following expression, which was derived in
Section 3.4.

ρ = 0.85f ′
c

fy

(
1 −

√
1 − 2Rn

0.85f ′
c

)

Rn = Mu

φbd2 = (12 in/ft) (294,800 ft-lb)
(0.90) (14 in.) (24.5 in.)2

= 467.7 psi

ρ = (0.85) (4000 psi)
60,000 psi

[
1 −

√
1 − (2) (467.7 psi)

(0.85) (4000 psi)

]
= 0.00842
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Selecting Reinforcing

As = ρbd = (0.00842) (14 in.) (24.5 in.) = 2.89 in.2

Use 3 #9 bars (As = 3.00 in.2)

Appendix A.5 indicates a minimum beam width of 9.8 in. for interior exposure for three #9 bars.
If five #7 bars had been selected, a minimum width of 12.8 in. would be required. Either choice
would be acceptable since the beam width of 14 in. exceeds either requirement. If we had
selected a beam width of 12 in. earlier in the design process, we might have been limited to the
larger #9 bars because of this minimum beam width requirement.

Checking Solution

ρ = As

bd
= 3.00 in.2

(14 in.) (24.5 in.)
= 0.00875 > ρmin = 0.0033

< ρmax = 0.0181 (ρ values from Appendix A, Table A.7). ∴ Section is ductile and φ = 0.90

a = Asfy
0.85f ′

cb
= (3.00 in.2) (60 ksi)

(0.85) (4 ksi) (14 in.)
= 3.78 in.

φMn = φAsfy
(
d − a

2

)
= (0.90) (3.00 in.2) (60 ksi)

(
24.5 in. − 3.78 in.

2

)

= 3662 in-k = 305.2 ft-k > 294.8 ft-k OK

Final Section (Figure 4.2)

2 in.1
2

14 in.

3 in. 3 in.
2@4 in.

= 8 in.

27 in.

3 #9 bars

24 in.1
2

FI GU RE 4.2 Final beam cross section for Example 4.2.

Use of Graphs and Tables

In Section 3.4, the following equation was derived:

Mu = φAs fy d

(
1 − 1

1.7

ρfy
f ′
c

)

If As in this equation is replaced with ρbd, the resulting expression can be solved for Mu/φbd2.

Mu = φρbd fy d

(
1 − 1

1.7

ρfy
f ′
c

)

and dividing both sides of the equation by φbd2,
Mu

φbd2
= ρfy

(
1 − 1

1.7

ρfy
f ′
c

)

For a given steel percentage, ρ, certain concrete, f ′
c , and certain steel, fy, the value of

Mu/φbd2 can be calculated and listed in tables, as is illustrated in Appendix A, Tables A.8
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Barnes Meadow Interchange, Northampton, England.

through A.13, or in graphs (see Graph 1 of Appendix A). SI values are provided in Appendix
Tables B.8 through B.9. It is much easier to accurately read the tables than the graphs (at least
to the scale to which the graphs are shown in this text). For this reason, the tables are used
for the examples here. The units for Mu/φbd2 in both the tables and the graphs of Appendix
A are pounds per square inch. In Appendix B, the units are MPa.

Once Mu/φbd2 is determined for a particular beam, the value of Mu can be calculated as
illustrated in the alternate solution for Example 3.1. The same tables and graphs can be used
for either the design or analysis of beams.

The value of ρ, determined in Example 4.2 by substituting into that long and tedious
equation, can be directly selected from Appendix A, Table A.13. We enter that table with the
Mu/φbd2 value previously calculated in the example, and we read a value of ρ between 0.0084
and 0.0085. Interpolation can be used to find the actual value of 0.00842, but such accuracy is not
really necessary. It is conservative to use the higher value (0.0085) to calculate the steel area.

In Example 4.3, which follows, a value of ρ was specified in the problem statement, and
the long equation was used to determine the required dimensions of the structure as represented
by bd2. Again, it is much easier to use the appropriate appendix table to determine this value. In
nearly every other case in this textbook, the tables are used for design or analysis purposes.

Once the numerical value of bd2 is determined, the authors take what seems to be
reasonable values for b (in this case 12 in., 14 in., and 16 in.) and compute the required d
for each width so that the required bd2 is satisfied. Finally, a section is selected in which b
is roughly 1

2 to 2
3 of d. (For long spans, d may be two and a half or three or more times b

for economical reasons.)

Example 4.3

A beam is to be selected with ρ � 0.0120, Mu = 600 ft-k, fy = 60,000 psi, and f ′
c = 4000psi.

SOLUTION

Assuming φ = 0.90 and substituting into the following equation from Section 3.4:

Mu

φbd2
= ρfy

(
1 − 1

1.7

ρfy
f ′
c

)
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(12 in/ft) (600,000 ft-lb)
(0.9) (bd2)

= (0.0120) (60,000 psi)
[
1 −

(
1

1.7

)
(0.0120) (60,000 psi)

4000 psi

]

bd2 = 12,427 in.3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b × d

12 in. × 32.18 in.

14 in. × 29.79 in.

16 in. × 27.87 in.

⎧⎪⎪⎨
⎪⎪⎩

This one seems

pretty reasonable

to the authors.
←

Note: Alternatively, we could have used tables to help calculate bd2. Upon entering Appendix A,
Table A.13, we find Mu/φbd2 = 643.5 psi when ρ = 0.0120.

∴ bd2 = (12 in/ft) (600,000 ft-lb)
(0.90) (643.5 psi)

= 12,432 in.3 OK

Try 14 in. × 33 in. (d = 30.00 in.)

As = ρbd = (0.0120) (14 in.) (30 in.) = 5.04 in.2

Use 4 #10 (As = 5.06 in.2)

Note: Appendix A.5 indicates a minimum beam width of 12.9 in. for this bar selection. Since our
width is 14 in., the bars will fit.

Checking Solution

ρ = As

bd
= 5.06 in.2

(14 in.) (30 in.)
= 0.01205 > ρmin = 0.0033

< ρmax = 0.0181 (from Appendix A, Table A.7)

Note: A value of ρ = 0.0206 is permitted by the code, but the corresponding value of φ would
be less than 0.9 (see Figure 3.5 and Table A.7). Since a value of φ of 0.9 was used in the above
calculations, it is necessary to use a maximum value of ρ = 0.0181.

With ρ = 0.01205, Mu/φbd2 by interpolation from Table A.13 equals 645.85.

φMn = (645.85 psi) (φbd2) = (645.85 psi) (0.9) (14 in.) (30 in.)2

= 7,323,939 in-lb = 610.3 ft-k > 600 ft-k

Final Section (Figure 4.3)

14 in.

3@3
= 9 in.

33 in.

4 #10 bars

30 in.

3 in.

2 in.1
2 2  in.1

2

FI GU RE 4.3 Final cross section for Example 4.3.
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Through quite a few decades of reinforced concrete design experience, it has been found
that if steel percentages are kept fairly small, say roughly 0.18f ′

c/fy or perhaps 0.375ρb, beam
cross sections will be sufficiently large so that deflections will seldom be a problem. As the
areas of steel required will be fairly small, there will be little problem fitting them into beams
without crowding.

If these relatively small percentages of steel are used, there will be little difficulty in
placing the bars and in getting the concrete between them. Of course, from the standpoint
of deflection, higher percentages of steel, and thus smaller beams, can be used for short
spans where deflections present no problem. Whatever steel percentages are used, the resulting
members will have to be carefully checked for deflections, particularly for long-span beams,
cantilever beams, and shallow beams and slabs. Of course, such deflection checks are not
required if the minimum depths specified in Table 4.1 of this chapter are met.

Another reason for using smaller percentages of steel is given in ACI Section 8.4, where
a plastic redistribution of moments (a subject to be discussed in Chapter 14) is permitted in
continuous members whose εt values are 0.0075 or greater. Such tensile strains will occur
when smaller percentages of steel are used. For the several reasons mentioned here, structural
designers believe that keeping steel percentages fairly low will result in good economy.

Example 4.4

A rectangular beam is to be sized with fy = 60,000 psi, f ′
c = 3000 psi, and a ρ approximately

equal to 0.18f ′
c/fy. It is to have a 25-ft simple span and to support a dead load, in addition to its

own weight, equal to 2 k/ft and a live load equal to 3 k/ft.

SOLUTION

Assume Beam wt = 400 lb/ft

wu = (1.2) (2 klf + 0.400 klf) + (1.6) (3 klf) = 7.68 klf (k/ft)

Mu = (7.68 klf) (25 ft)2

8
= 600 ft-k

ρ = (0.18) (3 ksi)
60 ksi

= 0.009

Mu

φbd2
= 482.6 psi (from Appendix A, Table A.12)

bd2 = Mu

φ(482.6 psi)
= (12 in/ft) (600,000 ft-lb)

(0.9) (482.6 psi)

Solving this expression for bd 2 and trying varying values of b and d.

b × d

bd 2 = 16,577 in.3

⎧⎪⎪⎨
⎪⎪⎩

16 in. × 32.19 in.

18 in. × 30.35 in.

20 in. × 28.79 in.

← seems reasonable

Try 18-in. × 33-in. Beam (d = 30. 50 in.)

Bm wt = (18 in.) (33 in.)

144 in2/ft2
(150 lb/ft3) = 619 lb/ft

> the estimated 400 lb/ft No good
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Assume Beam wt a Little Higher Than 619 lb/ft

Estimate wt = 650 lb/ft

wu = (1.2) (2 klf + 0.650 klf) + (1.6) (3 klf) = 7.98 klf

Mu = (7.98 klf) (25 ft)2

8
= 623.4 ft-k

bd2 = Mu

φ(482.6 psi)
= (12 in/ft) (623,400 ft-lb)

(0.9) (482.6 psi)

= 17,223 in.3

⎧⎪⎪⎨
⎪⎪⎩

16 in. × 32.81 in.

18 in. × 30.93 in.

20 in. × 29.35 in.

← seems reasonable

Try 18-in. × 34-in. Beam (d = 31.00 in.)

Bm wt = (18 in.) (34 in.)

144 in2/ft2
(150 lb/ft3) = 637.5 lb/ft < 650 lb/ft OK

As = ρbd = (0.009) (18 in.) (31 in.) = 5.02 in.2

Try five #9 bars (minimum width is 14.3 in. from Appendix A, Table A.5) OK
Normally a bar selection should exceed the theoretical value of As. In this case, the area

chosen was less than, but very close to, the theoretical area, and it will be checked to be sure it
has enough capacity.

a = Asfy
0.85f ′

cb
= 5.00 in.2(60 ksi)

(0.85) (3 ksi) (18 in.)
= 6.54 in.

φMn = φAsfy
(
d − a

2

)
= 0.9(5.00 in.2) (60 ksi)

(
31 in. − 6.54 in.

2

)

= 7487.6 in-lb = 623.9 ft-k > Mu

The reason a beam with less reinforcing steel than calculated is acceptable is that a value of d
exceeding the theoretical value was selected (d = 31 in.> 30.93 in.). Whenever the value of b
and d selected results in a bd2 that exceeds the calculated value based on the assumed ρ, the
actual value of ρ will be lower than the assumed value.

If a value of b = 18 in. and d = 30 in. had been selected, the result would have been that
the actual value of ρ would be greater than the assumed value of 0.009. Using the actual values
of b and d to recalculate ρ

Mu

φbd2
= (12 in/ft) (623,400 ft-lb)

(0.9) (18 in.) (30 in.)2
= 513.1 psi

From Appendix A, Table A.12, ρ = 0.00965, which exceeds the assumed value of 0.009. The
required value of As will be larger than that required for d = 31 in.

As = ρbd = (0.00965) (18 in.) (30 in.) = 5.21 in.2 (Use 7 #8 bars, As = 5.50 in.2)

Either design is acceptable. This kind of flexibility is sometimes perplexing to the student who
simply wants to know the right answer. One of the best features of reinforced concrete is that
there is so much flexibility in the choices that can be made.
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4.4 Miscellaneous Beam Considerations
This section introduces two general limitations relating to beam design: lateral bracing and
deep beams.

Lateral Support

It is unlikely that laterally unbraced reinforced concrete beams of any normal proportions will
buckle laterally, even if they are deep and narrow, unless they are subject to appreciable lateral
torsion. As a result, the ACI Code (10.4.1) states that lateral bracing for a beam is not required
closer than 50 times the least width, b, of the compression flange or face. Should appreciable
torsion be present, however, it must be considered in determining the maximum spacing for
lateral support.

Skin Reinforcement for Deep Beams

Beams with web depths that exceed 3 ft have a tendency to develop excessively wide cracks
in the upper parts of their tension zones. To reduce these cracks, it is necessary to add some
additional longitudinal reinforcing in the zone of flexural tension near the vertical side faces of
their webs, as shown in Figure 4.4. The code (10.6.7) states that additional skin reinforcement
must be uniformly distributed along both side faces of members with h > 36 in. for distances
equal to h/2 nearest the flexural reinforcing.

The spacing, s, between this skin reinforcement shall be as provided in ACI 10.6.4. These
additional bars may be used in computing the bending strengths of members only if appropriate
strains for their positions relative to neutral axes are used to determine bar stresses. The total
area of the skin reinforcement in both side faces of the beam does not have to exceed one-half
of the required bending tensile reinforcement in the beam. The ACI does not specify the actual
area of skin reinforcing; it merely states that some additional reinforcement should be placed
near the vertical faces of the tension zone to prevent cracking in the beam webs.

Some special requirements must be considered relating to shear in deep beams, as
described in the ACI Code (11.7) and in Section 8.14 of this text. Should these latter pro-
visions require more reinforcing than required by ACI Section 10.6.7, the larger values will
govern.

For a beam designed in SI units with an effective depth > 1 m, additional skin reinforce-
ment must be determined with the following expression, in which Ask is the area of skin
reinforcement per meter of height on each side of the beam:

Its maximum spacing may not exceed d/6 on 300 mm or 1000Ab/(d − 750).

h

h
2

computed As

skin reinforcement
each side = Ask

s

s

s

b

FI GU RE 4.4 Skin reinforcement for deep
beams with h > 36 in., as required by ACI
Code Section 10.6.7.
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Other Items

The next four chapters of this book are devoted to several other important items relating to
beams. These include different shaped beams, compression reinforcing, cracks, bar development
lengths, and shear.

Further Notes on Beam Sizes

From the standpoints of economy and appearance, only a few different sizes of beams should
be used in a particular floor system. Such a practice will save appreciable amounts of money
by simplifying the formwork and at the same time will provide a floor system that has a more
uniform and attractive appearance.

If a group of college students studying the subject of reinforced concrete were to design
a floor system and then compare their work with a design of the same floor system made by an
experienced structural designer, the odds are that the major difference between the two designs
would be in the number of beam sizes. The practicing designer would probably use only a few
different sizes, whereas the average student would probably use a larger number.

The designer would probably examine the building layout to decide where to place the
beams and then would make the beam subject to the largest bending moment as small as
practically possible (i.e., with a fairly high percentage of reinforcing). Then he or she would
proportion as many as possible of the other similar beams with the same outside dimensions.
The reinforcing percentages of these latter beams might vary quite a bit because of their
different moments.

4.5 Determining Steel Area When Beam Dimensions
Are Predetermined

Sometimes the external dimensions of a beam are predetermined by factors other than
moments and shears. The depth of a member may have been selected on the basis of the
minimum thickness requirements discussed in Section 4.2 for deflections. The size of a whole
group of beams may have been selected to simplify the formwork, as discussed in Section
4.4. Finally, a specific size may have been chosen for architectural reasons. Next we briefly
mention three methods for computing the reinforcing required. Example 4.5 illustrates the
application of each of these methods.

Appendix Tables

The value of Mu/φbd2 can be computed, and ρ can be selected from the tables. For most
situations this is the quickest and most practical method. The tables given in Appendices A
and B of this text apply only to tensilely reinforced rectangular sections. Furthermore, we must
remember to check φ values.

Use of ρ Formula

The following equation was previously developed in Section 3.4 for rectangular sections.

ρ = 0.85f ′
c

fy

(
1 −

√
1 − 2Rn

0.85f ′
c

)
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Trial-and-Error (Iterative) Method

A value of a can be assumed, the value of As computed, the value of a determined for that
value of As, another value of a calculated, and so on. Alternatively, a value of the lever arm
from C to T (it’s d − a/2 for rectangular sections) can be estimated and used in the trial-and-
error procedure. This method is a general one that will work for all cross sections with tensile
reinforcing. It is particularly useful for T beams, as will be illustrated in the next chapter.

Example 4.5

The dimensions of the beam shown in Figure 4.5 have been selected for architectural reasons.
Determine the reinforcing steel area by each of the methods described in this section.

SOLUTION

Using Appendix Tables

Mu

φbd2
= (12 in/ft) (160,000 ft-lb)

(0.9) (16 in.) (21 in.)2
= 302.3 psi

ρ (from Appendix A, Table A.12) = 0.00538 (by interpolation)

As = (0.00538) (16 in.) (21 in.) = 1.81 in.2

Use 6 #5 bars (1.84 in.2)

Using ρ Formula

Rn = Mu

φbd2
= 302.3 psi

ρ = (0.85) (3000 psi)
60,000 psi

[
1 −

√
1 − (2) (302.3 psi)

(0.85) (3000 psi)

]

= 0.00538 (same as obtained from Appendix A)

Trial-and-Error (Iterative) Method

Here it is necessary to estimate the value of a. The student probably has no idea of a reasonable
value for this quantity, but the accuracy of the estimate is not a matter of importance. He or she
can assume some value probably considerably less than d/2 and then compute d − a/2 and As.
With this value of As, a new value of a can be computed and the cycle repeated. After two or
three cycles, a very good value of a will be obtained.

21 in.
24 in.

3 in.
3 in. 10 in. 3 in.

16 in.
FI GU RE 4.5 Beam cross section for
Example 4.5.
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Assume a = 2 in.:

As = Mu

φfy
(

d − a
2

) = (12 in/ft) (160,000 ft-lb)

(0.9) (60,000 psi)
(

21 in. − 2 in.
2

) = 1.78 in.2

a = Asfy
0.85f ′

cb
= (1.78 in.2) (60,000 psi)

(0.85) (3000 psi) (16 in.)
= 2.62 in.

Assume a = 2.6 in.:

As = (12 in/ft) (160,000 ft-lb)

(0.9) (60,000 psi)
(

21 in. − 2.62 in.
2

) = 1.81 in.2

a = (1.81 in.2) (60,000 psi)
(0.85) (3000 psi) (16 in.)

= 2.66 in. (close enough)

Based on this method, use a theoretical value of As = 1.81 in.2

4.6 Bundled Bars
Sometimes when large amounts of steel reinforcing are required in a beam or column, it is very
difficult to fit all the bars in the cross section. For such situations, groups of parallel bars may
be bundled together. Up to four bars can be bundled, provided they are enclosed by stirrups
or ties. The ACI Code (7.6.6.3) states that bars larger than #11 shall not be bundled in beams
or girders. This is primarily because of crack control problems, a subject discussed in Chapter
6 of this text. That is, if the ACI crack control provisions are to be met, bars larger than
#11 cannot practically be used. The AASHTO permits the use of two-, three-, and four-bar
bundles for bars up through the #11 size. For bars larger than #11, however, AASHTO limits
the bundles to two bars (AASHTO Sections 8.21.5 ASD and 5.10.3.1.5 strength design).

Typical configurations for two-, three-, and four-bar bundles are shown in Figure 4.6.
When bundles of more than one bar deep vertically are used in the plane of bending, they may
not practically be hooked or bent as a unit. If end hooks are required, it is preferable to stagger
the hooks of the individual bars within the bundle.

Although the ACI permits the use of bundled bars, their use in the tension areas of beams
may very well be counterproductive because of the other applicable code restrictions that are
brought into play as a result of their use.

When spacing limitations and cover requirements are based on bar sizes, the bundled
bars may be treated as a single bar for computation purposes; the diameter of the fictitious
bar is to be calculated from the total equivalent area of the group. When individual bars in
a bundle are cut off within the span of beams or girders, they should terminate at different
points. The code (7.6.6.4) requires that there be a stagger of at least 40 bar diameters.

FI GU RE 4.6 Bundled-bar arrangements.
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4.7 One-Way Slabs
Reinforced concrete slabs are large flat plates that are supported by reinforced concrete beams,
walls, or columns; by masonry walls; by structural steel beams or columns; or by the ground.
If they are supported on two opposite sides only, they are referred to as one-way slabs because
the bending is in one direction only—that is, perpendicular to the supported edges. Should the
slab be supported by beams on all four edges, it is referred to as a two-way slab because the
bending is in both directions. Actually, if a rectangular slab is supported on all four sides, but
the long side is two or more times as long as the short side, the slab will, for all practical
purposes, act as a one-way slab, with bending primarily occurring in the short direction. Such
slabs are designed as one-way slabs. You can easily verify these bending moment ideas by
supporting a sheet of paper on two opposite sides or on four sides with the support situation
described. This section is concerned with one-way slabs; two-way slabs are considered in
Chapters 16 and 17. It should be realized that a large percentage of reinforced concrete slabs
fall into the one-way class.

A one-way slab is assumed to be a rectangular beam with a large ratio of width to depth.
Normally, a 12-in.-wide piece of such a slab is designed as a beam (see Figure 4.7), the slab
being assumed to consist of a series of such beams side by side. The method of analysis is
somewhat conservative because of the lateral restraint provided by the adjacent parts of the
slab. Normally, a beam will tend to expand laterally somewhat as it bends, but this tendency
to expand by each of the 12-in. strips is resisted by the adjacent 12-in.-wide strips, which tend
to expand also. In other words, Poisson’s ratio is assumed to be zero. Actually, the lateral
expansion tendency results in a very slight stiffening of the beam strips, which is neglected in
the design procedure used here.

The 12-in.-wide beam is quite convenient when thinking of the load calculations because
loads are normally specified as so many pounds per square foot, and thus the load carried per
foot of length of the 12-in.-wide beam is the load supported per square foot by the slab. The
load supported by the one-way slab, including its own weight, is transferred to the members
supporting the edges of the slab. Obviously, the reinforcing for flexure is placed perpendicular
to these supports—that is, parallel to the long direction of the 12-in.-wide beams. This flexural
reinforcing may not be spaced farther on center than three times the slab thickness, or 18 in.,
according to the ACI Code (7.6.5). Of course, there will be some reinforcing placed in the
other direction to resist shrinkage and temperature stresses.

12
 in

.

12
 in

.

FI GU RE 4.7 A 12-in. strip in a simply supported one-way slab.
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The thickness required for a particular one-way slab depends on the bending, the deflec-
tion, and shear requirements. As described in Section 4.2, the ACI Code (9.5.2.1) provides
certain span/depth limitations for concrete flexural members where deflections are not calcu-
lated.

Because of the quantities of concrete involved in floor slabs, their depths are rounded
off to closer values than are used for beam depths. Slab thicknesses are usually rounded off to
the nearest 1

4 in. on the high side for slabs of 6 in. or less in thickness and to the nearest 1
2 in.

on the high side for slabs thicker than 6 in.
As concrete hardens, it shrinks. In addition, temperature changes occur that cause expan-

sion and contraction of the concrete. When cooling occurs, the shrinkage effect and the
shortening due to cooling add together. The code (7.12) states that shrinkage and tempera-
ture reinforcement must be provided in a direction perpendicular to the main reinforcement for
one-way slabs. (For two-way slabs, reinforcement is provided in both directions for bending.)
The code states that for Grade 40 or 50 deformed bars, the minimum percentage of this steel is
0.002 times the gross cross-sectional area of the slab. Notice that the gross cross-sectional area
is bh (where h is the slab thickness). The code (7.12.2.2) states that shrinkage and temperature
reinforcement may not be spaced farther apart than five times the slab thickness, or 18 in.
When Grade 60 deformed bars or welded wire fabric is used, the minimum area is 0.0018bh.
For slabs with fy > 60,000 psi, the minimum value is (0.0018 × 60,000)/fy ≥ 0.0014.

In SI units, the minimum percentages of reinforcing are 0.002 for Grades 300 and 350
steels and 0.0018 for Grade 420 steel. When fy > 420 MPa, the minimum percentage equals
(0.0018 × 420)/fy. The reinforcing may not be spaced farther apart than five times the
slab thickness, or 500 mm.

Should structural walls or large columns provide appreciable resistance to shrinkage and
temperature movements, it may very well be necessary to increase the minimum amounts listed.

Shrinkage and temperature steel serves as mat steel in that it is tied perpendicular to
the main flexural reinforcing and holds it firmly in place as a mat. This steel also helps to
distribute concentrated loads transversely in the slab. (In a similar manner, the AASHTO gives
minimum permissible amounts of reinforcing in slabs transverse to the main flexural reinforcing
for lateral distribution of wheel loads.)

Areas of steel are often determined for 1-ft widths of reinforced concrete slabs, footings,
and walls. A table of areas of bars in slabs such as Appendix A, Table A.6 is very useful in
such cases for selecting the specific bars to be used. A brief explanation of the preparation of
this table is provided here.

For a 1 ft width of concrete, the total steel area obviously equals the total or average
number of bars in a 1-ft width times the cross-sectional area of one bar. This can be expressed
as (12 in./bar spacing c. to c.)(area of 1 bar). Some examples follow, and the values obtained
can be checked in the table. Understanding these calculations enables one to expand the table
as desired.

1. #9 bars, 6-in. o.c. total area in 1-ft width =
(12

6

)
(1.00) = 2.00 in.2

2. #9 bars, 5-in. o.c. total area in 1-ft width =
(

12
5

)
(1.00) = 2.40 in.2

Example 4.6 illustrates the design of a one-way slab. It will be noted that the code
(7.7.1.c) cover requirement for reinforcement in slabs (#11 and smaller bars) is 3

4 in. clear,
unless corrosion or fire protection requirements are more severe.
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Example 4.6

Design a one-way slab for the inside of a building using the span, loads, and other data given in
Figure 4.8. Normal-weight aggregate concrete is specified with a density of 145 pcf.

SOLUTION

Minimum Total Slab Thickness h If Deflections Are Not Computed (See Table 4.1)

h = l

20
= (12 in/ft) (10 ft)

20
= 6 in.

Assume 6-in. slab (with d = approximately 6 in. − 3
4 in. Cover − 1

4 in. for estimated half-
diameter of bar size = 5.0 in.). The moment is calculated, and then the amount of steel required
is determined. If this value seems unreasonable, a different thickness is tried.

Design a 12-in.-wide strip of the slab. Thus, b = 12 in., and the load on the slab in units
of lb/ft2 becomes lb/ft. Usually 5 pcf is added to account for the weight of reinforcement, so 150
pcf is used in calculating the weight of a normal-weight concrete member.

DL = slab wt =
(

6 in.
12 in/ft

)
(150 pcf) = 75 psf

LL = 200 psf

wu = (1.2) (75 psf) + (1.6) (200 psf) = 410 psf

Mu = (0.410 klf) (10 ft)2

8
= 5.125 ft-k

Mu

φbd2
= (12 in/ft) (5125 ft-lb)

(0.9) (12 in.) (5.00 in.)2
= 227.8 psi

ρ = 0.00393 (from Appendix A, Table A.13)

> ρmin = 0.0033

As = ρbd = (0.00393) (12 in.) (5.0 in.) = 0.236 in2/ft

Use #4 @ 10 in. from Table A.6 (As = 0.24 in2/ft)

Spacing < maximum of 18 in. as per ACI 7.6.5

Transverse Direction—Shrinkage and Temperature Steel

As = 0.0018bd = (0.0018) (12 in.) (6 in.) = 0.1296 in2/ft

Use #3 @ 10 in. (0.13 in2/ft) as selected from Table A.6

Spacing < maximum of 18 in. as per ACI 7.12.2.2 OK

The #4 bars are placed below the #3 bars in this case. The #4 bars are the primary flexural
reinforcing, and the value of d is based on this assumption. The #3 bars are for temperature and
shrinkage control, and their depth within the slab is not as critical.

10 ft

LL  =   200 psf

FI GU RE 4.8 Given information for Example 4.6.
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The designers of reinforced concrete structures must be very careful to comply with
building code requirements for fire resistance. If the applicable code requires a certain fire
resistance rating for floor systems, that requirement may very well cause the designer to use
thicker slabs than might otherwise be required to meet the ACI strength design requirements.
In other words, the designer of a building should study carefully the fire resistance provisions
of the governing building code before proceeding with the design. Section 7.7.8 of ACI 318-11
includes such a requirement.

4.8 Cantilever Beams and Continuous Beams
Cantilever beams supporting gravity loads are subject to negative moments throughout their
lengths. As a result, their reinforcement is placed in their top or tensile sides, as shown in
Figures 4.9 and 4.10(a). The reader will note that for such members the maximum moments
occur at the faces of the fixed supports. As a result, the largest amounts of reinforcing are
required at those points. You should also note that the bars cannot be stopped at the support
faces. They must be extended or anchored in the concrete beyond the support face. We will
later call this development length. The development length does not have to be straight as
shown in the figure, because the bars may be hooked at 90◦ or 180◦. Development lengths and
hooked bars are discussed in depth in Chapter 7.

Up to this point, only statically determinate members have been considered. The very com-
mon situation, however, is for beams and slabs to be continuous over several supports, as shown
in Figure 4.10. Because reinforcing is needed on the tensile sides of the beams, we will place it
in the bottoms when we have positive moments and in the tops when we have negative moments.
There are several ways in which the reinforcing bars can be arranged to resist the positive and
negative moments in continuous members. One possible arrangement is shown in Figure 4.10(a).
These members, including bar arrangements, are discussed in detail in Chapter 14.

FI GU RE 4.9 Cantilever beam
development length.

Note: Some of +As
continues into supports.

+As

+
−−

+
−−

+
−−

(a)

(b)

−As

FI GU RE 4.10 Continuous slab showing theoretical placement of bars for given moment
diagram.
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Workers pour the first concrete of the new clubhouse during the TPC Sawgrass
renovation (May 10, 2006).

4.9 SI Example
Example 4.7 illustrates the design of a beam using SI units.

Example 4.7

Design a rectangular beam for a 10-m simple span to support a dead load of 20 kN/m
(not including beam weight) and a live load of 30 kN/m. Use ρ = 0.5ρb, f ′

c = 28 MPa, and
fy = 420 MPa, and concrete weight is 23.5 kN/m3. Do not use the ACI thickness limitation.

SOLUTION

Assume that the beam weight is 10 kN/m and φ = 0.90.

wu = (1.2) (30 kN/m) + (1.6) (30 kN/m) = 84 kN/m

Mu = (84 kN/m) (10 m)2

8
= 1050 kN •m

ρ =
(

1
2

)
(0.0283) = 0.01415 (from Appendix B, Table B.7)

Mu = φρfybd 2
(

1 − 1
1.7

ρ
fy
f ′
c

)

(106) (1050 kN •m) = (0.9) (0.01415) (420 MPa) (bd 2)
[
1 −

(
1

1.7

)
(0.01415)

(
420 MPa
28 MPa

)]

bd 2 = 2.2432 × 108 mm3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

400 mm × 749 mm

450 mm × 706 mm

500 mm × 670 mm ←
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Use 500-mm × 800-mm Section (d = 680 mm)

Beam wt = (500 mm) (800 mm)

106 mm2/m2
(23.5 kN/m3) = 9.4 kN/m

< 10 kN/m assumed

As = (0.01415) (500 mm) (680 mm) = 4811 mm2 OK

Use six #32 bars in two rows (4914 mm2). One row could be used here.

a = Asfy
0.85f ′

cb
= (4914 mm2) (420 MPa)

(0.85) (28 MPa) (500 mm)
= 173 mm

c = a
β1

= 173 mm
0.85

= 204 mm

εt = 680 mm − 204 mm
204 mm

(0.003) = 0.0070 > 0.005 ∴φ = 0.90

Note: Can more easily be checked with ρ values.

bmin = 267 mm (from Appendix B, Table B.5 for three bars in a layer)

< 500 mm OK

The final section is shown in Figure 4.11.

Note: This problem can be solved more quickly by making use of the Appendix tables. In
Table B.9 with fy = 420 MPa, f ′

c = 28 MPa, and ρ = 0.01415.

Mu

φbd 2 = 5.201 MPa (by interpolation)

bd 2 = Mu

φ(5.201 MPa)
= (1050 kN •m) (10)3

(0.9) (5.201 MPa)
= 2.2432 × 108 mm3

After this step, proceed as shown above, when bd2 was found using equations.

80 mm

80 mm

500 mm

= 340 mm

2 @ 
170 mm

80
mm

80
mm

800 mm

640 mm

6 #32

FI GU RE 4.11 Beam cross section for Example 4.7.
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4.10 Computer Example

Example 4.8

Repeat Example 4.4 using the Excel spreadsheet for Chapter 4.

SOLUTION

Use the worksheet called Beam Design. Enter material properties (f ′
c, fy ) and Mu (can be taken

from the bottom part of the spreadsheet or just entered if you already know it). Input ρ = 0.009
(given in the example). The two tables with headings b and d give some choices for b and d
based on the ρ value you picked. Larger assumed values of ρ result in smaller values of b and
d and vice versa. Select b = 18 in. and d = 31 in. (many other choices are also correct).
Add 2.5 in. or more to d to get h, and enter that value (used only to find beam weight below).
The spreadsheet recalculates ρ and As from actual values of b and d chosen, so note that ρ is
not the same as originally assumed (0.00895 instead of 0.009). This results in a slightly smaller
calculated steel area than in Example 4.4. You can also enter the number of bars and size to get
a value for As. This value must exceed the theoretical value or an error message will appear. You
should check to see if this bar selection will fit within the width selected.

At the bottom of the spreadsheet, the design moment Mu can be obtained if the beam is
simply supported and uniformly loaded with only dead and live loads. The beam self-weight is
calculated based on the input values for b and h (Cells D23 and D25). You may have to iterate a
few times before these values all agree. In this example, the dead load is 2 klf plus self-weight.
The input value for wD is 2.0 + 0.65 plf, with the second term being taken from the spreadsheet.
In working this problem the first time, you probably would not have these dimensions for b and
h, hence the self-weight would not be correct. Iteration as done in Example 4.4 is also required
with the spreadsheet, although it is much faster.

Design of singly reinforced rectangular beams

Instructions: Enter values only in cells
that are highlighted in yellow. Other
values calculated from those input values.

f 'c =
fy =

Mu =

Mubd2 = = 17,215 in.3

b1 =

3

60

0.85

623.4

ksi

ksi

ft-k

ffyr
1 – rfy
1.7f'c

Assume r = 0.009
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These tables give some choices
for b and d that you may round
up to enter here.

RR = d⏐R b bd d

1 25.82 1425.82 35.07

1.2 22.86 1527.44 33.88

1.4 20.63 1628.88 32.80

1.5 19.70 1729.56 31.82

1.6 18.87 1830.20 30.93

1.7 18.13 1930.82 30.10

1.8 17.45 2031.41 29.34

1.9 16.83 2131.98 28.63

2

Select b and d

select bars
No. of bars

5 #  9 As = 5.00 in.2
Bar size

<-- theoretical steel area 

—

b =
d =
h =
Rn =

18 in.
31 in.

34 in.
480.5

16.27 2232.53 27.97

r = 0.85f 'c⏐fy 1– [1–2Rn⏐(.85f 'c)]0.5  = 0.00895

As = rbd = 4.99 in.2

wD =

wL =

span =

wu = 7.980

Mu = 623.4

γc =
self wt  = 0.6375

Calculation of Mu for simply supported beam with D and L uniformly distributed loads

2.65
3

25

klf
klf
ft

145

klf

ft-k

klf
pcf

P R O B L E M S

Problem 4.1 The estimated service or working axial loads and
bending moments for a particular column are as follows:
PD = 100 k, PL = 40 k, MD = 30 ft-k, and ML = 16 ft-k.
Compute the axial load and moment values that must be used in
the design. (Ans. Pu = 184 k, Mu = 61.6 ft-k)

Problem 4.2 Determine the required design strength for a
column for which PD = 120 k, PL = 40 k, and wind
PW = 60 k compression or 80 k tension.

Problem 4.3 A reinforced concrete slab must support a dead
working floor load of 80 psf, which includes the weight of the
concrete slab and a live working load of 40 psf. Determine the
factored uniform load for which the slab must be designed.
(Ans. wu = 160 psf)

Problem 4.4 Using the Chapter 4 spreadsheet, Load
Combination worksheet, repeat the following problems:

(a) Problem 4.1

(b) Problem 4.2

(c) Problem 4.3
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For Problems 4.5 to 4.9, design rectangular sections for the beams, loads, and values given. Beam weights are not included in
the given loads. Show sketches of beam cross sections, including bar sizes, arrangement, and spacing. Assume concrete weighs
150 lb/ft3 . Use h = d + 2.5 in.

wD and wL

Problem
No. fy (psi) f ′

c (psi) Span l (ft) wD not incl. beam wt (k/ft) wL (k/ft) ρ *

4.5 60,000 4000 30 2 1 0.18 f ′
c /fy

4.6 60,000 4000 30 2 2 0.18 f ′
c /fy

4.7 50,000 3000 18 3 4 1
2 ρb

4.8 60,000 4000 32 2 1.8 1
2 ρb

4.9 60,000 3000 25 1.8 1.5 εt = 0.0075

*See Appendix A, Table A.7 for ρ values that correspond to the εt values listed.
One ans. Problem 4.5: 16 in. × 29 in. with 4 #10 bars.
One ans. Problem 4.7: 16 in. × 28 in. with 4 #11 bars.
One ans. Problem 4.9: 18 in. × 26 in. with 6 #8 bars.

For Problems 4.10 to 4.22, design rectangular sections for the
beams, loads, and ρ values shown. Beam weights are not included
in the loads shown. Show sketches of cross sections, including
bar sizes, arrangement, and spacing. Assume concrete weighs
150 lb/ft3 , fy = 60,000 psi, and f ′

c = 4000 psi, unless given
otherwise.

Problem 4.10

PL = 30 k

wD = 3 k/ft

12 ft 12 ft

24 ft

Use r =
0.18 f ′c

fy

Problem 4.11 Repeat Problem 4.10, if wD = 2 k/ft and if
PL = 20 k. (One ans. 14 in. × 28 in. with 3 #11 bars)

Problem 4.12

P = 20 kL P = 20 k

= 1.5 k/ft

L

wD

Use r =

10 ft 10 ft 10 ft

30 ft

0.18 f ′c
fy

Problem 4.13 Repeat Problem 4.12 if wD = 2.0 k/ft and
PL = 20 k. (One ans. 16 in. × 33 in. with 4 #11 bars)
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Problem 4.14

PL = 36 k

wD = 2 k/ft

20 ft

30 ft

Use = 1
2

10 ft

rbr

Problem 4.15 Repeat Problem 4.14 if wD = 3 k/ft,
PL = 40 k, f ′

c = 3000psi, and ρ = 0.5ρb. (One ans.
18 in. × 37 in. with 5 #11 bars)

Problem 4.16

14 ft

wD = 3 k/ft, wL = 2 k/ft

Use ρ =
0.18 f '

fy
c

Problem 4.17 Repeat Problem 4.16 if the beam span = 12 ft.
(One ans. 14 in. × 31 in. with 4 #10 bars in top)

Problem 4.18

PL = 30 k

wD = 2 k/ft

Problem 4.19 Repeat Problem 4.18 if PL = 20 k, � = 12 ft,
and ρ = 1

2 ρb . (One ans. 20 in. × 26 in. with 7 #9 in top)

Problem 4.20

8 ft 8 ft

16 ft

PL = 30 k PL = 20 k

wD = 2 k/ft

Use     =       maxρρ 1
2

Problem 4.21 Select reinforcing bars for the beam shown if
Mu = 250 ft-k, fy = 60,000 psi, and f ′

c = 4000 psi. (Hint:
Assume that the distance from the c.g. of the tensile steel to the
c.g. of the compression block equals 0.9 times the effective
depth, d, of the beam.) After a steel area is computed, check the
assumed distance and revise the steel area if necessary. Is
εt ≥ 0.005? (Ans. As = 2.84 in.2, εt = 0.00538 > 0.005)

15 in.

5 in. 5 in. 5 in.

6 in.

18 in.

A s

Problem 4.22 Repeat Problem 4.21 for Mu = 150 ft-k.
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For Problems 4.23 and 4.24, design rectangular sections for the beams and loads shown. Beam weights are not included in the given
loads. fy = 60,000 psi and f ′

c = 4000 psi. Live loads are to be placed where they will cause the most severe conditions at the sections
being considered. Select beam size for the largest moment (positive or negative), and then select the steel required for maximum
positive and negative moment. Finally, sketch the beam and show approximate bar locations.

Problem 4.23 (One ans. 12 in. × 28 in. with 3 #10 bars negative reinforcement and 3 #9 bars positive reinforcement)

 9 ft18 ft

wD = 2 k/ft, wL = 4 k/ft

Use ρ =
0.18f 'c

fy

Problem 4.24

8 ft20 ft

Use ρ = 0.5ρb

8 ft

wD = 2 k/ft, wL = 1.5 k/ft

For Problems 4.25 and 4.26, design interior one-way slabs
for the situations shown. Concrete weight = 150 lb/ft3 , fy =
60,000 psi, and f ′

c = 4000psi. Do not use the ACI Code’s mini-
mum thickness for deflections (Table 4.1). Steel percentages are
given in the figures. The only dead load is the weight of the slab.

Problem 4.25 (One ans. 7.5-in. slab with #8 @ 9 in. main
reinf.)

24 ft

Problem 4.26

16 ft

Use ρ =
0.18f 'c

fy

Problem 4.27 Repeat Problem 4.25 using the ACI Code’s
minimum thickness requirement for cases where deflections are
not computed (Table 4.1). Do not use the ρ given in Problem
4.26. (Ans. 14.5-in. slab with #6 @ 9 in. main reinf.)

Problem 4.28 Using f ′
c = 3000 psi, fy = 60,000 psi, and ρ

corresponding to εt = 0.005, determine the depth required for a
simple beam to support itself for a 200-ft simple span.

Problem 4.29 Determine the depth required for a beam to
support itself only for a 100-ft span. Neglect concrete cover in
self-weight calculations. Given f ′

c = 4000psi, fy = 60,000 psi,
and ρ ∼= 0.5ρb. (Ans. d = 32.5 in.)

Problem 4.30 Determine the stem thickness for maximum
moment for the retaining wall shown in the accompanying
illustration. Also, determine the steel area required at the bottom
and mid-depth of the stem if f ′

c = 4000 psi and fy = 60,000 psi.
Assume that #8 bars are to be used and that the stem thickness
is constant for the 18-ft height. Also, assume that the clear
cover required is 2 in. and ρ = 0.5ρb.

18 ft

500 psf = asssumed
lateral liquid pressure

stem
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Problem 4.31

(a) Design a 24-in.-wide precast concrete slab to support a
60-psf live load for a simple span of 15 ft. Assume
minimum concrete cover required is 5

8 in. as per Section
7.7.3 of the code. Use welded wire fabric for reinforcing.
fy = 60,000 psi, f ′

c = 3000psi, and ρ = 0.18f ′
c /fy .

(Ans. 4-in. slab with 4 × 8 D12/D6)

(b) Can a 300-lb football tackle walk across the center of the
span when the other live load is not present? Assume 100%
impact. (Ans. yes)

Problem 4.32 Prepare a flow chart for the design of tensilely
reinforced rectangular beams.

Problem 4.33 Using the Chapter 4 spreadsheets, solve the
following problems.

(a) Problem 4.6. (Ans. 16 in. × 33 in. with 5 #10 bars)

(b) Problem 4.18. (Ans. 18 in. × 39 in. with 8 #10 bars)

Problems in SI Units

For Problems 4.34 to 4.39, design rectangular sections for
the beams, loads, and ρ values shown. Beam weights are not
included in the loads given. Show sketches of cross sections
including bar sizes, arrangements, and spacing. Assume con-
crete weighs 23.5 kN/m3. fy = 420 MPa and f ′

c = 28 MPa.

Problem 4.34

wD = 20 kN/m
wL =  12 kN/m

10 m

ρbρ = 1
2

Problem 4.35 (One ans. 450 mm × 890 mm
with 6 #32 bars)

wD = 25 kN/m

PL = 100 kN

12 m

6 m 6 m ρbρ = 1
2

Problem 4.36

wD = 26 kN/m
wL =  20 kN/m
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Problem 4.37 Place live loads to cause maximum positive and negative moments. ρ = 0.18 f ′
c /fy . (One ans.

450 mm × 900 mm with 6 #32 bars positive reinf.)

wD = 30 kN/m, wL = 20 kN/m

12 m3 m 3 m

Problem 4.38

Problem 4.39 Design the one-way slab shown in the
accompanying figure to support a live load of 12 kN/m2.
Do not use the ACI thickness limitation for deflections.
Assume concrete weighs 23.5 kN/m3. f ′

c = 28 MPa and
fy = 420 MPa. Use ρ = ρmax. (One ans. 240-mm slab
with #25 @ 140-mm main steel)
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CHAPTER 5 Analysis and Design of T Beams
and Doubly Reinforced Beams

5.1 T Beams
Reinforced concrete floor systems normally consist of slabs and beams that are placed mono-
lithically. As a result, the two parts act together to resist loads. In effect, the beams have extra
widths at their tops, called flanges, and the resulting T-shaped beams are called T beams. The
part of a T beam below the slab is referred to as the web or stem. (The beams may be L shaped
if the stem is at the end of a slab.) The stirrups (described in Chapter 8) in the webs extend
up into the slabs, as perhaps do bent-up bars, with the result that they further make the beams
and slabs act together.

There is a problem involved in estimating how much of the slab acts as part of the beam.
Should the flanges of a T beam be rather stocky and compact in cross section, bending stresses
will be fairly uniformly distributed across the compression zone. If, however, the flanges are
wide and thin, bending stresses will vary quite a bit across the flange due to shear deformations.
The farther a particular part of the slab or flange is away from the stem, the smaller will be
its bending stress.

Instead of considering a varying stress distribution across the full width of the flange,
the ACI Code (8.12.2) calls for a smaller width with an assumed uniform stress distribution
for design purposes. The objective is to have the same total compression force in the reduced
width that actually occurs in the full width with its varying stresses.

The hatched area in Figure 5.1 shows the effective size of a T beam. For T beams with
flanges on both sides of the web, the code states that the effective flange width may not exceed
one-fourth of the beam span, and the overhanging width on each side may not exceed eight
times the slab thickness or one-half the clear distance to the next web. An isolated T beam
must have a flange thickness no less than one-half the web width, and its effective flange width
may not be larger than four times the web width (ACI 8.12.4). If there is a flange on only one
side of the web, the width of the overhanging flange cannot exceed one-twelfth the span, 6hf ,
or half the clear distance to the next web (ACI 8.12.3).

The analysis of T beams is quite similar to the analysis of rectangular beams in that
the specifications relating to the strains in the reinforcing are identical. To repeat briefly, it is
desirable to have εt values ≥ 0.005, and they may not be less than 0.004 unless the member
is subjected to an axial load ≥ 0.10f ′

c Ag. You will learn that εt values are almost always
much larger than 0.005 in T beams because of their very large compression flanges. For such
members, the values of c are normally very small, and calculated εt values very large.

The neutral axis (N.A.) for T beams can fall either in the flange or in the stem, depending
on the proportions of the slabs and stems. If it falls in the flange, and it almost always does
for positive moments, the rectangular beam formulas apply, as can be seen in Figure 5.2(a).
The concrete below the neutral axis is assumed to be cracked, and its shape has no effect on
the flexure calculations (other than weight). The section above the neutral axis is rectangular.
If the neutral axis is below the flange, however, as shown for the beam of Figure 5.2(b), the
compression concrete above the neutral axis no longer consists of a single rectangle, and thus
the normal rectangular beam expressions do not apply.

112
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FI GU RE 5.1 Effective width of T beams.

FI GU RE 5.2 Neutral axis locations.

If the neutral axis is assumed to fall within the flange, the value of a can be computed
as it was for rectangular beams:

a = As fy

0.85f ′
c b

= ρfy d

0.85f ′
c

The distance to the neutral axis, c, equals a/β1. If the computed value of a is equal to
or less than the flange thickness, the section for all practical purposes can be assumed to be
rectangular, even though the computed value of c is actually greater than the flange thickness.

A beam does not really have to look like a T beam to be one. This fact is shown by the
beam cross sections shown in Figure 5.3. For these cases the compression concrete is T shaped,
and the shape or size of the concrete on the tension side, which is assumed to be cracked, has
no effect on the theoretical resisting moments. It is true, however, that the shapes, sizes, and
weights of the tensile concrete do affect the deflections that occur (as is described in Chapter
6), and their dead weights affect the magnitudes of the moments to be resisted.
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FI GU RE 5.3 Various cross sections of T beams.
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Natural History Museum, Kensington, London, England.

5.2 Analysis of T Beams
The calculation of the design strengths of T beams is illustrated in Examples 5.1 and 5.2. In
the first of these problems, the neutral axis falls in the flange, while for the second, it is in the
web. The procedure used for both examples involves the following steps:

1. Check As min as per ACI Section 10.5.1 using bw as the web width.

2. Compute T = As fy .

3. Determine the area of the concrete in compression (Ac) stressed to 0.85f ′
c .

C = T = 0.85f ′
c Ac

Ac = T

0.85f ′
c

4. Calculate a, c, and εr .

5. Calculate φMn .
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For Example 5.1, where the neutral axis falls in the flange, it would be logical to apply
the normal rectangular equations of Section 3.4 of this book, but the authors have used the
couple method as a background for the solution of Example 5.2, where the neutral axis falls
in the web. This same procedure can be used for determining the design strengths of tensilely
reinforced concrete beams of any shape (
, , , triangular, circular, etc.).

Example 5.1

Determine the design strength of the T beam shown in Figure 5.4, with f ′
c = 4000 psi and

fy = 60,000 psi. The beam has a 30-ft span and is cast integrally with a floor slab that is 4 in.
thick. The clear distance between webs is 50 in.

SOLUTION

Check Effective Flange Width

b ≤ 16hf + bw = 16(4 in.) + 10 in. = 74 in.

b ≤ average clear distance to adjacent webs + bw = 50 in. + 10 in. = 60 in. ←
b ≤ span

4
= 30 ft

4
= 7.5 ft = 90 in.

Checking As min

As min = 3
√

f ′
c

fy
bwd = (3

√
4000 psi)

60,000 psi
(10 in.) (24 in.) = 0.76 in.2

nor less than
200bwd

fy
= (200) (10 in.) (24 in.)

60,000 psi
= 0.80 in.2 ←

< As = 6.00 in.2 OK

Computing T
T = Asfy = (6.00 in.2) (60 ksi) = 360 k

(6.00 in.2)
6 #9

10 in.

4 in.

24 in.

effective width = 60 in.

FI GU RE 5.4 Beam cross section for Example 5.1.
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Determining Ac

Ac = T
0.85f ′

c
= 360 k

(0.85) (4 ksi)
= 105.88 in.2

< flange area = (60 in.) (4 in.) = 240 in.2 ∴ Compression stress block, a, is in flange

Calculating a, c, and εt

a = 105.88 in.2

60 in.
= 1.76 in.

c = a
β1

= 1.76 in.
0.85

= 2.07 in.

εt =
(

d − c
c

)
(0.003) =

(
24 in. − 2.07 in.

2.07 in.

)
(0.003)

= 0.0318 > 0.005 ∴ Section is ductile and φ = 0.90

Calculating φMn

Obviously, the stress block is entirely within the flange, and the rectangular formulas apply.
However, using the couple method as follows:

Lever arm = z = d − a
2

= 24 in. − 1.76 in.
2

= 23.12 in.

φMn = φTz = (0.90) (360 k) (23.12 in.)

= 7490.9 in-k = 624.2 ft-k

Example 5.2

Compute the design strength for the T beam shown in Figure 5.5, in which f ′
c = 4000 psi and

fy = 60,000 psi.

SOLUTION

Checking As min

As min = 3
√

4000 psi
60,000 psi

(14 in.) (30 in.) = 1.33 in.2

nor less than
(200) (14 in.) (30 in.)

60,000 psi
= 1.40 in.2 ←

< As = 10.12 in.2 OK

Computing T
T = Asfy = (10.12 in.2) (60 ksi) = 607.2 k

Determining Ac and Its Center of Gravity

Ac = T
0.85f ′

c
= 607.2 k

(0.85) (4 ksi)
= 178.59 in.2

> flange area = (30 in.) (4 in.) = 120 in.2

Obviously, the stress block must extend below the flange to provide the necessary compression
area, 178.6 in.2 − 120 in.2 = 58.6 in.2, as shown in Figure 5.6.
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8 #10

(10.12 in.2)

FI GU RE 5.5 Beam cross section for Example 5.2.

Computing the Distance y from the Top of the Flange to the Center of Gravity of Ac

y =
(120 in.2) (2 in.) + (58.6 in.2)

(
4 in. + 4.19 in.

2

)
178.6 in.2

= 3.34 in.

The Lever Arm Distance from T to C = 30.00 in. − 3.34 in. = 26.66 in. = z

Calculating a, c, and εt

a = 4 in. + 4.19 in. = 8.19 in.

c = a
β1

= 8.19 in.
0.85

= 9.64 in.

εt = d − c
c

(0.003) =
(

30 in. − 9.64 in.
9.64 in.

)
(0.003) = 0.00634

> 0.005 ∴ Section is ductile and φ = 0.90

Calculating φMn

φMn = φTz = (0.90) (607.2 k) (26.66 in.) = 14,569 in-k

= 1214 ft-k

y = 4.19 in.

8 #10
(10.12 in.2)

120 in.2

58.6 in.2

30 in.

4 in.

14 in.

58.6
14

FI GU RE 5.6 Area of concrete in
compression.
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5.3 Another Method for Analyzing T Beams
The preceding section presented a very important method of analyzing reinforced concrete
beams. It is a general method that is applicable to tensilely reinforced beams of any cross
section, including T beams. T beams are so very common, however, that many designers
prefer another method that is specifically designed for T beams.

First, the value of a is determined as previously described in this chapter. Should it be
less than the flange thickness, hf , we will have a rectangular beam and the rectangular beam
formulas will apply. Should it be greater than the flange thickness, hf (as was the case for
Example 5.2), the special method to be described here will be very useful.

The beam is divided into a set of rectangular parts consisting of the overhanging parts
of the flange and the compression part of the web (see Figure 5.7).

The total compression, Cw , in the web rectangle, and the total compression in the over-
hanging flange, Cf , are computed:

Cw = 0.85f ′
c abw

Cf = 0.85f ′
c(b − bw ) (hf )

Then the nominal moment, Mn , is determined by multiplying Cw and Cf by their respec-
tive lever arms from their centroids to the centroid of the steel:

Mn = Cw

(
d − a

2

)
+ Cf

(
d − hf

2

)

This procedure is illustrated in Example 5.3. Although it seems to offer little advantage
in computing Mn , we will learn that it does simplify the design of T beams when a > hf
because it permits a direct solution of an otherwise trial-and-error problem.

FI GU RE 5.7 Separation of T beam into rectangular parts.
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Example 5.3

Repeat Example 5.2 using the value of a (8.19 in.) previously obtained and the alternate formulas
just developed. Reference is made to Figure 5.8, the dimensions of which were taken from
Figure 5.5.

SOLUTION

(Noting that a > hf )

Computing Cw and Cf

Cw = (0.85) (4 ksi) (8.19 in.) (14 in.) = 389.8 k

Cf = (0.85) (4 ksi) (30 in. − 14 in.) (4 in.) = 217.6 k

Computing c and εt

c = a
β1

= 8.19 in.
0.85

= 9.64 in.

εt =
(

d − c
c

)
(0.003) =

(
30 in. − 9.64 in.

9.64 in.

)
(0.003) = 0.00634

> 0.005 ∴ Section is ductile and φ = 0.90

Calculating Mn and φMn

Mn = Cw

(
d − a

2

)
+ Cf

(
d − hf

2

)

= (389.8 k)
(

30 in. − 8.19 in.
2

)
+ (217.6 k)

(
30 in. − 4 in.

2

)
= 16,190 in-k = 1349 ft-k

φMn = (0.90) (1349 ft-k) = 1214 ft-k

a = 8.19 in.

FI GU RE 5.8 Concrete compression areas
for Example 5.3.
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5.4 Design of T Beams
For the design of T beams, the flange has normally already been selected in the slab design, as it
is for the slab. The size of the web is normally not selected on the basis of moment requirements
but probably is given an area based on shear requirements; that is, a sufficient area is used so as
to provide a certain minimum shear capacity, as will be described in Chapter 8. It is also possible
that the width of the web may be selected on the basis of the width estimated to be needed to put in
the reinforcing bars. Sizes may also have been preselected, as previously described in Section 4.5,
to simplify formwork for architectural requirements or for deflection reasons. For the examples
that follow (5.4 and 5.5), the values of hf , d, and bw are given.

The flanges of most T beams are usually so large that the neutral axis probably falls
within the flange, and thus the rectangular beam formulas apply. Should the neutral axis fall
within the web, a trial-and-error process is often used for the design. In this process, a lever
arm from the center of gravity of the compression block to the center of gravity of the steel is
estimated to equal the larger of 0.9d or d − (hf /2), and from this value, called z, a trial steel
area is calculated (As = Mn/fy z ). Then by the process used in Example 5.2, the value of the
estimated lever arm is checked. If there is much difference, the estimated value of z is revised
and a new As determined. This process is continued until the change in As is quite small.
T beams are designed in Examples 5.4 and 5.5 by this process.

Often a T beam is part of a continuous beam that spans over interior supports, such as
columns. The bending moment over the support is negative, so the flange is in tension. Also,
the magnitude of the negative moment is usually larger than that of the positive moment near
midspan. This situation will control the design of the T beam because the depth and web width
will be determined for this case. Then, when the beam is designed for positive moment at
midspan, the width and depth are already known. See Section 5.5 for other details on T beams
with negative moments.

Example 5.6 presents a more direct approach for the case where a > hf . This is the case
where the beam is assumed to be divided into its rectangular parts.

Example 5.4

Design a T beam for the floor system shown in Figure 5.9, for which bw and d are given.
MD = 80 ft-k, ML = 100 ft-k, f ′

c = 4000 psi, fy = 60,000 psi, and simple span = 20 ft.

SOLUTION

Effective Flange Width

(a) 1
4 ft × 20 ft = 5 ft = 60 in.

(b) 12 in. + (2) (8) (4 in.) = 76 in.
(c) 10 ft = 120 in.

10 ft 0 in. 10 ft 0 in. 10 ft 0 in. 10 ft 0 in.

d = 18 in.

hf = 4 in.

bw  = 12 in.

FI GU RE 5.9 Cross section of T-beam floor system for Example 5.4.



McCormac c05.tex V2 - January 9, 2013 11:07 P.M. Page 121

5.4 Design of T Beams 121

Computing Moments Assuming φ = 0.90

Mu = (1.2) (80 ft-k) + (1.6) (100 ft-k) = 256 ft-k

Mn = Mu

φ
= 256 ft-k

0.90
= 284.4 ft-k

Assuming a Lever Arm z Equal to the Larger of 0.9d or d − (hf/2)

z = (0.9) (18 in.) = 16.20 in.

z = 18 in. − 4 in.
2

= 16.00 in.

Trial Steel Area

Asfyz = Mn

As = (12 in/ft) (284.4 ft-k)
(60 ksi) (16.20 in.)

= 3.51 in.2

Computing Values of a and z

0.85f ′
cAc = Asfy

(0.85) (4 ksi) (Ac in.2) = (3.51 in.2) (60 ksi)

Ac = 61.9 in.2 < (4 in.) (60 in.) = 240 in.2 ∴ N.A. in flange

a = 61.9 in.2

60 in.
= 1.03 in.

z = d − a
2

= 18 in. − 1.03 in.
2

= 17.48 in.

Calculating As with This Revised z

As = (12 in/ft) (284.4 ft-k)
(60 ksi) (17.48 in.)

= 3.25 in.2

Computing Values of a and z

Ac = (3.25 in.2) (60 ksi)
(0.85) (4 ksi)

= 57.4 in.2

a = 57.4 in.2

60 in.
= 0.96 in.

z = 18 in. − 0.96 in.
2

= 17.52 in.

Calculating As with This Revised z

As = (12 in/ft) (284.4 ft-k)
(60 ksi) (17.52 in.)

= 3.25 in.2 OK, close enough to previous value

Checking Minimum Reinforcing

As min = 3
√

f ′
c

fy
bwd = 3

√
4000 psi

60,000 psi
(12 in.) (18 in.) = 0.68 in.2

but not less than

As min = 200bwd
fy

= (200) (12 in.) (18 in.)
60,000 psi

= 0.72 in.2 < 3.25 in.2 OK
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or ρmin (from Appendix A, Table A.7) = 0.0033

As min = (0.0033) (12 in.) (18 in.) = 0.71 in.2 < 3.25 in.2 OK

Computing c, εt, and φ

c = a
β1

= 0.96 in.
0.85

= 1.13 in.

εt =
(

d − c
c

)
(0.003) =

(
18 in. − 1.13 in.

1.13 in.

)
(0.003)

= 0.045 > 0.005 ∴ φ = 0.90 as assumed

As reqd = 3.25 in.2

Example 5.5

Design a T beam for the floor system shown in Figure 5.10, for which bw and d are given.
MD = 200 ft-k, ML = 425 ft-k, f ′

c = 3000 psi, fy = 60,000 psi, and simple span = 18 ft.

SOLUTION

Effective Flange Width

(a) 1
4 ft × 18 ft = 4 ft 6 in. = 54 in.

(b) 15 in. + (2) (8) (3 in.) = 63 in.
(c) 6 ft = 72 in.

Moments Assuming φ = 0.90

Mu = (1.2) (200 ft-k) + (1.6) (425 ft-k) = 920 ft-k

Mn = Mu

0.90
= 920 ft-k

0.90
= 1022 ft-k

Assuming a Lever Arm z

(Note that the compression area in the slab is very wide, and thus its required depth is very
small.)

z = (0.90) (24 in.) = 21.6 in.

z = 24 in. − 3 in.
2

= 22.5 in.

FI GU RE 5.10 Cross section for T-beam floor system of Example 5.5.
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Trial Steel Area

As = (12 in/ft) (1022 ft-k)
(60 ksi) (22.5 in.)

= 9.08 in.2

Checking Values of a and z

Ac = (60 ksi) (9.08 in.2)
(0.85) (3 ksi)

= 213.6 in.2

The stress block extends down into the web, as shown in Figure 5.11.

Computing the Distance y from the Top of the Flange to the Center of Gravity of Ac

y =
(162 in.2) (1.5 in.) + (51.6 in.2)

(
3 in. + 3.44 in.

2

)
213.6 in.2

= 2.28 in.

z = 24 in. − 2.28 in. = 21.72 in.

As = (12 in/ft) (1022 ft-k)
(60 ksi) (21.72 in.)

= 9.41 in.2

The steel area required (9.41 in.2) could be refined a little by repeating the design, but space is
not used to do this. (If this is done, As = 9.51 in.2.)

Checking Minimum Reinforcing

ρmin (from Appendix A, Table A.7) = 0.00333

or
As min = (0.00333) (15 in.) (24 in.) = 1.20 in.2 < 9.51 in.2 OK

Checking Values of εt and φ

a = 3 in. + 3.44 in. = 6.44 in.

c = a
β1

= 6.44 in.
0.85

= 7.58 in.

εt =
(

d − c
c

)
(0.003) =

(
24 in. − 7.58 in.

7.58 in.

)
(0.003)

= 0.00650 > 0.005 ∴ φ = 0.90 as assumed

If the calculations for εt and φ are repeated using the more refined values of As = 9.51 in.2, then
a = 7.12 in., εt = 0.0056, and φ = 0.90.

y

= 3.44 in.

162 in.2

51.6 in.2

15 in.

54 in.

3 in.

51.6
15

24 in.

FI GU RE 5.11 Concrete compression area for Example 5.5.
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Our procedure for designing T beams has been to assume a value of z, compute a trial
steel area of As , determine a for that steel area assuming a rectangular section, and so on.
Should a > hf , we will have a real T beam. A trial-and-error process was used for such a
beam in Example 5.5. It is easily possible, however, to determine As directly using the method
of Section 5.3, where the member was broken down into its rectangular components. For this
discussion, reference is made to Figure 5.7.

The compression force provided by the overhanging flange rectangles must be balanced
by the tensile force in part of the tensile steel, Asf , while the compression force in the web is
balanced by the tensile force in the remaining tensile steel, Asw .

For the overhanging flange, we have

0.85f ′
c (b − bw ) (hf ) = Asf fy

from which the required area of steel, Asf , equals

Asf = 0.85f ′
c (b − bw )hf

fy

The design strength of these overhanging flanges is

Muf = φAsf fy

(
d − hf

2

)

The remaining moment to be resisted by the web of the T beam and the steel required
to balance that value are determined next.

Muw = Mu − Muf

The steel required to balance the moment in the rectangular web is obtained by the usual
rectangular beam expression. The value Muw/φbw d2 is computed, and ρw is determined from
the appropriate Appendix table or the expression for ρw previously given in Section 3.4 of this
book. Think of ρw as the reinforcement ratio for the beam shown in Figure 5.7(b). Then

Asw = ρw bw d

As = Asf + Asw

Example 5.6

Rework Example 5.5 using the rectangular component method just described.

SOLUTION

First assume a ≤ hf (which is very often the case). Then the design would proceed like that of a
rectangular beam with a width equal to the effective width of the T-beam flange.

Mu

φbd2
= 920 ft-k (12,000 in-lb/ft-k)

(0.9) (54 in.) (24 in.)2
= 394.4 psi

ρ = 0.0072 (from Appendix A, Table A.12)

a = ρfyd

0.85f ′
c

= 0.0072(60 ksi) (24 in.)
(0.85) (3 ksi)

= 4.06 in. > hf = 3 in.

The beam acts like a T beam, not a rectangular beam, and the values for ρ and a above
are not correct. If the value of a had been ≤ hf , the value of As would have been simply
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ρbd = 0.0072(54 in.) (24 in.) = 9.33 in.2. Now break the beam up into two parts (Figure 5.7) and
design it as a T beam.

Assuming φ = 0.90

Asf = (0.85) (3 ksi) (54 in. − 15 in.) (3 in.)
60 ksi

= 4.97 in.2

Muf = (0.9) (4.97 in.2) (60 ksi)
(

24 in. − 3
2

in.
)

= 6039 in-k = 503 ft-k

Muw = 920 ft-k − 503 ft-k = 417 ft-k

Designing a Rectangular Beam with bw = 15 in. and d = 24 in. to Resist 417 ft-k

Muw

φbwd2
= (12 in/ft) (417 ft-k) (1000 lb/k)

(0.9) (15 in.) (24 in.)2
= 643.5 psi

ρw = 0.0126 (from Appendix A, Table A.12)

Asw = (0.0126) (15 in.) (24 in.) = 4.54 in.2

As = 4.97 in.2 + 4.54 in.2 = 9.51 in.2

5.5 Design of T Beams for Negative Moments
When T beams are resisting negative moments, their flanges will be in tension and the bottom
of their stems will be in compression, as shown in Figure 5.12. Obviously, for such situations,
the rectangular beam design formulas will be used. Section 10.6.6 of the ACI Code requires that
part of the flexural steel in the top of the beam in the negative-moment region be distributed
over the effective width of the flange or over a width equal to one-tenth of the beam span,
whichever is smaller. Should the effective width be greater than one-tenth of the span length,
the code requires that some additional longitudinal steel be placed in the outer portions of the
flange. The intention of this part of the code is to minimize the sizes of the flexural cracks
that will occur in the top surface of the flange perpendicular to the stem of a T beam subject
to negative moments.

In Section 3.8, it was stated that if a rectangular section had a very small amount of
tensile reinforcing, its design-resisting moment, φMn , might very well be less than its cracking
moment. If this were the case, the beam might fail without warning when the first crack
occurred. The same situation applies to T beams with a very small amount of tensile reinforcing.

When the flange of a T beam is in tension, the amount of tensile reinforcing needed
to make its ultimate resisting moment equal to its cracking moment is about twice that of
a rectangular section or that of a T section with its flange in compression. As a result, ACI

FI GU RE 5.12 T beam with flange in tension
and bottom (hatched) in compression
(a rectangular beam).
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New Comiskey Park, Chicago, Illinois.
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Section 10.5.1 states that the minimum amount of reinforcing required equals the larger of the
two values that follow:

As min = 3
√

f ′
c

fy
bw d (ACI Equation 10-3)

or

As min = 200bw d

fy

For statically determinate members with their flanges in tension, bw in the above expres-
sion is to be replaced with either 2bw or the width of the flange, whichever is smaller.

5.6 L-Shaped Beams
The author assumes for this discussion that L beams (i.e., edge T beams with a flange on one
side only) are not free to bend laterally. Thus they will bend about their horizontal axes and
will be handled as symmetrical sections, exactly as with T beams.

For L beams, the effective width of the overhanging flange may not be larger than one-
twelfth the span length of the beam, six times the slab thickness, or one-half the clear distance
to the next web (ACI 8.12.3).

If an L beam is assumed to be free to deflect both vertically and horizontally, it will be
necessary to analyze it as an unsymmetrical section with bending about both the horizontal
and vertical axes. An excellent reference on this topic is given in a book by MacGregor.1

5.7 Compression Steel
The steel that is occasionally used on the compression sides of beams is called compression
steel, and beams with both tensile and compressive steel are referred to as doubly reinforced
beams. Compression steel is not normally required in sections designed by the strength method
because use of the full compressive strength of the concrete decidedly decreases the need for
such reinforcement, as compared to designs made with the working-stress design method.

Occasionally, however, space or aesthetic requirements limit beams to such small sizes
that compression steel is needed in addition to tensile steel. To increase the moment capacity
of a beam beyond that of a tensilely reinforced beam with the maximum percentage of steel
[when (εt = 0.005)], it is necessary to introduce another resisting couple in the beam. This is
done by adding steel in both the compression and tensile sides of the beam. Compressive steel
increases not only the resisting moments of concrete sections but also the amount of curvature
that a member can take before flexural failure. This means that the ductility of such sections
will be appreciably increased. Though expensive, compression steel makes beams tough and
ductile, enabling them to withstand large moments, deformations, and stress reversals such as
might occur during earthquakes. As a result, many building codes for earthquake zones require
that certain minimum amounts of compression steel be included in flexural members.

Compression steel is very effective in reducing long-term deflections due to shrinkage
and plastic flow. In this regard you should note the effect of compression steel on the long-term
deflection expression in Section 9.5.2.5 of the code (to be discussed in Chapter 6 of this text).
Continuous compression bars are also helpful for positioning stirrups (by tying them to the
compression bars) and keeping them in place during concrete placement and vibration.

1 Wight, J. K. and MacGregor, J. G., 2011, Reinforced Concrete Mechanics and Design, 6th ed. (Upper Saddle River, NJ:
Pearson Prentice Hall), pp. 165–168.
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Tests of doubly reinforced concrete beams have shown that even if the compression
concrete crushes, the beam may very well not collapse if the compression steel is enclosed by
stirrups. Once the compression concrete reaches its crushing strain, the concrete cover spalls
or splits off the bars, much as in columns (see Chapter 9). If the compression bars are confined
by closely spaced stirrups, the bars will not buckle until additional moment is applied. This
additional moment cannot be considered in practice because beams are not practically useful
after part of their concrete breaks off. (Would you like to use a building after some parts of
the concrete beams have fallen on the floor?)

Section 7.11.1 of the ACI Code states that compression steel in beams must be enclosed
by ties or stirrups or by welded wire fabric of equivalent area. In Section 7.10.5.1, the code
states that the ties must be at least #3 in size for longitudinal bars #10 and smaller and at
least #4 for larger longitudinal bars and bundled longitudinal bars. The ties may not be spaced
farther apart than 16 bar diameters, 48 tie diameters, or the least dimension of the beam cross
section (code 7.10.5.2).

For doubly reinforced beams, an initial assumption is made that the compression steel
yields as well as the tensile steel. (The tensile steel is always assumed to yield because of the
ductile requirements of the ACI Code.) If the strain at the extreme fiber of the compression
concrete is assumed to equal 0.00300 and the compression steel, A′

s , is located two-thirds of the
distance from the neutral axis to the extreme concrete fiber, then the strain in the compression
steel equals 2

3 × 0.003 = 0.002. If this is greater than the strain in the steel at yield, as say
50,000/(29 × 106) = 0.00172 for 50,000-psi steel, the steel has yielded. It should be noted that
actually the creep and shrinkage occurring in the compression concrete help the compression
steel to yield.

Sometimes the neutral axis is quite close to the compression steel. As a matter of fact,
in some beams with low steel percentages, the neutral axis may be right at the compression
steel. For such cases, the addition of compression steel adds little, if any, moment capacity to
the beam. It can, however, make the beam more ductile.

When compression steel is used, the nominal resisting moment of the beam is assumed to
consist of two parts: the part due to the resistance of the compression concrete and the balancing
tensile reinforcing, and the part due to the nominal moment capacity of the compression
steel and the balancing amount of the additional tensile steel. This situation is illustrated in
Figure 5.13. In the expressions developed here, the effect of the concrete in compression,
which is replaced by the compressive steel, A′

s , is neglected. This omission will cause us to
overestimate Mn by a very small and negligible amount (less than 1%). The first of the two
resisting moments is illustrated in Figure 5.13(b).

Mn1 = As1 fy

(
d − a

2

)

Mn1 = As1 fy(d – )
a
—
2

Mn = Mn1 + Mn2 Mn2 = As'fs' (d – d') = As2 fy (d – d')

FI GU RE 5.13 Doubly reinforced beam broken into parts.
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The second resisting moment is that produced by the additional tensile and compressive
steel (As2 and A′

s), which is presented in Figure 5.13(c).

Mn2 = A′
s fy(d − d ′)

Up to this point it has been assumed that the compression steel has reached its yield
stress. If such is the case, the values of As2 and A′

s will be equal because the addition to T of
As2fy must be equal to the addition to C of A′

s fy for equilibrium. If the compression steel has
not yielded, A′

s must be larger than As2, as will be described later in this section.
Combining the two values, we obtain

Mn = As1fy

(
d − a

2

)
+ As2fy(d − d ′)

φMn = φ
[
As1fy

(
d − a

2

)
+ As2fy(d − d ′)

]
The addition of compression steel only on the compression side of a beam will have

little effect on the nominal resisting moment of the section. The lever arm, z, of the internal
couple is not affected very much by the presence of the compression steel, and the value of T
will remain the same. Thus, the value Mn = Tz will change very little. To increase the nominal
resisting moment of a section, it is necessary to add reinforcing on both the tension and the
compression sides of the beam, thus providing another resisting moment couple.

Examples 5.7 and 5.8 illustrate the calculations involved in determining the design
strengths of doubly reinforced sections. In each of these problems, the strain, f ′

s , in the com-
pression steel is checked to determine whether or not it has yielded. With the strain obtained,
the compression steel stress, f ′

s , is determined, and the value of As2 is computed with the
following expression:

As2fy = A′
s f ′

s

In addition, it is necessary to compute the strain in the tensile steel, εt , because if it is
less than 0.005, the value of the bending, φ, will have to be computed, inasmuch as it will be
less than its usual 0.90 value. The beam may not be used in the unlikely event that εt is less
than 0.004.

To determine the value of these strains, an equilibrium equation is written, which upon
solution will yield the value of c and thus the location of the neutral axis. To write this equation,
the nominal tensile strength of the beam is equated to its nominal compressive strength. Only
one unknown appears in the equation, and that is c.

Initially the stress in the compression steel is assumed to be at yield (f ′
s = fy). From

Figure 5.14, summing forces horizontally in the force diagram and substituting β1c for a leads to

As fy = 0.85f ′
c β1cb + A′

s fy

c = (As − A′
s)fy

0.85f ′
c β1b

Referring to the strain diagram of Figure 5.14, from similar triangles

ε′
s = c − d ′

c
(0.003)

If the strain in the compression steel ε′
s > εy = fy/Es , the assumption is valid and f ′

s is at
yield, fy . If ε′

s < εy , the compression steel is not yielding, and the value of c calculated above
is not correct. A new equilibrium equation must be written that assumes f ′

s < fy .

Asfy = 0.85f ′
cβ1cb + A′

s

(
c − d ′

c

)
(0.003)Es

where Es = 29,000,000 psi = 29,000 ksi.
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²'s 

c

d'

²t

0.003

Cc = 0.85f'c ab
C's = A's f's = As2 fy

T = As fy

A's 

As

d

strain internal forces

FI GU RE 5.14 Internal strains and forces for doubly reinforced
rectangular beam.

The value of c determined enables us to compute the strains in both the compression and
tensile steels and thus their stresses. Even though the writing and solving of this equation are
not too tedious, use of the Excel spreadsheet for beams with compression steel makes short
work of the whole business.

Examples 5.7 and 5.8 illustrate the computation of the design moment strength of doubly
reinforced beams. In the first of these examples, the compression steel yields, while in the
second, it does not.

Example 5.7

Determine the design moment capacity of the beam shown in Figure 5.15 for which fy =
60,000 psi and f ′

c = 3000 psi.

SOLUTION

Writing the Equilibrium Equation Assuming f ′
s = fy

Asfy = 0.85f ′
cbβ1c + A′

sfy
(6.25 in.2) (60 ksi) = (0.85) (3 ksi) (14 in.) (0.85c) + (2.00 in.2) (60 ksi)

2 #9
(2.00 in.2)

4 #11
(6.25 in.2)

27 in.

in.

3 in.

14 in.

21
1
2

d' = 2 in.1
2

FI GU RE 5.15 Beam cross section for Example 5.7.
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c = (6.25 in.2 − 2.00 in.2) (60 ksi)
(0.85) (3 ksi) (0.85) (14 in.)

= 8.40 in.

a = β1c = (0.85) (8.40 in.) = 7.14 in.

Computing Strains in Compression Steel to Verify Assumption that It Is Yielding

ε′
s = c − d′

c
(0.003) = 8.40 in. − 2.5 in.

8.40 in.
(0.003) = 0.00211

εy = fy
Es

= 60,000 psi
29,000,000 psi

= 0.00207 < ε′
s ∴ f ′

s = fy as assumed.

Note: Example 5.8 shows what to do if this assumption is not correct.

As2 = A′
sf ′

s

fy
= (2.00 in.2) (60,000 psi)

60,000 psi
= 2.00 in.2

As1 = As − As2 = 6.25 in.2 − 2.00 in.2 = 4.25 in.2

εt = d − c
c

0.003 = 24 in. − 8.40 in.
8.40 in.

(0.003) = 0.00557 > 0.005 ∴ φ = 0.9

Then the design moment strength is

φMn = φ
[
As1fy

(
d − a

2

)
+ A′

sf ′
s(d − d′ )

]

= 0.9
[
(4.25 in.2) (60 ksi)

(
24 in. − 7.14 in.

2

)
+ (2.00 in.2) (60 ksi) (24 in. − 2.5 in.)

]

= 7010 in-k = 584.2 ft-k

Example 5.8

Compute the design moment strength of the section shown in Figure 5.16 if fy = 60,000 psi and
f ′
c = 4000 psi.

2 #7
(1.20 in.2)

4 #10
(5.06 in.2)

2 in.1
2

27 in.

in.

3 in.

14 in.

21
1
2

FI GU RE 5.16 Beam cross section for Example 5.8.
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SOLUTION

Writing the Equilibrium Equation Assuming f ′
s = fy

Asfy = 0.85f ′
cbβ1c + A′

sfy

(5.06 in.2) (60 ksi) = (0.85) (4 ksi) (14 in.) (0.85c) + (1.20 in.2) (60 ksi)

c = (5.06 in.2 − 1.20 in.2) (60 ksi)
(0.85) (4 ksi) (0.85)

= 5.72 in.

a = β1c = (0.85) (5.72 in.) = 4.86 in.

Computing Strains in Compression Steel to Verify Assumption that It Is Yielding

ε′
s = c − d′

c
(0.003) = 5.72 in. − 2.5 in.

5.72 in.
(0.003) = 0.00169

εy = fy
Es

= 60,000 psi
29,000,000 psi

= 0.00207 > ε′
s ∴ f ′

s �= fy as assumed

Since the assumption is not valid, we have to use the equilibrium equation that is based on f ′
s

not yielding.

Asfy = 0.85f ′
cβ1cb + A′

s

(
c − d′

c

)
(0.003)Es

(5.06 in.2) (60 ksi) = (0.85) (4 ksi) (0.85c) (14 in.) + (1.20 in.2)
(

c − 2.5 in.
c

)
(0.003) (29,000 ksi)

Solving the Quadratic Equation for c = 6.00 in. and a = β1c = 5.10 in.

Compute strains, stresses, and steel areas

ε′
s =

(
c − d′

c

)
(0.003) = 6.00 in. − 2.5 in.

6.00 in.
(0.003) = 0.00175 < εy

f ′
s = ε′

sEs = (0.00175) (29,000 ksi) = 50.75 ksi

As2 = A′
sf ′

s

fy
= (1.20 in.2) (50,750 psi)

60,000 psi
= 1.015 in.2

As1 = As − As2 = 5.06 in.2 − 1.015 in.2 = 4.045 in.2

εt =
(

d − c
c

)
(0.003) = 24 in. − 6.00 in.

6.00 in.
(0.003) = 0.0090 > 0.005 ∴ φ = 0.9

Then the design moment strength is

φMn = φ
[
As1fy

(
d − a

2

)
+ A′

sf ′
s(d − d′)

]

= 0.9
[

(4.045 in.2) (60 ksi)
(

24 in. − 5.10 in.
2

)
+ (1.20 in.2) (50.75 ksi) (24 in. − 2.5 in.)

]

= 5863 in-k = 488.6 ft-k

5.8 Design of Doubly Reinforced Beams
Sufficient tensile steel can be placed in most beams so that compression steel is not needed.
But if it is needed, the design is usually quite straightforward. Examples 5.9 and 5.10 illustrate
the design of doubly reinforced beams. The solutions follow the theory used for analyzing
doubly reinforced sections.
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Example 5.9

Design a rectangular beam for MD = 325 ft-k and ML = 400 ft-k if f ′
c = 4000 psi and fy =

60,000 psi. The maximum permissible beam dimensions are shown in Figure 5.17.

Mu = (1.2) (325 ft-k) + (1.6) (400 ft-k) = 1030 ft-k

SOLUTION

Assuming φ = 0.90

Mn = Mu

φ
= 1030 ft-k

0.90
= 1144.4 ft-k

Assuming maximum possible tensile steel with no compression steel and computing beam’s
nominal moment strength

ρmax (from Appendix A, Table A.7) = 0.0181

As1 = (0.0181) (15 in.) (28 in.) = 7.60 in.2

For ρ = 0.0181
Mu

φbd2
(from Table A.13) = 912.0 psi

Mu1 = (912.0 psi) (0.9) (15 in.) (28 in.)2 = 9,652,608 in-lb

= 804.4 ft-k

Mn1 = 804.4
0.90

= 893.8 ft-k

Mn2 = Mn − Mn1 = 1144.4 ft-k − 893.8 ft-k = 250.6 ft-k

Checking to See Whether Compression Steel Has Yielded

a = (7.60 in.2) (60 ksi)
(0.85) (4 ksi) (15 in.)

= 8.94 in.

c = 8.94 in.
0.85

= 10.52 in.

ε′
s =

(
10.52 in. − 3 in.

10.52 in.

)
(0.00300) = 0.00214 > 0.00207

Therefore, compression steel has yielded.

As

As'

25 in.

15 in.

3 in.

31 in.

3 in.

FI GU RE 5.17 Beam cross section for Example 5.9.
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Theoretical A′
s required = Mn2

(fy ) (d − d′)
= (12 in/ft) (250.6 ft-k)

(60 ksi) (28 in. − 3 in.)
= 2.00 in.2

A′
sf ′

s = As2fy

As2 = A′
sf ′

s

fy
= (2.00 in.2) (60 ksi)

60 ksi
= 2.00 in.2 Try 2 #9 (2.00 in.2)

As = As1 + As2

As = 7.60 in.2 + 2.00 in.2 = 9.60 in.2 Try 8 #10 (10.12 in.2)

If we had been able to select bars with exactly the same areas as calculated here, εt would have
remained = 0.005 as originally assumed and φ = 0.90, but such was not the case.

From the equation for c in Section 5.7, c is found to equal 11.24 in. and a =β1c = 9.55 in.
using actual, not theoretical, bar areas for As and A′

s.

ε′
s =

(
11.24 in. − 3 in.

11.24 in.

)
(0.003) = 0.00220 > 0.00207 compression steel yields

εt =
(

28 in. − 11.24 in.
11.24 in.

)
(0.003) = 0.00447 < 0.005

φ = 0.65 + (0.00447 − 0.002)
(

250
3

)
= 0.855

φMn = 0.855
[

(10.12 in.2 − 2.00 in.2) (60 ksi)
(

28 in. − 9.55 in.
2

)

+(2.00 in.2) (60 ksi) (25 in.)
]

= 12,241 in-lb = 1020 ft-k < 1030 ft-k No good

The beam does not have sufficient capacity because of the variable φ factor. This can be
avoided if you are careful in picking bars. Note that the actual value of A′

s is exactly the same
as the theoretical value. The actual value of As, however, is higher than the theoretical value
by 10.12 − 9.6 = 0.52 in.2. If a new bar selection for A′

s is made whereby the actual value of
A′

s exceeds the theoretical value by about this much (0.52 in.2), the design will be adequate.
Select three #8 bars (A′

s = 2.36 in.2) and repeat the previous steps. Note that the actual steel
areas are used below, not the theoretical ones. As a result, the values of c, a, ε′

s, and f ′
s must be

recalculated.

Assuming f ′
s = fy

c = (As − A′
s)fy

0.85f ′
cbβ1

= (10.12 in.2 − 2.36 in.2) (60 ksi)
(0.85) (4 ksi) (15 in.) (0.85)

= 10.74 in.

ε′
s =

(
c − d′

c

)
(0.003) = 10.74 in. − 3 in.

10.74 in.
(0.003) = 0.00216 > εy ∴ Assumption is valid

εt =
(

d − c
c

)
(0.003) = 28 in. − 10.74 in.

10.74 in.
(0.003) = 0.00482 < 0.005 ∴ φ �= 0.9

φ = 0.65 + (εt − 0.002)
(

250
3

)
= 0.88
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As2 = A′
sf ′

s

fy
= (2.36 in.2) (60 ksi)

60 ksi
= 2.36 in.2

As1 = As − As2 = 10.12 in.2 − 2.36 in.2 = 7.76 in.2

Mn1 = As1fy
(

d − a
2

)
= (7.76 in.2) (60 ksi)

[
28 in. − (0.85) (10.74 in.)

2

]
= 10,912 in-k = 909.3 ft-k

Mn2 = As2fy (d − d′) = (2.36 in.2) (60 ksi) (28 in. − 3 in.) = 3540 in-k = 295 ft-k

Mn = Mn1 + Mn2 = 909.3 ft-k + 295 ft-k = 1204.3 ft-k

φMn = (0.88) (1204.3 ft-k) = 1059.9 ft-k > Mu OK

Note that eight #10 bars will not fit in a single layer in this beam. If they were placed in two
layers, the centroid would have to be more than 3 in. from the bottom of the section. It would be
necessary to increase the beam depth, h, in order to provide for two layers or to use bundled
bars (Section 7.4).

Example 5.10

A beam is limited to the dimensions b = 15 in., d = 20 in., and d′ = 4 in. If MD = 170 ft-k,
ML = 225 ft-k, f ′

c = 4000 psi, and fy = 60,000 psi, select the reinforcing required.

SOLUTION

Mu = (1.2) (170 ft-k) + (1.6) (225 ft-k) = 564 ft-k

Assuming φ = 0.90

Mn = 564 ft-k
0.90

= 626.7 ft-k

Max As1 = (0.0181) (15 in.) (20 in.) = 5.43 in.2

For ρ = 0.0181
Mu

φbd2
= 912.0 psi (from Appendix A, Table A.13)

Mu1 = (912 psi) (0.90) (15 in.) (20 in.)2 = 4,924,800 in-lb = 410.4 ft-k

Mn1 = 410.4 ft-k
0.90

= 456.0 ft-k

Mn2 = 626.7 ft-k − 456.0 ft-k = 170.7 ft-k

Checking to See If Compression Steel Has Yielded

a = As1fy
0.85f ′

cb
= (5.43 in.2) (60 ksi)

(0.85) (4 ksi) (15 in.)
= 6.39 in.

c = 6.39 in.
0.85

= 7.52 in.

ε′
s =

(
7.52 in. − 4.00 in.

7.52 in.

)
(0.003) = 0.00140 <

60 ksi
29,000 ksi

= 0.00207

∴ f ′
s = (0.00140) (29,000 ksi) = 40.6 ksi
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Theoretical A′
s reqd = Mn2

f ′
s (d − d′)

= (12 in/ft) (170.7 ft-k)
(40.6 ksi) (20 in. − 4 in.)

= 3.15 in.2 Try 4 #8 (3.14 in.2)

A′
sf ′

s = As2fy

As2 = (3.14 in.2) (40.6 ksi)
60 ksi

= 2.12 in.2

As = As1 + As2 = 5.43 in.2 + 2.12 in.2 = 7.55 in.2 Try 6 #10 (7.59 in.2)

Subsequent checks using actual steel areas reveal εt = 0.00495, φ = 0.896, and φMn = 459.4
ft-k, which is less than Mu by about 0.1%.

5.9 SI Examples
Examples 5.11 and 5.12 illustrate the analysis of a T beam and the design of a doubly
reinforced beam using SI units.

Example 5.11

Determine the design strength of the T beam shown in Figure 5.18 if fy = 420 MPa,
f ′
c = 35 MPa, and Es = 200,000 MPa.

SOLUTION

Computing T and Ac

T = (3060 mm2) (420 MPa) = 1 285 200 N

Ac = T
0.85f ′

c
= 1 285 200 N

(0.85) (35 MPa)
= 43 200 mm2

300 mm

effective width = 1200 mm

550 mm
450 mm

100 mm

6 #25
(3060 mm2)

FI GU RE 5.18 Beam cross section for Example 5.11.
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ρ = As

bwd
= 3060 mm2

(300 mm) (550 mm)
= 0.0185 < ρmax

= 0.0216 (from Appendix B, Table B.7) OK

ρmin =
√

f ′
c

4fy
=

√
35 MPa

(4) (420 MPa)
= 0.003 52 < 0.0185 OK

or
1.4
fy

= 1.4
420 MPa

= 0.003 33 < 0.0185 OK

Calculating Design Strength

a = 43,200 mm2

1200 mm
= 36 mm < hf = 100 mm

∴ stress block is entirely within flange

z = d − a
2

= 550 mm − 36 mm
2

= 532 mm

φMn = φTz

= (0.9) (1 285 200 N) (532 mm)

= 6.153 × 108 N •mm = 615.3 kN •m

Example 5.12

If Mu = 1225 kN •m, determine the steel area required for the section shown in Figure 5.19.
Should compression steel be required, assume that it will be placed 70 mm from the
compression face. f ′

c = 21 MPa, fy = 420 MPa, and Es = 200,000 MPa.

SOLUTION

Mn = 1225 kN •m
0.9

= 1361 kN •m

350 mm

700 mm

FI GU RE 5.19 Beam cross section for
Example 5.12.
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ρmax if singly reinforced = 0.0135 (from Appendix B, Table B.7)

As1 = (0.0135) (350 mm) (700 mm) = 3307 mm2

Mu1

φbd2
= 4.769 MPa (from Table B.8)

Mu1 = (φbd2) (4.769 MPa) = (4.769 MPa) (0.9) (350 mm) (700 mm)2

106
= 736.1 kN •m

Mn1 = 736.1 kN •m
0.9

= 818 kN •m

< Mn of 1361 kN •m ∴ Double reinf. required

Mn2 = Mn − Mn1 = 1361 kN •m − 818 kN •m = 543 kN •m

Checking to See If Compression Steel Yields

a = (3307 mm2) (420 MPa)
(0.85) (21 MPa) (350 mm)

= 222.32 mm

c = 222.32 mm
0.85

= 261.55 mm

ε′
s =

(
261.55 mm − 70 mm

261.55 mm

)
(0.003) = 0.00220

>
420 MPa

200 000 MPa
= 0.002 10 ∴ Compression steel yields

A′
s reqd = Mn2

fy(d − d′)
= 543 kN •m × 106

(700 mm − 70 mm) (420 MPa)
= 2052 mm2

Use 3 #32 bars (2457 mm2)

As = As1 + As2 = 3307 mm2 + 2052 mm2 = 5359 mm2

Use 6 #36 bars (As = 6036 mm2)

5.10 Computer Examples

Example 5.13

Repeat Example 5.3 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for T beams and select the Analysis worksheet tab at the bottom.
Input only cells C3 through C9 highlighted in yellow (only in the Excel spreadsheets, not the
printed example).
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T-Beam Analysis

f ′
c = 4,000 psi

fy = 60,000 psi

beff = 30 in.

bw = 14 in.

d = 30 in.

hf = 4 in.

As = 10.12 in.2

β1 = 0.85

As min = 3
√

f ′
c

fy
bwd = 1.33 in.2

As min = 200
fy

bwd = 1.40 in.2 As min = 1.40 in.2 minimum steel is OK

bw bw

beff

hf

d

If a ≤ hf : a > hf , so this analysis is not valid.

a = Asfy
0.85f ′cb

= 5.95 in.

Mn = Asfy(d − a/2) = − in-lb = See solution below ft-k

c = a/β1 = 7.00346

εt = d − c
c

(0.003) = 0.009851 −

φ = 0.9

φMn = − in-lb = See solution below ft-k

If a > hf : a > hf , so this analysis is valid—acts like a T beam.

Asf = 0.85f ′c(b − bw)hf

fy
= 3.627 in.2

Asw = As − Asf = 6.493 in.2

a = Aswfy
0.85f ′cb

= 8.185 in.

Mn = Asffy

(
d − hf

2

)
+ Aswfy

(
d − a

2

)
= 16,186,387 in-lb = 1348.9 ft-k

c = a/β1 = 9.629263 in.

εt = d − c
c

(0.003) = 0.006347 −

φ = 0.9

φMn = 14,567,748 in-lb = 1214.0 ft-k
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Example 5.14

Repeat Example 5.6 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for T beams and select the T-Beam Design worksheet tab at the
bottom. Input only cells C3 through C9 highlighted in yellow.

T-Beam Design

f ′
c = 3,000 psi

fy = 60,000 psi

beff = 54 in.

bw = 15 in.

d = 24 in.

hf = 3 in.

Mu = 920 ft-k

β1 = 0.85

Mtu = 697.1 ft-k

bw bw

beff

clear span
between
parallel T
beams

hf

d

If a ≤ hf : a > hf , so this analysis is not valid.

Rn = Mu

φbd2 = 394.38 in.

ρ = 0.85f ′c
fy

(
1 −

√
1 − 2Rn

0.85f ′c

)
= 0.007179

a = ρfyd

0.85f ′c
= 4.054201 in.

c = a/β1 = 4.769648

εt = d − c
c

(0.003) = 0.012095 As min = 3
√

f ′c
fy

bwd = 0.985901 in.2

φ = 0.9 − −
As = ρbd = 9.304391 in.2 As min = 200

fy
bwd = 1.2 in.2

−

If a > hf : a > hf , so this analysis is valid—acts like a T beam.

Asf = 0.85f ′c(b − bw)hf

fy
= 4.97 in.2

Muf = Asffy

(
d − hf

2

)
= 503.5 ft-k
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Muw = Muf − Mu = 416.5

Rnw = Muw

φbd2 = 642.8

ρw = 0.85f ′c
fy

(
1 −

√
1 − 2Rnw

0.85f ′c

)
= 0.012573

a = ρwfyd

0.85f ′c
= 7.100128 in.

c = a/β1 = 8.353092 in.

εt = d − c
c

(0.003) = 0.00562 −

φ = 0.9 −

Asw = ρωbwd = 4.53 in.2 As min = 3
√

f ′c
fy

bwd = 0.985901 in.2 −

As = Asw + Asf = 9.50 in.2 As min = 200
fy

bwd = 1.2 in.2

Note: Solution is based on φ = 0.9.

Example 5.15

Repeat Example 5.7 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for Beams with Compression Steel and select the Analysis worksheet
tab at the bottom. Input only cells C3 through C9 highlighted in yellow. Other values are calculated
from those input values. See comment on cell E22 for Goal Seek instructions.

Analysis of Doubly Reinforced Beams by ACI 318-11

As, A′
s, b, d, Mu, f ′

c, fy known or specified

b = 14 in.

d = 24 in.

d′ = 2.5 in.

A′
s = 2.00 in.2

As = 6.25 in.2

fc = 3,000 psi

fy = 60,000 psi

β1 = 0.85
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Determine the location of the neutral axis, c.

You must use “Goal Seek” to set
this cell = 0 by changing c in cell
D14. Go to “Data” at the top of
the screen, thn “What If Analysis”
to find Goal Seek.

Example 5.16

Repeat Example 5.9 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for Beams with Compression Steel and select the ACI 318-11 Case
I worksheet tab at the bottom. Input only cells C3 through C9 highlighted in yellow. Other values
are calculated from those input values.

Design of Doubly Reinforced Beams by ACI 318-11 when both As and A′
s are unknown

Case I: As and A′
s are unknown; b, d, Mu, f ′

u, fy known or specified.

Mu = 1,030.00 ft-k

b = 15 in.

d = 28 in.

d′ = 3 in.

f ′
c = 4,000 psi

fy = 60,000 psi

β1 = 0.85
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1. Determine the maximum ultimate moment permitted by the code for the beam if it were singly
reinforced (using the maximum value of ρ associated with φ = 0.9).

ρ = 0.375(0.85β1 f ′
c/fy) = 0.018063

Mmax = φρbd2fy

(
1 − ρfy

1.7 f ′
m

) = 9,642,313.4 in-lb

= 803.53 ft-k

2. If Mmax ≥ Mu, compression steel is not needed. Design as singly reinforced beam. If Mmax <

Mu, continue to step 3.
3. The most economical design uses Mu1 = Mmax, which corresponds to ρ1 = the maximum

value of ρ associated with φ = 0.9.

ρ1 = 0.018063

As1 = ρ1bd = 7.586 in.2

Mu1 = φAs1fy (d − a/2) = 9,642,313.41 in-lb

= 803.53 ft-k

a = Asfy
0.85f ′

cb
= 8.925 in. c = α

β1
= 10.500 in.

εt = d − c
c

(0.003) = 0.00500

φ = 0.65 + (εt − 0.002)(250/3) = 0.900

4. Mu2 = Mu − Mu1 = 226.47 ft-k

5. As2 = Mu2

φ •fy (d − d′)
= 2.013 in.2

6. c = a/β1 = 10.500 in.

7. f ′
s = c − d′

c
(87,000) = 62,143 psi if f ′

s > fy, use fs = fy f ′
s = 60,000 psi

8. As = As2fy
f ′
s

= 2.01 in.2 Select bars No. of bars
3

Bar size
#8 A′

s = 2.36 in.2

9. A′
s = As1 + As2 = 9.60 in.2 Select bars 8 #10 As = 10.13 in.2

P R O B L E M S

Problem 5.1 What is the effective width of a T beam? What
does it represent?

Problem 5.2 What factors affect the selection of the
dimensions of T-beam stems?

Problem 5.3 If additional reinforcing bars are placed only in
the compression side of a reinforced concrete beam, will they
add significantly to the beam’s flexural strength? Explain your
answer.

Problem 5.4 Why is compression reinforcing particularly
important in reinforced concrete flexural members located in
earthquake-prone areas?
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Analysis of T Beams

For Problems 5.5 to 5.15, determine the design moment strengths
φMn of the sections shown. Use fy = 60,000 psi and f ′

c =
4000 psi, except for Problem 5.9, where f ′

c = 5000 psi. Check
each section to see if it is ductile.

Problem 5.5 (Ans. 369.1 ft-k)

effective width = 40 in.

14 in.

3 #9

3 in.

28 in.

Problem 5.6 Repeat Problem 5.5 if four #10 bars are used.

Problem 5.7 Repeat Problem 5.5 if 10 #7 bars are used.
(Ans. 721.4 ft-k)

Problem 5.8

6 #10

3 in.

32 in.

14 in.

effective width = 36 in.

Problem 5.9 Repeat Problem 5.8 if f ′
c = 5000 psi. (Ans.

1042 ft-k)

Problem 5.10 Repeat Problem 5.8 if eight #9 bars are used
and f ′

c = 4000 psi.

Problem 5.11 (Ans. 297.4 ft-k)

2 #9 2 #9

Problem 5.12

6 in. 6 in.6 in.

5 #10
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Problem 5.13 (Ans. 419.7 ft-k)

30 in.18 in. 

14 in.

3 in.

3 #10

6 in.

3 in.

3 in.

Problem 5.14

48 in.

6 #9

18 in.

3 in.

6 in.

20 in.
29 in.

Problem 5.15 (Ans. 1075.2 ft-k)

6 in. 6 in.
12 in.

24 in.
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Problem 5.16 Calculate the design strength φMn for one of the T beams if f ′
c = 5000 psi, fy = 60,000 psi, and the section has a

24-ft simple span. Is εt ≥ 0.005?

Problem 5.17 Repeat Problem 5.16 if f ′
c = 3000 psi and three

#11 bars are used in each web. (Ans. 486.1 ft-k)

Design of T Beams

Problem 5.18 Determine the theoretical area of reinforcing
steel required for the T beam shown if f ′

c = 3000 psi,
fy = 60,000 psi, Mu = 400 ft-k, and L = 28 ft. Clear distance
between flanges = 3 ft.

48 in.

4 in.

28 in.

12 in.

Problem 5.19 Repeat Problem 5.18 if Mu = 500 ft-k. (Ans.
4.12 in.2)

Problem 5.20 Repeat Problem 5.18 if fy = 50,000 psi and
f ′
c = 5000 psi.

Problem 5.21 Determine the amount of reinforcing steel required for each T beam in the accompanying illustration if
fy = 60,000 psi, f ′

c = 4000 psi, simple span = 24 ft, clear distance between stems = 3 ft, MD = 200 ft-k (includes effect of
concrete weight), and ML = 400 ft-k. (Ans. 6.80 in.2)

4 in.

30 in.

12 in.12 in.12 in.

4 ft 0 in.4 ft 0 in.4 ft 0 in.4 ft 0 in.
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Problem 5.22 Select the tensile reinforcing needed for the T beams if the reinforced concrete is assumed to weigh 150 lb/ft3 and
a live floor load of 140 lb/ft2 is to be supported. Assume 40-ft simple spans, fy = 60,000 psi, and f ′

c = 3000 psi.

10 ft 0 in. 10 ft 0 in.

15 in. 15 in.

10 ft 0 in.

15 in. 4 in.

10 ft 0 in.

30 in.22 in.

4 in.

Problem 5.23 With fy = 60,000 psi and f ′
c = 4000 psi, select the reinforcing for T beam AB for the floor system shown. Assume

simple supports at A and B. The live load is to be 80 psf, while the dead load in addition to the concrete’s weight is to be 100 psf.
Concrete is assumed to weigh 150 lb/ft3 . The slab is 4 in. thick, while d is 24 in. and bw is 15 in. (Ans. 5.01 in.2, use 4 #10 bars)

A

B
6 ft6 ft

4 @ 12 ft = 48 ft

T beams
32 ft

edge
L beam

Problem 5.24 Repeat Problem 5.23 if the span is 36 ft and the
live load is 120 psf.

Problem 5.25 Prepare a flowchart for the design of tensilely
reinforced T beams with φ = 0.9.

Analysis of Doubly Reinforced Beams

For Problems 5.26 to 5.32, compute the design moment
strengths φMn of the beams shown if fy = 60,000 psi and
f ′
c = 4000 psi. Check the maximum permissible As in each case

to ensure ductile behavior.

Problem 5.26

4 #8

8 #10

36 in.

15 in.

2 1
2

 in.
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Problem 5.27 (Ans. 679.1 ft-k)

3 #8

4 #10

32 in.

15 in.

2 1
2
 in.

Problem 5.28

15 in.

30 in.

3 #8

4 #11

2 1
2
 in.

Problem 5.29 (Ans. 613.0 ft-k)

2 #8

4 #11

28 in.

12 in.
3 in.

22 1
2 in.

2 1
2
 in.

Problem 5.30

2 #8

4 #9

16 in.

14 in.

3 in.

3 in.

26 in.

3 in.

3 in.

4 in.

Problem 5.31 (Ans. 737.1 ft-k)

4 #11

2 #9

9 in.

3 in.

3 in.

15 in.

33 in.

3 in.

24 in.
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Problem 5.32

6 in.

12 in. 30 in.

18 in.

2 #9

5 #11

3 in. 3 in.4 @ 3 in. = 12 in.

3 in.

3 in.

6 in.

6 in.

Problem 5.33 Compute the design moment strength, φMn , of
the beam shown. How much can this permissible moment be
increased if four #9 bars are added to the top 2 1

2 in. from the
compression face, f ′

c = 4000 psi, and fy = 60,000 psi? (Ans.
690.2 ft-k, 35.5 ft-k)

28 in.

16 in.

4 #11

Problem 5.34 Repeat Problem 5.30 if three #10 bars are used
in the top.

Design of Doubly Reinforced Beams

For Problems 5.35 to 5.38, determine the theoretical steel areas
required for the sections shown. In each case, the dimensions
are limited to the values shown. If compression steel is required,
assume it will be placed 3 in. from the compression face, f ′

c =
4000 psi, and fy = 60,000 psi.

Problem 5.35 (Ans. As = 8.87 in.2, A′
s = 1.77 in.2)

28 in.

14 in.

Mu = 950 ft-k

Problem 5.36

28 in.

12 in.

Mu = 1000 ft-k

Problem 5.37 (Ans. As = 8.02 in.2, A′
s = 2.37 in.2)

26 in.

12 in.

Mu = 800 ft-k
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Problem 5.38

26 in.

10 in.8 in. 8 in.

14 in.

20 in.

3 in.

3 in.

Mu = 300 ft-k

Problem 5.39 Prepare a flowchart for the design of doubly
reinforced rectangular beams.

Computer Problems

Solve Problems 5.40 to 5.45 using the Chapter 5 spreadsheet.

Problem 5.40 Problem 5.5

Problem 5.41 Problem 5.7 (Ans. 721.4 ft-k)

Problem 5.42 Problem 5.14

Problem 5.43 Problem 5.21 (Ans. As = 6.80 in.2)

Problem 5.44 Problem 5.27

Problem 5.45 Problem 5.35 (Ans. As = 8.86 in.2,
A′

s = 1.78 in.2)

Problems in SI Units
For Problems 5.46 and 5.47, determine the design moment strengths of the beams shown in the accompanying illustrations if
f ′
c = 28 MPa and fy = 420 MPa. Are the steel percentages in each case sufficient to ensure tensile behavior; that is, εt ≥ 0.005?

Problem 5.46

100 mm

600 mm

700 mm

400 mm

4 #29

effective width = 1800 mm

Problem 5.47 (Ans. 1785 kN •m)

800 mm

100 mm

8 #32

700 mm

800 mm

400 mm
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For Problems 5.48 and 5.49, determine the area of reinforcing steel required for the T beams shown if f ′
c = 28 MPa and

fy = 420 MPa. Check εt to see that it is ≥ 0.005.

Problem 5.48

effective width = 1600 mm

300 mm

500 mm

600 mm

100 mm

Mu = 475 kN  m

Problem 5.49 (Ans. 3750 mm2)

effective width = 1400 mm

70 mm

730 mm

800 mm

400 mm

Mu = 1100 kN  m
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For Problems 5.50 to 5.52, compute the design moment
strengths of the beams shown if fy = 420 MPa and f ′

c =
21 MPa. Check the maximum permissible As in each case to
ensure ductile failure. Es = 200 000 MPa.

Problem 5.50

450 mm

70 mm

650 mm

580 mm

4 #36

3 #29

Problem 5.51 (Ans. 926.9 kN •m)

70 mm

700 mm

630 mm

400 mm

2 #22

4 #36

Problem 5.52

200 mm

70 mm

100 mm

100 mm

330 mm

500 mm

5 #32

2 # 29

For Problems 5.53 and 5.54, determine the theoretical steel
areas required for the sections shown. In each case, the dimen-
sions are limited to the values shown. If compression steel is
required, assume it will be placed 70 mm from the compression
face. f ′

c = 28 MPa, fy = 420 MPa, and Es = 200 000 MPa.

Problem 5.53 (Ans. As = 6592 mm2, A′
s = 2158 mm2)

350 mm

700 mm

Mu = 1500 kN  m

Problem 5.54

500 mm

350 mm

Mu = 750 kN  m
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More Detailed Problems

Problem 5.55 Two-foot-wide, 4-in.-deep precast reinforced
concrete slabs are to be used for a flat roof deck. The slabs are
to be supported at their ends by precast rectangular beams
spanning the 30 ft width of the roof (measured c. to c. of the
supporting masonry walls). Select fy and f ′

c , design the slabs
including their length, and design one of the supporting interior
beams. Assume 30-psf roof live load and 6-psf built-up roof.
(One ans. Use 12-in. × 24-in. beams with 3 #9 bars.)

Problem 5.56 Repeat Problem 5.55 if the beams span is 40 ft
and roof live load is 40 psf.

Problem 5.57 For the same building considered in Problem
5.55, a 6-in.-deep cast-in-place concrete slab has been designed.
It is to be supported by T beams cast integrally with the slabs.
The architect says that the 30-ft-long T beams are to be
supported by columns that are to be spaced 18 ft o.c. The
building is to be used for light manufacturing (see Table 1.3 in
Chapter 1 for live loads). Select fy and f ′

c , and design one of the
interior T beams. (One ans. Use T beam web 12 in. wide,
h = 32 in., f ′

c = 4 ksi, fy = 60 ksi, and 4 #10 bars.)

Problem 5.58 Repeat Problem 5.57 if the building is to be
used for offices. The beam spans are to be 36 ft and the
columns are to be placed 20 ft. o.c.

Problem 5.59 Determine the lowest cost design for a tensilely
reinforced concrete beam for the conditions that follow:
fy = 60 ksi, f ′

c = 4 ksi, Mu = 400 ft-k, l = 24 ft,
h = d + 2.5 in.; concrete costs $120 per yard and weighs
150 lb/ft3 ; and reinforcing bars cost $0.95/lb and weigh 490
lb/ft3 . Design the beam for the moment given with d = 1.5b,
and calculate its cost per linear foot. Plot the cost per linear foot
of beam (y-axis) versus steel percentage (x-axis). Then change
the beam size and recalculate ρ and the new cost. Limit beam
sizes to increments of 1 in. for b. Find the lowest-cost design
and the corresponding value of ρ. (Ans. Approx. ρ = 0.0139
and cost = $26.03/ft.)

Cost
$/ft

Steel Percentage, ρ

Problem 5.60 Repeat Problem 5.59 if d = 2b.
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CHAPTER 6 Serviceability

6.1 Introduction
Today the structural design profession is concerned with a limit states philosophy. The term
limit state is used to describe a condition at which a structure or some part of a structure
ceases to perform its intended function. There are two categories of limit states: strength and
serviceability.

Strength limit states are based on the safety or load-carrying capacity of structures and
include buckling, fracture, fatigue, overturning, and so on. Chapters 3 to 5 have been concerned
with the bending limit state of various members.

Serviceability limit states refer to the performance of structures under normal service loads
and are concerned with the uses and/or occupancy of structures. Serviceability is measured
by considering the magnitudes of deflections, cracks, and vibrations of structures, as well
as by considering the amounts of surface deterioration of the concrete and corrosion of the
reinforcing. You will note that these items may disrupt the use of structures but do not usually
involve collapse.

This chapter is concerned with serviceability limits for deflections and crack widths. The
ACI Code contains very specific requirements relating to the strength limit states of reinforced
concrete members but allows the designer some freedom of judgment in the serviceability
areas. This doesn’t mean that the serviceability limit states are not significant, but by far the
most important consideration (as in all structural specifications) is the life and property of the
public. As a result, public safety is not left up to the judgment of the individual designer.

Vertical vibration for bridge and building floors, as well as lateral and torsional vibration
in tall buildings, can be quite annoying to users of these structures. Vibrations are not usually
a problem in the average-size reinforced concrete building, but we should be on the lookout
for the situations where they can be objectionable.

The deterioration of concrete surfaces can be greatly minimized by exercising good
control of the mixing, placing, and curing of the concrete. When those surfaces are subjected
to harsh chemicals, special cements with special additives can be used to protect the surfaces.
The corrosion of reinforcing can be greatly minimized by giving careful attention to concrete
quality, using good vibration of the concrete, using adequate cover thickness for the bars, and
limiting crack sizes.

6.2 Importance of Deflections
The adoption of the strength design method, together with the use of higher-strength concretes
and steels, has permitted the use of relatively slender members. As a result, deflections and
deflection cracking have become more severe problems than they were a few decades ago.

The magnitudes of deflections for concrete members can be quite important. Excessive
deflections of beams and slabs may cause sagging floors, ponding on flat roofs, excessive
vibrations, and even interference with the proper operation of supported machinery. Such

154
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deflections may damage partitions and cause poor fitting of doors and windows. In addition,
they may damage a structure’s appearance or frighten the occupants of the building, even
though the building may be perfectly safe. Any structure used by people should be quite rigid
and relatively vibration-free so as to provide a sense of security.

Perhaps the most common type of deflection damage in reinforced concrete structures
is the damage to light masonry partitions. They are particularly subject to damage because
of concrete’s long-term creep. When the floors above and below deflect, the relatively rigid
masonry partitions do not bend easily and are often severely damaged. The more flexible
gypsum board partitions are much more adaptable to such distortions.

6.3 Control of Deflections
One of the best ways to reduce deflections is by increasing member depths—but designers are
always under pressure to keep members as shallow as possible. (As you can see, shallower
members mean thinner floors, and thinner floors mean buildings with less height, with con-
sequent reductions in many costs, such as plumbing, wiring, elevators, outside materials on
buildings, and so on.) Reinforced concrete specifications usually limit deflections by specifying
certain minimum depths or maximum permissible computed deflections.

Minimum Thicknesses

Table 4.1 in Chapter 4, which is Table 9.5(a) of the ACI Code, provides a set of minimum
thicknesses for beams and one-way slabs to be used, unless actual deflection calculations
indicate that lesser thicknesses are permissible. These minimum thickness values, which were
developed primarily on the basis of experience over many years, should be used only for
beams and slabs that are not supporting or attached to partitions or other members likely to be
damaged by deflections.
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TABLE 6.1 Maximum Permissible Computed Deflections

Type of Member Deflection to Be Considered Deflection Limitation

Flat roofs not supporting or attached
to nonstructural elements likely to
be damaged by large deflections

Immediate deflection due to live load L
l∗

180

Floors not supporting or attached to
nonstructural elements likely to be
damaged by large deflections

Immediate deflection due to live load L
l

360

Roof or floor construction supporting
or attached to nonstructural
elements likely to be damaged by
large deflections

That part of the total deflection occurring
after attachment of nonstructural
elements (sum of the long-term
deflection due to all sustained loads and
the immediate deflection due to any
additional live load)†

l‡

480

Roof or floor construction supporting
or attached to nonstructural
elements not likely to be damaged
by large deflections

l§

240

∗Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection,
including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber,
construction tolerances, and reliability of provisions for drainage.
†Long-term deflection shall be determined in accordance with ACI Code 9.5.2.5 or 9.5.4.3 but may be reduced by the
amount of deflection calculated to occur before attachment of nonstructured elements. This amount shall be determined
on the basis of accepted engineering data relating to time-deflection characteristics of members similar to those being
considered.
‡Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.
§But not greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that
total deflection minus camber does not exceed limit.

Maximum Deflections

If the designer chooses not to meet the minimum thicknesses given in Table 4.1, he or she
must compute deflections. If this is done, the values determined may not exceed the values
specified in Table 6.1, which is Table 9.5(b) of the ACI Code.

Camber

The deflection of reinforced concrete members may also be controlled by cambering. The
members are constructed of such a shape that they will assume their theoretical shape under
some service loading condition (usually dead load and perhaps some part of the live load). A
simple beam would be constructed with a slight convex bend, so that under certain gravity loads,
it would become straight, as assumed in the calculations. (See Figure 6.1.) Some designers
take into account both dead and full live loads in figuring the amount of camber. Camber is
generally used only for longer-span members.

(a) Beam constructed with
 upward camber

(b) Beam straight under dead load
 plus some percentage of live load

FI GU RE 6.1 Cambering.



McCormac c06.tex V2 - January 9, 2013 9:03 P.M. Page 157

6.4 Calculation of Deflections 157

6.4 Calculation of Deflections
Deflections for reinforced concrete members can be calculated with the usual deflection expres-
sions, several of which are shown in Figure 6.2. A few comments should be made about the
magnitudes of deflections in concrete members as determined by the expressions given in
this figure. It can be seen that the centerline deflection of a uniformly loaded simple beam
[Figure 6.2(a)] is five times as large as the centerline deflection of the same beam if its
ends are fixed [Figure 6.2(b)]. Nearly all concrete beams and slabs are continuous, and their
deflections fall somewhere between the two extremes mentioned here.

Because of the very large deflection variations that occur with different end restraints, it
is essential that those restraints be considered if realistic deflection calculations are to be made.
For most practical purposes, it is sufficiently accurate to calculate the centerline deflection of a
member as though it is simply supported and to subtract from that value the deflection caused
by the average of the negative moments at the member ends. (This can be done by using a
combination of expressions taken from Figure 6.2. For instance, the deflection equation of part
(a) may be used together with the one of part (g) applied at one or both ends as necessary.)
Loads used in these expressions are unfactored loads. In some cases, only the live load is
considered; in others, both live and dead (sustained) loads are considered.

w k/ft

(a)

(b)

(d)

(c)

P

w k/ft

w k/ft

`

`

`

`

2
`

2

δ
CL

δfree end

δ
CL

=

=

=

5w`4

384EI

w`4

384EI

δ
CL

= P`3

48EI

w`4

8EI

FI GU RE 6.2 Some deflection expressions.

(continues)
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(e)

(f)

(g)

M

P

δ
CL

= P`3

192EI

δ
CL

= M`3

16EI

`

2
`

`

`

2

δfree end = P`3

3EI

FI GU RE 6.2 (continued)

6.5 Effective Moments of Inertia
Regardless of the method used for calculating deflections, there is a problem in determining
the moment of inertia to be used. The trouble lies in the amount of cracking that has occurred.
If the bending moment is less than the cracking moment (i.e., if the flexural stress is less than
the modulus of rupture of about 7.5λ

√
f ′
c ), the full uncracked section provides rigidity, and

the moment of inertia for the gross section Ig is available. When larger moments are present,
different-size tension cracks occur and the position of the neutral axis varies.

Figure 6.3 illustrates the problem involved in selecting the moment of inertia to be used
for deflection calculations. Although a reinforced concrete beam may be of constant size (or
prismatic) throughout its length, for deflection calculations, it will behave as though it were
composed of segments of different-size beams.1

For the portion of a beam where the moment is less than the cracking moment, Mcr, the
beam can be assumed to be uncracked, and the moment of inertia can be assumed to equal Ig.
When the moment is greater than Mcr, the tensile cracks that develop in the beam will, in
effect, cause the beam cross section to be reduced, and the moment of inertia may be assumed
to equal the transformed value, Icr. It is as though the beam consists of the segments shown
in Figure 6.3(d).

The problem is even more involved than indicated by Figure 6.3. It is true that at cross
sections where tension cracks are actually located, the moment of inertia is probably close to
the transformed Icr, but in between cracks, it is perhaps closer to Ig. Furthermore, diagonal
tension cracks may exist in areas of high shear, causing other variations. As a result, it is
difficult to decide what value of I should be used.

1 Leet, K., 1997, Reinforced Concrete Design, 3rd ed. (New York: McGraw-Hill), p. 155.
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(a) Actual beam

(b) Moment diagram

(c) Cracks where M ≥ Mcr

(d) Effect of cracks on effective
 beam cross section

Mcr Mcr

FI GU RE 6.3 Effects of cracks on deflections.

A concrete section that is fully cracked on its tension side will have a rigidity of anywhere
from one-third to three-fourths of its uncracked full section rigidity. At different sections along
the beam, the rigidity varies depending on the moment present. It is easy to see that an accurate
method of calculating deflections must take these variations into account.

If it is desired to obtain the immediate deflection of an uncracked prismatic member, the
moment of inertia may be assumed to equal Ig along the length of the member. Should
the member be cracked at one or more sections along its length, or if its depth varies along
the span, a more exact value of I needs to be used.

Section 9.5.2.3 of the code gives a moment of inertia expression that is to be used for
deflection calculations. This moment of inertia provides a transitional value between Ig and Icr
that depends upon the extent of cracking caused by applied loads. It is referred to as Ie, the
effective moment of inertia, and is based on an estimation of the probable amount of cracking
caused by the varying moment throughout the span2:

Ie =
(

Mcr

Ma

)3

(Ig ) +
[

1 −
(

Mcr

Ma

)3
]

Icr (ACI Equation 9-8)

2 Branson, D. E., 1965, “Instantaneous and Time-Dependent Deflections on Simple Continuous Reinforced Concrete Beams,”
HPR Report No. 7, Part 1, Alabama Highway Department, Bureau of Public Roads, August 1963, pp. 1–78.
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In this expression, Ig is the gross amount of inertia (without considering the steel) of the
section and Mcr is the cracking moment = fr Ig/yt, with fr = 7.5λ

√
f ′
c .[3] Ma is the maximum

service-load moment occurring for the condition under consideration, and Icr is the transformed
moment of inertia of the cracked section, as described in Section 2.3.

You will note that the values of the effective moment of inertia vary with different loading
conditions. This is because the service-load moment, Ma, used in the equation for Ie, is differ-
ent for each loading condition. Some designers ignore this fact and use only one Ie for each
member, even though different loading conditions are considered. They feel that their com-
puted values are just as accurate as those obtained with the different Ie values. It is true that
the varying conditions involved in constructing reinforced concrete members (workmanship,
curing conditions, age of members when loads were first applied, etc.) make the calculation of
deflections by any present-day procedure a very approximate process.

In this chapter the authors compute Ie for each different loading condition. The work is
a little tedious, but it can be greatly expedited with various tables, such as the ones provided
in the ACI Design Handbook.4

6.6 Long-Term Deflections
With Ie and the appropriate deflection expressions, instantaneous or immediate deflections are
obtained. Long-term or sustained loads, however, cause significant increases in these deflections
because of shrinkage and creep. The factors affecting deflection increases include humidity,
temperature, curing conditions, compression steel content, ratio of stress to strength, and the
age of the concrete at the time of loading.

If concrete is loaded at an early age, its long-term deflections will be greatly increased.
Excessive deflections in reinforced concrete structures can very often be traced to the early
application of loads. The creep strain after about five years (after which creep is negligible)
may be as high as four or five times the initial strain when loads were first applied 7 to 10
days after the concrete was placed, while the ratio may only be two or three when the loads
were first applied 3 or 4 months after concrete placement.

Because of the several factors mentioned in the last two paragraphs, the magnitudes
of long-term deflections can only be estimated. The code (9.5.2.5) states that to estimate the
increase in deflection due to these causes, the part of the instantaneous deflection that is due
to sustained loads may be multiplied by the empirically derived factor λ at the end of this
paragraph and the result added to the instantaneous deflection.5

λ� = ξ

1 + 50ρ′ (ACI Equation 9-11)

In this expression, which is applicable to both normal- and lightweight concrete, ξ is a
time-dependent factor that may be determined from Table 6.2.

Should times differing from the values given in Table 6.2 be used, values of ξ may be
selected from the curve of Figure 6.4.

The effect of compression steel on long-term deflections is taken into account in the λ

expression with the term ρ′. It equals A′
s/bd and is to be computed at midspan for simple and

continuous spans, and at the supports for cantilevers.
The full dead load of a structure can be classified as a sustained load, but the type of

occupancy will determine the percentage of live load that can be called sustained. For an

3 0.7λ
√

f ′
c in SI.

4 American Concrete Institute, 2009, ACI Design Handbook (Farmington Hills, MI: ACI), Publication SP-17 (09).
5 Branson, D. E., 1971, “Compression Steel Effect on Long-Time Deflections,” Journal ACI, 68(8), pp. 555–559.
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TABLE 6.2 Time Factor for Sustained Loads (ACI Code 9.5.2.5)

Duration of Sustained Load Time-Dependent Factor ξ

5 years or more 2.0

12 months 1.4

6 months 1.2

3 months 1.0

apartment house or for an office building, perhaps only 20% to 25% of the service live load
should be considered as being sustained, whereas perhaps 70% to 80% of the service live load
of a warehouse might fall into this category.

A study by the ACI indicates that under controlled laboratory conditions, 90% of test
specimens had deflections between 20% below and 30% above the values calculated by the
method described in this chapter.6 The reader should realize, however, that field conditions are
not lab conditions, and deflections in actual structures will vary much more than those occurring
in the lab specimens. Despite the use of plans and specifications and field inspection, it is diffi-
cult to control fieldwork adequately. Construction crews may add a little water to the concrete
to make it more workable. Further, they may not obtain satisfactory mixing and compaction
of the concrete, with the result that voids and honeycomb occur. Finally, the forms may be
removed before the concrete has obtained its full design strength. If this is the case, the moduli
of rupture and elasticity will be low, and excessive cracks may occur in beams that would
not have occurred if the concrete had been stronger. All of these factors can cause reinforced
concrete structures to deflect appreciably more than is indicated by the usual computations.

It is logical to assume that the live load cannot act on a structure when the dead load is
not present. As a result of this fact, we will compute an effective Ie and a deflection δD for the
case where the dead load alone is acting. Then we will compute an Ie and a deflection δD+L
for the case where both dead and live loads are acting. This will enable us to determine the
initial live load part of the deflection as follows:

δL = δD+L − δD

Duration of load, months
0

0

0.5

1.0

1.5

2.0

ξ

1 3 6 12 18 24 30 36 48 60
FI GU RE 6.4 Multipliers for long-time
deflections. (ACI Commentary
Figure R9.5.2.5.)

6 ACI Committee 435, 1972, “Variability of Deflections of Simply Supported Reinforced Concrete Beams,” Journal ACI,
69(1), p. 29.
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The long-term deflection will equal the initial live load deflection, δL, plus the infinitely
long-term multiplier, λ∞, times the dead load deflection, δD, plus λr, the live load sustained
multiplier, times the initial live load deflection, δSL.

δLT = δL + λ∞δD + λtδSL

The steps involved in calculating instantaneous and long-term deflections can be sum-
marized as follows:

(a) Compute the instantaneous or short-term deflection, δD, for dead load only.

(b) Compute instantaneous deflection, δD+L, for dead plus full live load.

(c) Determine instantaneous deflection, δL, for full live load only.

(d) Compute instantaneous deflection due to dead load plus the sustained part of the live
load, δD + δSL.

(e) Determine instantaneous deflection, δL, for the part of the live load that is sustained.

(f) Determine the long-term deflection for dead load plus the sustained part of the live load,
δLT.

As previously mentioned, the deflections calculated as described in this chapter should
not exceed certain limits, depending on the type of structure. Maximum deflections permitted
by the ACI for several floor and roof situations were presented in Table 6.1.

6.7 Simple-Beam Deflections
Example 6.1 presents the calculation of instantaneous and long-term deflections for a uniformly
loaded simple beam.

Example 6.1

The beam of Figure 6.5 has a simple span of 20 ft and supports a dead load including its own
weight of 1 klf and a live load of 0.7 klf. f ′

c = 3000 psi.
(a) Calculate the instantaneous deflection for D + L.
(b) Calculate the deflection assuming that 30% of the live load is continuously applied for three

years.

17 in.
20 in.

3 in.

12 in. FI GU RE 6.5 Beam cross section for Example 6.1.
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SOLUTION
(a) Instantaneous or Short-Term Dead Load Deflection (δD)

Ig =
(

1
12

)
(12 in.)(20 in.)3 = 8000 in.4

Mcr = fr Ig
yt

= (7.5
√

3000 psi) (8000 in.4)
10 in.

= 328,633 in-lb = 27.4 ft-k

Ma = (1.0 klf) (20 ft)2

8
= 50 ft-k = MD

Should the dead load moment, MD, be less than the cracking moment, Mcr, we should use
Mcr = Ma and Ie = Ig.

By transformed-area calculations, the values of x and Icr can be determined as
previously illustrated in Example 2.3.

x = 6.78 in.

Icr = 4067 in.4

Then Ie is calculated with ACI Equation 9-8:

Ie =
(

27.4 ft-k
50 ft-k

)3

(8000 in.4) +
[

1 −
(

27.4 ft-k
50 ft-k

)3]
4067 in.4 = 4714 in.4

Ec = 57,000
√

3000 psi = 3.122 × 106 psi

δD = 5wl4

384EcIe
=

(5)
(

1000 plf
12 in/ft

)
(12 in/ft × 20 ft)4

(384) (3.122 × 106 psi) (4714 in.4)
= 0.245 in.∗

(b) Instantaneous or Short-Term Deflection for Dead + Full Live Load (δD+L)

Ma = (1.7 klf) (20 ft)2

8
= 85 ft-k

Noting that the value of Ie changes when the moments change

Ie =
(

27.4 ft-k
85 ft-k

)3

(8000 in.4) +
[

1 −
(

27.4 ft-k
85 ft-k

)3
]

(4067 in.4) = 4199 in.4

δD+L =
(5)
(

1700 plf
12 in/ft

)
(12 in/ft × 20 ft)4

(384) (3.122 × 106 psi) (4199 in.4)
= 0.467 in.∗

(c) Initial Deflection for Full Live Load (δL)

δL = δD+L − δD = 0.467 in. − 0.245 in. = 0.222 in.∗

This is the live load deflection that would be compared with the first or second row of
Table 6.1. If the beam is part of a floor system that is ‘‘not supporting or attached to
nonstructural elements likely to be damaged by large deflections’’ (left column of Table 6.1),

* The authors really got carried away in this chapter when they calculated deflection to thousandths of an inch. We cannot
expect this kind of accuracy, and accuracy to within hundredths of an inch, and perhaps even tenths, is more realistic. These
instances are denoted in this chapter by *’s.
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then the deflection limit is l/480 = (20 ft) (12 in/ft)/360 = 0.67 in. This limit would easily be
satisfied in this case, as the calculated deflection is only 0.22 in.

(d) Initial Deflection Due to Dead Load + 30% Live Load (δD + δSL)

Ma = (1.0 klf + 0.30 × 0.7 klf) (20 ft)2

8
= 60.5 ft-k

Ie =
(

27.4 ft-k
60.5 ft-k

)3

(8000 in.4) +
[

1 −
(

27.4 ft-k
60.5 ft-k

)3
]

(4067 in.4) = 4432 in.4

δD + δSL =
(5)

(1000 plf + 0.30 × 700 plf)
12

(12 in/ft × 20 ft)4

(384) (3.122 × 106 psi) (4432 in.4)
= 0.315 in.∗

(e) Initial Deflection Due to 30% Live Load (δSL)

δSL = (δD + δSL) − δD = 0.315 in. − 0.245 in. = 0.070 in.∗

(f) Long-Term Deflection for Dead Load Plus Three Years of 30% Sustained
Live Load (δLT)

λ∞ = 2.0
1 + 50ρ′ = 2.0

1 + 0
= 2.0

λ3 years = 1.80
1 + 0

= 1.80

δLT = δL + λ∞δD + λ3 yearsδSL

= 0.222 in. + (2.0) (0.245 in.) + (1.80) (0.070 in.) = 0.838 in.∗

The middle column of Table 6.1 describes this deflection for the last two rows of the table. The
answer is compared with either l/480 or l/240, depending on whether the structural member
supports elements likely to be damaged by large deflections.

6.8 Continuous-Beam Deflections
The following discussion considers a continuous T beam subjected to both positive and
negative moments. As shown in Figure 6.6, the effective moment of inertia used for calculating
deflections varies a great deal throughout the member. For instance, at the center of the span
at Section 1–1 where the positive moment is largest, the web is cracked and the effective
section consists of the hatched section plus the tensile reinforcing in the bottom of the web. At
Section 2–2 in the figure, where the largest negative moment occurs, the flange is cracked and
the effective section consists of the hatched part of the web (including any compression steel
in the bottom of the web) plus the tensile bars in the top. Finally, near the points of inflection,
the moment will be so low that the beam will probably be uncracked, and thus the whole
cross section is effective, as shown for Section 3–3 in the figure. (For this case I is usually
calculated only for the web, and the effect of the flanges is neglected, as shown in Figure 6.10.)

From the preceding discussion it is obvious that to calculate the deflection in a continuous
beam, theoretically it is necessary to use a deflection procedure that takes into account the
varying moment of inertia along the span. Such a procedure would be very lengthy, and it is
doubtful that the results so obtained would be within ±20% of the actual values. For this reason
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Section 1-1
+ moment

Section 2-2
– moment

Section 3-3
near inflection point

FI GU RE 6.6 Deflections for a continuous T beam.

the ACI Code (9.5.2.4) permits the use of a constant moment of inertia throughout the member
equal to the average of the Ie values computed at the critical positive- and negative-moment
sections. The Ie values at the critical negative-moment sections are averaged with each other,
and then that average is averaged with Ie at the critical positive-moment section. It should also
be noted that the multipliers for long-term deflection at these sections should be averaged, as
were the Ie values.

Example 6.2 illustrates the calculation of deflections for a continuous member. Although
much of the repetitious math is omitted from the solution given herein, you can see that
the calculations are still very lengthy, and you will understand why approximate deflection
calculations are commonly used for continuous spans.

Example 6.2

Determine the instantaneous deflection at the midspan of the continuous T beam shown in
Figure 6.7(a). The member supports a dead load, including its own weight, of 1.5 k/ft, and a live
load of 2.5 k/ft. f ′

c = 3000 psi and n = 9. The moment diagram for full dead and live loads is
shown in Figure 6.7(b), and the beam cross section is shown in Figure 6.7(c).
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30 ft

(a)

(b)

(c)

150 ft-k

300 ft-k 300 ft-k

moment diagram
for full D and
L load

6 #8

3 #10

3 #8

effective width = 60 in.

28 in.

12 in.

4 in.

23 in.

5 in.4 in.

32 in.

top bars at both end
supports [Fig. 6.7(a)]

bottom bars at
midspan [Fig. 6.7(a)]

FI GU RE 6.7 Information for Example 6.2.

SOLUTION

For Positive-Moment Region

1. Locating centroidal axis for uncracked section and calculating gross moment of inertia Ig and
cracking moment Mcr for the positive-moment region (Figure 6.8). See Example 2.2 of this
text.

y =
(60 in.) (5 in.)

(
5 in.

2

)
+ (27 in.) (12 in.)

(
5 in. + 27 in.

2

)
(60 in.) (5 in.) + (27 in.) (12 in.)

= 10.81 in.
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60 in.

5 in.

27 in.

12 in.

21.19 in.

y =10.81 in.

FI GU RE 6.8 Centroid of uncracked section in Example 6.2.

Ig = (60 in.) (5 in.)3

12
+ (60 in.) (5 in.)

(
10.81 in. − 5 in.

2

)2

+ (12 in.) (27 in.)3

12

+ (12 in.) (27 in.)
(

21.19 in. − 27 in.
2

)2

= 60,185 in.4

Mcr = (7.5) (
√

3000 psi) (60,185 in.4)
21.19 in.

= 1,166,754 in-lb = 97.2 ft-k

2. Locating the centroidal axis of cracked section and calculating transformed moment of inertia
Icr for the positive-moment region (Figure 6.9). See Example 2.6 of this text.

x = 5.65 in.

Icr = 24,778 in.4

60 in.

12 in.

6 #8 (4.71 in.2)

28 in.

x = 5.65 in.

FI GU RE 6.9 Centroidal axis of cracked section in Example 6.2.
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3. Calculating the effective moment of inertia in the positive-moment region.

Ma = 150 ft-k

Ie =
(

97.2 ft-k
150 ft-k

)3

(60,185 in.4) +
[

1 −
(

97.2 ft-k
150 ft-k

)3
]

24,778 in.4 = 34,412 in.4

For Negative-Moment Region

1. Locating the centroidal axis for uncracked section and calculating gross moment of inertia
Ig and cracking moment Mcr for the negative-moment region, considering only the hatched
rectangle shown in Figure 6.10.

y =
(

32 in.
2

)
= 16 in.

Ig =
(

1
12

)
(12 in.) (32 in.)3 = 32,768 in.4

Mcr = (7.5) (
√

3000 psi) (32,768 in.4)
16 in.

= 841,302 in-lb = 70.1 ft-k

The code does not require that the designer ignore the flanges in tension for this calculation.
The authors used this method to be conservative. If the tension flanges are considered,
then the cracking moment is calculated from the section in Figure 6.8. The value of y is taken
to the top of the section (10.81 in.) because the top is in tension for negative moment, so

Mcr = 7.5
√

3000 psi(60,185 in.4)
10.81 in.

= 2,287,096 in-lb = 190.6 ft-k

If this larger value for Mcr were used in step 3 below, the value of Ie would be 33,400 in.4.

2. Locating the centroidal axis of the cracked section and calculating the transformed moment
of inertia Itr for the negative-moment region (Figure 6.11). See Example 2.7 for this type of
calculation.

x = 10.43 in.

Icr = 24,147 in.4

32 in.

12 in.

FI GU RE 6.10 Centroid of uncracked section for negative moment in
Example 6.2.
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2    in.

12 in.

x = 10.43 in.

(2.35 in.2)

1
2

28 in.

4 in.

FI GU RE 6.11 Centroidal axis of cracked section for negative moment in
Example 6.2.

3. Calculating the effective moment of inertia in the negative-moment region.

Ma = 300 ft-k

Ie =
(

70.1 ft-k
300 ft-k

)3

(32,768 in.4) +
[

1 −
(

70.1 ft-k
300 ft-k

)3
]

24,147 in.4 = 24,257 in.4

Instantaneous Deflection

The Ie to be used is obtained by averaging the Ie at the positive-moment section, with the average
of Ie computed at the negative-moment sections at the ends of the span.

Average Ie = 1
2

[(
24,257 in.4 + 24,257 in.4

2

)
+ 34,412 in.4

]
= 29,334 in.4

Ec = 57,000
√

3000 psi = 3.122 × 106 psi

Using the equation from Figure 6.2(b) and using only live loads to calculate deflections,

δL = wLl 4

384 EcIe
= (2.5 klf) (30 ft)4

(384) (3122 ksi) (29,334 in.4)
(1728 in3/ft3) = 0.10 in.

In this case the authors used an approximate method to calculate δL. Instead of the cumbersome
equation (δL = δD+L− δD ) we used earlier in Example 6.1(c), we simply used wL as the load in
the above equation and averaged Ie. This approximation ignores the difference between Ie for
dead load compared with Ie for dead and live load. This method gives a larger deflection, so it
is conservative. Many designers have conservative approximations that they try first on many
engineering calculations. If they work, there is no need to carry out the more cumbersome ones.

It has been shown that for continuous spans, the code (9.5.2.4) suggests an averaging
of the Ie values at the critical positive- and negative-moment sections. The ACI Commentary
(R9.5.2.4) says that for approximate deflection calculations for continuous prismatic members,
it is satisfactory to use the midspan section properties for simple and continuous spans and at
supports for cantilevers. This is because these properties, which include the effect of cracking,
have the greatest effect on deflections.
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ACI Committee 435 has shown that better results for the deflections in continuous mem-
bers can be obtained if an Ie is used that gives greater weight to the midspan values.7 The
committee suggests the use of the following expressions in which Iem, Ie1, and Ie2 are the com-
puted effective moments of inertia at the midspan and the two ends of the span, respectively.

Beams with two ends continuous

Avg Ie = 0.70Iem + 0.15(Ie1 + Ie2)

Beams with one end continuous

Avg Ie = 0.85Iem + 0.15(Icont. end)

For the beam of Example 6.2 with its two continuous ends, the effective moment of
inertia would be

Avg Ie = (0.70) (34,412 in.4) + (0.15) (24,257 in.4 + 24,257 in.4)

= 31,365 in.4

6.9 Types of Cracks
This section presents a few introductory comments concerning some of the several types of
cracks that occur in reinforced concrete beams. The remainder of this chapter is concerned
with the estimated widths of flexural cracks and recommended maximum spacings of flexural
bars to control cracks.

Flexural cracks are vertical cracks that extend from the tension sides of beams up to
the region of their neutral axes. They are illustrated in Figure 6.12(a). Should beams have
very deep webs (more than 3 ft or 4 ft), the cracks will be very closely spaced, with some of
them coming together above the reinforcing and some disappearing there. These cracks may
be wider up in the middle of the beam than at the bottom.

FI GU RE 6.12 Some types of cracks in concrete members.

7 ACI Committee 435, 1978, “Proposed Revisions by Committee 435 to ACI Building Code and Commentary Provisions on
Deflections,” Journal ACI, 75(6), pp. 229–238.
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Inclined cracks due to shear can develop in the webs of reinforced concrete beams
either as independent cracks or as extensions of flexural cracks. Occasionally, inclined cracks
will develop independently in a beam, even though no flexural cracks are in that locality.
These cracks, which are called web-shear cracks and which are illustrated in Figure 6.12(b),
sometimes occur in the webs of prestressed sections, particularly those with large flanges and
thin webs.

The usual type of inclined shear cracks are the flexure-shear cracks, which are illustrated
in Figure 6.12(c). They commonly develop in both prestressed and nonprestressed beams.

Torsion cracks, which are illustrated in Figure 6.12(d), are quite similar to shear cracks
except that they spiral around the beam. Should a plain concrete member be subjected to pure
torsion, it will crack and fail along 45◦ spiral lines due to the diagonal tension corresponding
to the torsional stresses. For a very effective demonstration of this type of failure, you can take
a piece of chalk in your hands and twist it until it breaks. Although torsion stresses are very
similar to shear stresses, they will occur on all faces of a member. As a result, they add to the
shear stresses on one side and subtract from them on the other.

Sometimes bond stresses between the concrete and the reinforcing lead to a splitting
along the bars, as shown in Figure 6.12(e).

Of course, there are other types of cracks not illustrated here. Members that are loaded
in axial tension will have transverse cracks through their entire cross sections. Cracks can
also occur in concrete members due to shrinkage, temperature change, settlements, and so on.
Considerable information concerning the development of cracks is available.8

6.10 Control of Flexural Cracks
Cracks are going to occur in reinforced concrete structures because of concrete’s low tensile
strength. For members with low steel stresses at service loads, the cracks may be very small and
in fact may not be visible except upon careful examination. Such cracks, called microcracks,
are generally initiated by bending stresses.

When steel stresses are high at service load, particularly where high-strength steels are
used, visible cracks will occur. These cracks should be limited to certain maximum sizes so
that the appearance of the structure is not spoiled and so that corrosion of the reinforcing does
not result. The use of high-strength bars and the strength method of design have made crack
control a very important item indeed. Because the yield stresses of reinforcing bars in general
use have increased from 40 ksi to 60 ksi and above, it has been rather natural for designers to
specify approximately the same size bars as they are accustomed to using, but fewer of them.
The result has been more severe cracking of members.

Although cracks cannot be eliminated, they can be limited to acceptable sizes by spread-
ing out or distributing the reinforcement. In other words, smaller cracks will result if several
small bars are used with moderate spacings rather than a few large ones with large spacings.
Such a practice will usually result in satisfactory crack control even for Grades 60 and 75 bars.
An excellent rule of thumb to use as regards cracking is “don’t use a bar spacing larger than
about 9 in.”

The maximum crack widths that are considered to be acceptable vary from approximately
0.004 in. to 0.016 in., depending on the location of the member in question, the type of
structure, the surface texture of the concrete, illumination, and other factors. Somewhat smaller
values may be required for members exposed to very aggressive environments, such as deicing
chemicals and saltwater spray.

8 Wight, J. K. and MacGregor, J. G., 2011, Reinforced Concrete Mechanics and Design, 6th ed. (Upper Saddle River, NJ:
Prentice-Hall), pp. 434–442.
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TABLE 6.3 Permissible Crack Widths

Permissible Crack Widths

Members Subjected to (in.) (mm)

Dry air 0.016 0.41

Moist air, soil 0.012 0.30

Deicing chemicals 0.007 0.18

Seawater and seawater spray 0.006 0.15

Use in water-retaining structures 0.004 0.10

ACI Committee 224, in a report on cracking,9 presented a set of approximately permis-
sible maximum crack widths for reinforced concrete members subject to different exposure
situations. These values are summarized in Table 6.3.

Definite data are not available as to the sizes of cracks above which bar corrosion
becomes particularly serious. As a matter of fact, tests seem to indicate that concrete quality,
cover thickness, amount of concrete vibration, and other variables may be more important than
crack sizes in their effect on corrosion.

Results of laboratory tests of reinforced concrete beams to determine crack sizes vary.
The sizes are greatly affected by shrinkage and other time-dependent factors. The purpose of
crack-control calculations is not really to limit cracks to certain rigid maximum values but
rather to use reasonable bar details, as determined by field and laboratory experience, that will
in effect keep cracks within a reasonable range.

The following equation was developed for the purpose of estimating the maximum widths
of cracks that will occur in the tension faces of flexural members.10 It is merely a simplification
of the many variables affecting crack sizes.

w = 0.076βh fs
3
√

dcA

where

w = the estimated cracking width in thousandths of inches
βh = ratio of the distance to the neutral axis from the extreme tension concrete fiber

to the distance from the neutral axis to the centroid of the tensile steel (values
to be determined by the working-stress method)

fs = steel stress, in kips per square inch at service loads (designer is permitted to use
0.6 fy for normal structures)

dc = the cover of the outermost bar measured from the extreme tension fiber to the
center of the closest bar or wire (for bundled bars, dc is measured to the
centroid of the bundles)

A = the effective tension area of concrete around the main reinforcing (having the
same centroid as the reinforcing) divided by the number of bars

This expression is referred to as the Gergely–Lutz equation after its developers. In apply-
ing it to beams, reasonable results are usually obtained if βh is set equal to 1.20. For thin
one-way slabs, however, more realistic values are obtained if βh is set equal to 1.35.

The number of reinforcing bars present in a particular member decidedly affects the value
of A to be used in the equation and thus the calculated crack width. If more and smaller bars

9 ACI Committee 224, 1972, “Control of Cracking in Concrete Structures,” Journal ACI, 69(12), pp. 717–753.
10 Gergely, P., and Lutz, L. A., 1968, “Maximum Crack Width in Reinforced Flexural Members,” Causes, Mechanisms and
Control of Cracking in Concrete, SP-20 (Detroit: American Concrete Institute), pp. 87–117.
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are used to provide the necessary area, the value of A will be smaller, as will the estimated
crack widths.

Should all the bars in a particular group not be the same size, their number (for use in
the equation) should be considered to equal the total reinforcing steel area actually provided
in the group divided by the area of the largest bar size used.

Example 6.3 illustrates the determination of the estimated crack widths occurring in a
tensilely reinforced rectangular beam.

Example 6.3

Assuming βh = 1.20 and fy = 60 ksi, calculate the estimated width of flexural cracks that
will occur in the beam of Figure 6.13. If the beam is to be exposed to moist air, is this width
satisfactory as compared to the values given in Table 6.3 of this chapter? Should the cracks be
too wide, revise the design of the reinforcing and recompute the crack width.

SOLUTION

Substituting into the Gergely–Lutz Equation

dc = 3 in.

A = (6 in.) (16 in.)
3

= 32 in.2

w = (0.076) (1.20) (0.6 × 60 ksi)
3
√

(3 in.) (32 in.2)

= 15.03 in.
1000

= 0.015 in. > 0.012 in. No good
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30 ft

L = 1.5 k/ft
D = 1 k/ft (including beam weight)

24 in.

3 in. = dc

16 in.

27 in.

3 #11
Shaded area is
concrete that has the
same centroid as the
reinforcing steel.

FI GU RE 6.13 Beam properties for Example 6.3.

Replace the three #11 bars (4.68 in.2) with five #9 bars (5.00 in.2).

A = (6 in.) (16 in.)
5

= 19.2 in.2

w = (0.076) (1.20) (0.6 × 60 ksi)
3
√

(3 in.) (19.2 in.2)

= 12.68 in.
1000

= 0.0127 in. > 0.012 in. No good

Try six #8 bars (4.71 in.2).

A = (6 in.) (16 in.)
6

= 16 in.2

w = (0.076) (1.20) (0.6 × 60 ksi)
3
√

(3 in.) (16 in.2)

= 11.93 in.
1000

= 0.0119 in. < 0.012 in. OK

Use 6 #8 bars.

If reinforced concrete members are tested under carefully controlled laboratory conditions
and cracks measured for certain loadings, considerable variations in crack sizes will occur.
Consequently, the calculations of crack widths described in this chapter should only be used
to help the designer select good details for reinforcing bars. The calculations are clearly not
sufficiently accurate for comparison with field crack sizes.

The bond stress between the concrete and the reinforcing steel decidedly affects the
sizes and spacings of the cracks in concrete. When bundled bars are used, there is appreciably
less contact between the concrete and the steel, as compared to the cases where the bars are
placed separately from each other. To estimate crack widths successfully with the Gergely–Lutz
equation when bundled bars are used, it is necessary to take into account this reduced contact
surface.11

11 Nawy, E. G., 2009, Reinforced Concrete: A Fundamental Approach, 6th ed. (Upper Saddle River, NJ: Prentice-Hall),
pp. 307–309.
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When bundled bars are present, some designers use a very conservative procedure in
computing the value of A. For this calculation they assume each bundle is one bar, that bar
having an area equal to the total area of the bars in that bundle. Certainly, the bond properties
of a group of bundled bars are better than those of a single large “equivalent bar.”

Particular attention needs to be given to crack control for doubly reinforced beams, where
it is common to use small numbers of large-diameter tensile bars. Calculation of crack widths
for such beams may result in rather large values, thus in effect requiring the use of a larger
number of rather closely spaced smaller bars.

Special rules are given in ACI Section 10.6.6 for the spacings of reinforcing to help
control the amount of cracking in T beams whose flanges are in tension.

6.11 ACI Code Provisions Concerning Cracks
In the ACI Code, Sections 10.6.3 and 10.6.4 require that flexural tensile reinforcement be
well distributed within the zones of maximum tension so that the center-to-center spacing of
the reinforcing closest to a tension surface is not greater than the value computed with the
following expression:

s = (15)

(
40,000

fs

)
− 2.5cc ≤ (12)

(
40,000

fs

)
(ACI Equation 10-4)

In this expression, fs is the computed tensile stress at working load. It may be calculated
by dividing the unfactored bending moment by the beam’s internal moment arm (see Example
2.3), or it may simply be taken equal to 2

3 fy . The term cc represents the clear cover from the
nearest surface in tension to the surface of the tensile reinforcement in inches.

For beams with Grade 60 reinforcing and with 2-in. clear cover, the maximum code-
permitted bar spacing is

s = (15)

(
40,000

0.667 × 60,000 psi

)
− (2.5) (2 in.)

= 10.0 in. < (12)

(
40,000

0.667 × 60,000 psi

)
= 12.0 in.

A bar spacing not more than 10.0 in. would thus be required. This limit can control the
spacing of bars in one-way slabs but is not likely to control beam bar spacings.

The authors feel that these ACI maximum bar-spacing provisions are quite reasonable
for one-way slabs and for beams with wide webs. For beams with normal web widths used in
ordinary buildings, we also feel that estimating crack widths with the Gergely–Lutz equation
and comparing the results to the values given in Table 6.3 of this chapter may be a more
reasonable procedure.12

The ACI equation for maximum spacing does not apply to beams with extreme exposure
or to structures that are supposed to be watertight. Special consideration must be given to such
situations. It is probably well to use the Gergely–Lutz equation and a set of maximum crack
widths, such as those of Table 6.3, for such situations.

The effect of cracks and their widths on the corrosion of reinforcing is not clearly
understood. There does not seem to be a direct relationship between crack widths and corrosion,
at least at the reinforcing stresses occurring when members are subjected to service loads. Thus
the ACI Code no longer distinguishes between interior and exterior exposure, as it once did.
Research seems to indicate that the total corrosion occurring in reinforcing is not clearly
correlated to crack widths. It is true, however, that the time required for corrosion to begin in
reinforcing is inversely related to the widths of cracks.

12 Ibid., p. 303.
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When using the Gergely–Lutz crack width expression with SI units, the equation is
w = 0.0113βh fs

3
√

dcA, with the resulting crack widths in mm.
The SI version of the ACI Code for the maximum spacing of tensile bars from the

standpoint of crack widths is given here. To use this expression correctly, s and cc must
be used in mm, while fs must be in MPa.

s = (380)

(
280

fs

)
− 2.5cc ≤ (300)

(
280

fs

)

6.12 Miscellaneous Cracks
The beginning designer will learn that it is wise to include a few reinforcing bars in certain
places in some structures, even though there seems to be no theoretical need for them. Certain
spots in some structures (such as in abutments, retaining walls, building walls near openings,
etc.) will develop cracks. The young designer should try to learn about such situations from
more experienced people. Better structures will be the result.

6.13 SI Example

Example 6.4

Is the spacing of the bars shown in Figure 6.14 within the requirements of the ACI Code
from the standpoint of cracking, if fy = 420 MPa?

SOLUTION

For fy = 420 MPa and cc = 75 mm − 28.7 mm
2

= 60.65 mm

s = (380)
(

280
0.667 × 420 MPa

)
− (2.5) (60.65 mm)

= 228 mm < (300)
(

280
0.667 × 420 MPa

)
= 300 mm

Since the actual bar spacing of 75 mm is less than 228 mm, this spacing is acceptable.

75 mm

75 mm

300 mm

150 mm
75

mm
75

mm

500 mm

350 mm

5 #29

y to c.g. of 
bars = 105 mm

FI GU RE 6.14 Beam cross section for
Example 6.4.
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6.14 Computer Example

Example 6.5

Repeat Example 6.1 using the Excel spreadsheet in Chapter 6.

Deflection Calculator for Simply Supported, Uniformly Loaded, Rectangular Beam

b = 12 in.

d = 17 in.

h = 20 in.

As = 3.00 in.2

A′
s = 0.00 in.2

f ′
c = 3 ksi

fy = 60 ksi

γc = 145 pcf

λ = 1

ξ = (from Table 6.2 or Figure 6.4) 2.0

wD = 1,000 plf

wL = 700 plf

l = 20 ft

Deflection limit (denominator from Table 6.1) 180

% live load that is sustained 30 %

Ec = 3,156 ksi

n = Es/Ec 9.189

ρ = 0.015

nρ = 0.132

k = 0.399

x = 6.78 in.

Icr = 4,067 in.4

Ig = 8,000 in.4

fr = 410.8 psi

Mcr = 27.4 ft-k
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Dead + full live load

Ma,D+L = 85 ft-k

(Mcr/Ma,D+L)3 = 0.0334

Ie =
(

Mcr

Ma

)3

Ig +
[

1 −
(

Mcr

Ma

)3
]

Icr = 4,198.3 in.4

δD+L = 0.462 in.

Dead load only

Ma,D = 50 ft-k

(Mcr/Ma,D)3 0.1643

Ie = 4,713.1 in.4

δD = 0.242 in.

Live load only

δL = δD+L − δD = 0.220 in.

Initial δ from D + %L

Ma,D+% L = 60.5

(Mcr/Ma,D+%L)3 = 0.0928

Ie = 4,431.6 in.4

δD+% L = 0.311 in.

Initial δ from %L only

δ% L = (δD + δ% L) − δD = 0.069 in.

Long-term δ for D +
long-term sustained L

ρ′ = 0

λ� = ξ/(1 + ρ′) 2

δLT = dL + λ�δ� + λ�δ% L = 0.843 in.

δlimit = 1.3333333 in.

Deflection complies with Table 6.1
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P R O B L E M S

Problem 6.1 What factors make it difficult to estimate
accurately the magnitude of deflections in reinforced concrete
members?

Problem 6.2 Why do deflections in concrete members
increase as time goes by?

Problem 6.3 How can the deflection of concrete beams be
limited?

Problem 6.4 Why is it necessary to limit the width of cracks
in reinforced concrete members? How can it be done?

Deflections

For Problems 6.5 to 6.10, calculate the instantaneous deflections for the dead and live loads shown. Use fy = 60, 000 psi, fc =
4000 psi, and n = 8. Beam weights are included in the wD values.

Problem 6.5 (Ans. 0.637 in.)

15 ft

20 in.

31 in.

3 in.

34 in.

wL = 3 k/ft
wD = 2 k/ft

Problem 6.6

18 ft

PL = 20 k

16 in.

32 in.

27    in.1
2

4   in.1
2

wD = 2 k/ft

Problem 6.7 (Ans. 1.12 in.)

10 ft 10 ft

24 in.

31   in.
34 in.

1
2

2   in.1
2
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Problem 6.8

28 ft

18 in.

3 in.

15 in.

10 in.

8 in.

36 in.

6 in.6 in.6 in.

Problem 6.9 (Ans. 1.54 in.)

12 ft

wD = 0.5 k/ft
wL = 3.0 k/ft

14 in.

4 in.

3 #8

4 in.

10 in. 18 in.

2 in.
2 in.

Problem 6.10 Repeat Problem 6.8 if a 25-k concentrated live
load is added at the centerline of the span.

For Problems 6.11 and 6.12, calculate the instantaneous deflections and the long-term deflections after four years, assuming that
30% of the live loads are continuously applied for 48 months. fy = 60, 000 psi, f ′

c = 4000 psi, and n = 8.

Problem 6.11 (Ans. Instantaneous δ for full wD + wL = 1.056 in., long-term δ = 1.832 in.)

20 in.

12 in.
24 ft

4 #9

wD = 1 k/ft
wL = 1.5 k/ft

17

2 in.1
2

in.1
2
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Problem 6.12

30 ft

4 #10

16 in.
3 in.

24 in.

2 #9

wD = 1.6 k/ft
wL = 2.4 k/ft

2 in.1
2

in.18
1
2

Problem 6.13 Repeat Problem 6.12 if the two top #9
compression bars are removed. (Ans. Instantaneous δ for full
D + L = 2.11 in., long-term δ = 3.66 in.)

Problem 6.14 Repeat Problem 6.12 using sand-lightweight
concrete (γc = 125 pcf).

Problem 6.15 Using Chapter 6 Excel spreadsheet, repeat
Problem 6.12 using all-lightweight concrete (γc = 100 pcf).
(Ans. Instantaneous δ for full wD + wL = 2.14 in., long-term
δ = 3.16 in.)

Crack Widths

Problem 6.16 Select a rectangular beam section for the span
and loads shown. Use ρ = 1

2 ρb , #9 bars, f ′
c = 3000 psi, and

fy = 60,000 psi. Compute the estimated maximum crack widths
using the Gergely–Lutz equation. Are they less than the
suggested maximum value given in Table 6.3 for dry air?

28 ft

For Problems 6.17 and 6.18, estimate maximum crack widths
with the Gergely–Lutz equation. Compare the results with the
suggested maximums given in Table 6.3. Assume fy = 60 ksi and
βh = 1.20. Also, calculate maximum permissible bar spacings
as per ACI Equation 10.4. Assume moist air conditions.

Problem 6.17 (Ans. 0.0144 in. > 0.012 in., max: ACI
spacing = 9.09 in.)

16 in.

25 in.

3 in.
3 in.3 in.

= 10 in.
2@5 in.

28 in.

Problem 6.18

12 in.

3 in.

3 in.

18 in.
24 in.

3 in. 3 in. 3 in. 3 in.
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For Problems 6.19 to 6.21, same questions as for Problems 6.17
and 6.18, but assume interior exposure.

Problem 6.19 (Ans. 0.0129 in. < 0.016 in., max: ACI
spacing = 9.26 in.)

15 in.

3 in.

3 in.

15 in.
21 in.

3 in.
3 in.

3@3 in.
= 9 in.

Problem 6.20

12 in.

3 in.

3 in.

32 in.22 in.

4 in.

52 in.

3 in.3 in. 3 in. 3 in.

Problem 6.21 (Ans. 0.0165 in. > 0.016 in., 6.59 in.)

12 in.

4 in.

24 in.
32 in.

2 in.
2 in.

28 in.

3 in.
bottom in tension

6 in. 3 in.

Problem 6.22 What is the maximum permissible spacing of
#5 bars in the one-way slab shown that will satisfy the ACI
Code crack requirements? fy = 60,000 psi.

3   in.1
2

1   in.1
2

5 in.

Problems in SI Units
For Problems 6.23 to 6.25, calculate the instantaneous deflections. Use normal-weight concrete with f ′

c = 28 MPa and
fy = 420 MPa.

Assume that the wD values shown include the beam weights. Es = 200 000 MPa.

Problem 6.23 (Ans. 17.2 mm)
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Problem 6.24

wD = 20 kN/m

Problem 6.25 (Ans. 10.22 mm)

6 #29

5 m

500 mm

65 mm

70 mm

800 mm
900 mm

100 mm

PL = 60 kN

wD = 15 kN/m

100 mm 100 mm

2 @ 150 mm

For Problems 6.26 and 6.27, do these beams meet the maximum
spacing requirements of the ACI Code if fy = 420 MPa?

Problem 6.26 The beam of Problem 6.24.

Problem 6.27 The beam of Problem 6.25 (s = 253 mm).

Problem 6.28 Rework Problem 6.11 using the Chapter 6
Excel spreadsheet.
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CHAPTER 7 Bond, Development Lengths,
and Splices

7.1 Cutting Off or Bending Bars
The beams designed up to this point have been selected on the basis of maximum moments.
These moments have occurred at or near span centerlines for positive moments and at the
faces of supports for negative moments. At other points in the beams, the moments were less.
Although it is possible to vary beam depths in some proportion to the bending moments, it is
normally more economical to use prismatic sections and reduce or cut off some reinforcing
when the bending moments are sufficiently small. Reinforcing steel is quite expensive, and
cutting it off where possible may appreciably reduce costs.

Should the bending moment fall off 50% from its maximum, approximately 50% of
the bars can be cut off or perhaps bent up or down to the other face of the beam and made
continuous with the reinforcing in the other face. For this discussion, the uniformly loaded
simple beam of Figure 7.1 is considered. This beam has six bars, and it is desired to cut off
two bars when the moment falls off a third and two more bars when it falls off another third.
For the purpose of this discussion, the maximum moment is divided into three equal parts by
the horizontal lines shown. If the moment diagram is drawn to scale, a graphical method is
satisfactory for finding the theoretical cutoff points.

For the parabolic moment diagram of Figure 7.1, the following expressions can be written
and solved for the bar lengths x1 and x2 shown in the figure:

x2
1

(l/2)2
= 2

6

x2
2

(l/2)2
= 4

6

For different-shaped moment diagrams, other mathematical expressions would have to
be written, or a graphical method used.

Actually, the design ultimate moment capacity

φMn = φAs fy

(
d − a

2

)
does not vary exactly in proportion to the area of the reinforcing bars, as is illustrated in
Example 7.1, because of variations in the depth of the compression block as the steel area is
changed. The change is so slight, however, that for all practical purposes, the moment capacity
of a beam can be assumed to be directly proportional to the steel area.

It will be shown in this chapter that the moment capacities calculated as illustrated in
this example problem will have to be reduced if sufficient lengths are not provided beyond the
theoretical cutoff points for the bars to develop their full stresses.

184
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wu k/ft

2

first 2 bars cut off
need to be this long = 2x1

second 2 bars cut off
need to be this long = 2x2

`

`

FI GU RE 7.1 Theoretical cutoff locations for a simple span beam.

Example 7.1

For the uniformly loaded simple beam of Figure 7.2, determine the theoretical points on each
end of the beam where two bars can be cut off, and then determine the points where two more
bars can be cut off. f ′

c = 3000 psi, fy = 60,000 psi.

SOLUTION

When the beam has only four bars,

a = Asfy
0.85f ′

cb
= (4.00 in.2) (60 ksi)

(0.85) (3 ksi) (18 in.)
= 5.23 in.

φMn = φAsfy
(

d − a
2

)
= (0.9) (4.00 in.2) (60 ksi)

(
27 in. − 5.23 in.

2

)
= 5267 in-k = 439 ft-k

When the moment falls off to 439 ft-k, two of the six bars can theoretically be cut off.

30 ft

18 in.
3 in.

30 in.
27 in.

wu = 5.5 k/ft

FI GU RE 7.2 Given information for Example 7.1.
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30 ft

5.5 k/ft

FI GU RE 7.3 Beam reactions.

When the beam has only two bars,

a = (2.00 in.2) (60 ksi)
(0.85) (3 ksi) (18 in.)

= 2.61 in.

φMn = (0.9) (2.00 in.2) (60 ksi)
(

27 in. − 2.61 in.
2

)
= 2775 in-k = 231 ft-k

When the moment falls off to 231 ft-k, two more bars can theoretically be cut off, leaving two
bars in the beam.

(Notice that ρ with 6 bars = 6.00 in.2/(18 in.) (27 in.) = 0.0123, which is less than ρmax =
0.0136 from Appendix A, Table A.7, so the beam is ductile and φ = 0.9. Also, this ρ is >ρmin of
200/60,000 psi = 0.00333.)

The moment at any section in the beam at a distance x from the left support is as follows,
with reference being made to Figure 7.3:

M = 82.5x − (5.5x)
( x

2

)
From this expression, the location of the points in the beam where the moment is 439 ft-k

and 231 ft-k can be determined. The results are shown in Figure 7.4.

Discussion: If the approximate procedure had been followed (where bars are cut off purely on
the basis of the ratio of the number of bars to the maximum moment, as was illustrated with the
equations on the previous page), the first two bars would have had lengths equal to 17.2 ft (as
compared to the theoretically correct value of 16.16 ft), and the second two bar lengths would
be equal to 24.45 ft (as compared to the theoretically correct value of 23.75 ft). It can then be
seen that the approximate procedure yields fairly reasonable results.

all 6 bars
16.16 ft

4 bars
23.75 ft

FI GU RE 7.4 φMn diagram for beam in
Example 7.1.
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Lab Building, Portland Cement Association, Skokie, Illinois.

In this section, the theoretical points of cutoff have been discussed. As will be seen in
subsequent sections of this chapter, the bars will have to be run additional distances because
of variations of moment diagrams, anchorage requirements of the bars, and so on.

7.2 Bond Stresses
A basic assumption made for reinforced concrete design is that there must be absolutely no
slippage of the bars in relation to the surrounding concrete. In other words, the steel and the
concrete should stick together, or bond, so that they will act as a unit. If there is no bonding
between the two materials and if the bars are not anchored at their ends, they will pull loose
from the concrete. As a result, the concrete beam will act as an unreinforced member and will
be subject to sudden collapse as soon as the concrete cracks.

It is obvious that the magnitude of bond stresses will change in a reinforced concrete
beam as the bending moments in the beam change. The greater the rate of bending moment
change (occurring at locations of high shear), the greater will be the rate of change of bar
tensions and, thus, bond stresses.

What may not be so obvious is the fact that bond stresses are also drastically affected by
the development of tension cracks in the concrete. At a point where a crack occurs, all of the
longitudinal tension will be resisted by the reinforcing bar. At a small distance along the bar
at a point away from the crack, the longitudinal tension will be resisted by both the bar and
the uncracked concrete. In this small distance, there can be a large change in bar tension due
to the fact that the uncracked concrete is now resisting tension. Thus the bond stress in the
surrounding concrete, which was zero at the crack, will drastically change within this small
distance as the tension in the bar changes.

In the past, it was common to compute the maximum theoretical bond stresses at points
in the members and to compare them with certain allowable values obtained by tests. It is
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FI GU RE 7.5 Bearing forces on bar and bearing of
bar ribs on concrete.

the practice today, however, to look at the problem from an ultimate standpoint, where the
situation is a little different. Even if the bars are completely separated from the concrete over
considerable parts of their length, the ultimate strength of the beam will not be affected if the
bars are so anchored at their ends that they cannot pull loose.

The bonding of the reinforcing bars to the concrete is due to several factors, including the
chemical adhesion between the two materials, the friction due to the natural roughness of the
bars, and the bearing of the closely spaced rib-shaped deformations on the bar surfaces against
the concrete. The application of the force P to the bar shown in Figure 7.5 is considered in
the discussion that follows.

When the force is first applied to the bar, the resistance to slipping is provided by the
adhesion between the bar and the concrete. If plain bars were used, it would not take much
tension in the bars to break this adhesion, particularly adjacent to a crack in the concrete.
If this were to happen for a smooth surface bar, only friction would remain to keep the bar
from slipping. There is also some Poisson’s effect due to the tension in the bars. As they are
tensioned, they become a little smaller, enabling them to slip more easily. If we were to use
straight, plain, or smooth reinforcing bars in beams, there would be very little bond strength,
and the beams would be only a little stronger than if there were no bars. Deformed bars were
introduced so that in addition to the adhesion and friction, there would also be a resistance due
to the bearing of the concrete on the lugs or ribs (or deformations) of the bars as well as the
so-called shear-friction strength of the concrete between the lugs.

Deformed bars are used in almost all work. However, plain bars or plain wire fabrics
are sometimes used for transverse reinforcement in compression members (as ties or spirals,
as described in Chapter 9), for members subject to torsion, and for confining reinforcing in
splices (ACI R3.5.4).

As a result of these facts, reinforcing bars are made with rib-type deformations. The
chemical adhesion and friction between the ribs are negligible, and thus bond is primarily
supplied by bearing on the ribs. Based on testing, the crack patterns in the concrete show that
the bearing stresses are inclined to the axis of the bars from about 45◦ to 80◦ (the angle being
appreciably affected by the shape of the ribs).1

Courtesy of Clemson University Communications Center.

Twisted square bar, formerly used to increase bond between concrete and steel.

1 Goto, Y., 1971, “Cracks Formed on Concrete Around Deformed Tensioned Bar,” ACI Journal, Proceedings 68, p. 244.
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FI GU RE 7.6 Types of bond failures.

Equal and opposite forces develop between the reinforcing bars and the concrete, as
shown in Figure 7.5. These internal forces are caused by the wedging action of the ribs bearing
against the concrete. They will cause tensile stresses in a cylindrical piece of concrete around
each bar. It’s rather like a concrete pipe filled with water that is pressing out against the pipe
wall, causing it to be placed in tension. If the tension becomes too high, the pipe will split.

In a similar manner, if the bond stresses in a beam become too high, the concrete will
split around the bars, and eventually the splits will extend to the side and/or bottom of the
beam. If either of these types of splits runs all the way to the end of the bar, the bar will slip
and the beam will fail. The closer the bars are spaced together and the smaller the cover, the
thinner will be the concrete cylinder around each bar and the more likely that a bond-splitting
failure will occur.

Figure 7.6 shows examples of bond failures that may occur for different values of concrete
cover and bar spacing. These are as shown by MacGregor.2

Splitting resistance along bars depends on quite a few factors, such as the thickness of
the concrete cover, the spacing of the bars, the presence of coatings on the bars, the types of
aggregates used, the transverse confining effect of stirrups, and so on. Because there are so
many variables, it is impossible to make comprehensive bond tests that are good for a wide
range of structures. Nevertheless, the ACI has attempted to do just this with its equations, as
will be described in the sections to follow.

7.3 Development Lengths for Tension Reinforcing
For this discussion, reference is made to the cantilever beam of Figure 7.7. It can be seen that
both the maximum moment in the beam and the maximum stresses in the tensile bars occur
at the face of the support. Theoretically, a small distance back into the support the moment
is zero, and thus it would seem that reinforcing bars would no longer be required. This is
the situation pictured in Figure 7.7(a). Obviously, if the bars were stopped at the face of the
support, the beam would fail.

The bar stresses must be transferred to the concrete by bond between the steel and the
concrete before the bars can be cut off. In this case the bars must be extended some distance
back into the support and out into the beam to anchor them or develop their strength. This
distance, called the development length (ld ), is shown in Figure 7.7(b). It can be defined as

2 MacGregor, J. G., 2005, Reinforced Concrete Mechanics and Design, 4th ed. (Upper Saddle River, NJ: Prentice-Hall),
p. 334.
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`d

not less
than `d

maximum
bar stress

(b) Bars extended into the
 support a distance = `d

(a) No development
 length at support
 (beam will fail)

FI GU RE 7.7 Development length in a cantilever support.

the minimum length of embedment of bars that is necessary to permit them to be stressed to
their yield point plus some extra distance to ensure member toughness. A similar case can be
made for bars in other situations and in other types of beams.

As previously mentioned, the ACI for many years required designers to calculate bond
stresses with a formula that was based on the change of moment in a beam. Then the computed
values were compared to allowable bond stresses in the code. Originally, bond strength was
measured by means of pullout tests. A bar would be cast in a concrete cylinder and a jack
would be used to see how much force was required to pull it out. The problem with such a
test is that the concrete is placed in compression, preventing the occurrence of cracks. In a
flexural member, however, we have an entirely different situation due to the off-again/on-again
nature of the bond stresses caused by the tension cracks in the concrete. In recent years, more
realistic tests have been made with beams; the ACI Code development length expressions to be
presented in this chapter are based primarily on such tests at the National Institute of Standards
and Technology and the University of Texas.

The development lengths used for deformed bars or wires in tension may not be less than
the values computed with ACI Equation 12-1 or 12 in. If the equation is written as (ld /db),
the results obtained will be in terms of bar diameters. This form of answer is very convenient
to use as, say, 30 bar diameters, 40 bar diameters, and so on.

ld = 3

40

fy

λ
√

f ′
c

ψtψeψs(
cb + Ktr

db

)db (ACI Equation 12-1)

or
ld

db
= 3

40

fy

λ
√

f ′
c

ψt ψeψs(
cb + Ktr

db

)

Or in SI units,

ld = 9

10

fy

λ
√

f ′
c

ψtψeψs(
cb + Ktr

db

)db

This expression, which seems to include so many terms, is much easier to use than it
might at first appear because several of the terms are usually equal to 1.0. Even if not equal
to 1.0, the factors can be quickly obtained.
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TABLE 7.1 Factors for Use in the Expressions for Determining Required Development Lengths for
Deformed Bars and Deformed Wires in Tension (ACI 12.2.4)

(1) ψ t = reinforcement location factor
Horizontal reinforcement so placed that more than 12 in. of fresh concrete is cast in the member

below the development length or splice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3
Other reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0

(2) ψe = coating factor
Epoxy-coated bars or wires with cover less than 3db, or clear spacing less than 6db . . . . . . . . . . . 1.5
All other epoxy-coated bars or wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2
Uncoated and zinc-coated reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0
However, the product of ψ tψe need not be taken as greater than 1.7.

(3) ψs = reinforcement size factor
No. 6 and smaller bars and deformed wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8
No. 7 and larger bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0

In SI units
No. 19 and smaller bars and deformed wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8
No. 22 and larger bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0

(4) λ (lambda) = lightweight aggregate concrete factor
When lightweight aggregate concrete is used, λ shall not exceed . . . . . . . . . . . . . . . . . . . . . . . . . 0.75
However, when fct is specified, λ shall be permitted to be taken as 6.7

√
f ′
c/fct

It’s
√

f ′
c/1.8fct in SI.

but not greater than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0
When normal weight concrete is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0

(5) cb = spacing or cover dimension, in.
Use the smaller of either the distance from the center of the bar or wire to the nearest concrete surface,

or one-half the center-to-center spacing of the bars or wires being developed.

In the following paragraphs, all of the terms in ACI Equation 12-1 that have not pre-
viously been introduced are described. Then their values for different situations are given in
Table 7.1.

1. Location of reinforcement—Horizontal bars that have a least 12 in.[3] of fresh concrete
placed beneath them do not bond as well to concrete as do bars placed nearer the bottom
of the concrete. These bars are referred to as top bars. During the placing and vibration
of the concrete, some air and excess water tend to rise toward the top of the concrete,
and some portion may be caught under the higher bars. In addition, there may be some
settlement of the concrete below. As a result, the reinforcement does not bond as well to
the concrete underneath, and increased development lengths will be needed. To account
for this effect, the reinforcement location factor, ψ t, is used.

2. Coating of bars—Epoxy-coated reinforcing bars are frequently used today to protect the
steel from severe corrosive situations, such as where deicing chemicals are used. Bridge
decks and parking garage slabs in the colder states fit into this class. When bar coatings
are used, bonding is reduced and development lengths must be increased. To account
for this fact, the term ψe—the coating factor—is used in the equation.

3. Sizes of reinforcing—If small bars are used in a member to obtain a certain total cross-
sectional area, the total surface area of the bars will be appreciably larger than if fewer
but larger bars are used to obtain the same total bar area. As a result, the required

3 300 mm in SI.
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development lengths for smaller bars with their larger surface bonding areas (in propor-
tion to their cross-sectional areas) are less than those required for larger-diameter bars.
This factor is accounted for with the reinforcement size factor, ψ s.

4. Lightweight aggregates—The dead weight of concrete can be substantially reduced by
substituting lightweight aggregate for the regular stone aggregate. The use of such aggre-
gates (expanded clay or shale, slag, etc.) generally results in lower-strength concretes.
Such concretes have lower splitting strengths, and so development lengths will have to
be larger. In the equation, λ is the lightweight concrete modification factor discussed in
Section 1.12.

5. Spacing of bars or cover dimensions—Should the concrete cover or the clear spacing
between the bars be too small, the concrete may very well split, as was previously
shown in Figure 7.6. This situation is accounted for with the (cb + Ktr)/db term in the
development length expression. It is called the confinement term. In the equation, cb
represents the smaller of the distance from the center of the tension bar or wire to the
nearest concrete surface, or one-half the center-to-center spacing of the reinforcement.

In this expression, Ktr is a factor called the transverse reinforcement index. It is used to
account for the contribution of confining reinforcing (stirrups or ties) across possible splitting
planes.

Ktr = 40Atr

sn

where
Atr = the total cross-sectional area of all transverse reinforcement having the

center-to-center spacing s and a yield strength fyt

n = the number of bars or wires being developed along the plane of splitting. If steel
is in two layers, n is the largest number of bars in a single layer.

s = center-to-center spacing of transverse reinforcing

The code in Section 12.2.3 conservatively permits the use of Ktr = 0 to simplify the cal-
culations, even if transverse reinforcing is present. ACI 12.2.3 limits the value of (cb + Ktr)/db
used in the equation to a maximum value of 2.5. (It has been found that if values larger than
2.5 are used, the shorter development lengths resulting will increase the danger of pullout-type
failures.)

The calculations involved in applying ACI Equation 12-1 are quite simple, as is illustrated
in Example 7.2.

In SI units, Ktr = Atr fyt

10sn

Example 7.2

Determine the development length required for the #8 uncoated bottom bars shown in Figure 7.8,
(a) assume Ktr = 0 and
(b) use the computed value of Ktr.

SOLUTION

From Table 7.1
ψ t = 1.0 for bottom bars
ψe = 1.0 for uncoated bars
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3 in.

11 in.

2@3=6 in.

18 in.
15 in.

3 #8

#3 stirrups
@ 8 in.

2 in.1
2

2 in.1
2

ƒy = 60,000 psi

ƒ′c  = 3000 psi 

FI GU RE 7.8 Beam cross section for Example 7.2.

ψs = 1.0 for #8 bars
λ = 1.0 for normal-weight concrete

cb = side cover of bars measured from center of bars = 2 1
2 in.

or
cb = one-half of c. to c. spacing of bars = 1 1

2 in. ←
(a) Using ACI Equation 12-1 with Ktr = 0

cb + Ktr

db
= 1.50 in. + 0 in.

1.00 in.
= 1.50 < 2.50 OK

ld

db
= 3

40

fy
λ
√

f ′
c

ψtψeψs(
cb + Ktr

db

)

=
(

3
40

)[
60,000 psi

(1.0)
√

3000 psi

]
(1.0) (1.0) (1.0)

1.50
= 55 diameters

(b) Using Computed Value of Ktr and ACI Equation 12-1

Ktr = 40Atr

sn
= (40) (2) (0.11 in.2)

(8 in.) (3)
= 0.367 in.

cb + Ktr

db
= 1.50 in. + 0.367 in.

1.0 in.
= 1.867 < 2.5 OK

ld

db
=
(

3
40

)(
60,000 psi√

3000 psi

)
(1.0) (1.0) (1.0) (1.0)

1.867
= 44 diameters

In determining required development lengths, there are two more ACI specifications to
keep in mind:

1. Section 12.1.2 states that values of
√

f ′
c used in the equations cannot be greater than

100 psi or 25
3 MPa in SI. (This limit is imposed because there has not been a sufficient

amount of research on the development of bars in higher-strength concretes to justify
higher

√
f ′

c values, which would result in smaller ld/db values.)

2. When the amount of flexural reinforcing provided exceeds the theoretical amount
required, and where the specifications being used do not specifically require that
the development lengths be based on fy, the value of ld/db may be multiplied by
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(As required/As provided), according to ACI 12.2.5. This reduction factor may not be used
for the development of reinforcement at supports for positive reinforcement, for the
development of shrinkage and temperature reinforcement, or for a few other situations
referenced in R12.2.5. This reduction also is not permitted in regions of high seismic
risk, as described in ACI 318-11, Chapter 21.

Instead of using ACI Equation 12-1 for computing development lengths, the ACI in
its Section 12.2 permits the use of a somewhat simpler and more conservative approach (as
shown in Table 7.2 herein) for certain conditions. With this approach, the ACI recognizes that
in a very large percentage of cases, designers use spacing and cover values and confining
reinforcing that result in a value of (cb + Ktr)/db equal to at least 1.5. Based on this value and
the appropriate values of ψ s, the expressions in Table 7.2 were determined.

For SI values, see Section 12.2.2 of the 318M-11 Code.

If a minimum cover equal to db and a minimum clear spacing between bars of 2db (or a
minimum clear spacing of bars equal to db, along with a minimum of ties or stirrups) are used,
the expressions in Table 7.2 can be used. Otherwise, it is necessary to use the more rigorous
ACI Equation 12-1.

The authors feel that the application of the so-called simplified equations requires almost
as much effort as is needed to use the longer equation. Furthermore, the development lengths
computed with the “simpler” equations are often so much larger than the ones determined with
the regular equation as to be uneconomical.

For these reasons the authors recommend the use of Equation 12-1 for computing devel-
opment lengths. In using this long-form equation, however, you may very well like to assume
that Ktr = 0, as the results obtained usually are only slightly more conservative than those
obtained with the full equation. The authors use Equation 12-1 with Ktr = 0 for all applications
after this chapter.

Examples 7.3 and 7.4, which follow, present the determination of development lengths
using each of the methods that have been described in this section.

TABLE 7.2 Simplified Development Length Equations

#6 and Smaller Bars and
Deformed Wires #7 and Larger Bars

Clear spacing of bars being
developed or spliced not less
than db, clear cover not less
than db, and stirrups or ties
throughout ld not less than the
code minimum ld

db
= fyψtψe

25λ
√

f ′
c

ld

db
= fyψtψe

20λ
√

f ′
c

or

Clear spacing of bars being
developed or spliced not less
than 2db and clear cover not
less than db

Other cases
ld

db
= 3fyψtψe

50λ
√

f ′
c

ld

db
= 3fyψtψe

40λ
√

f ′
c
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Example 7.3

The #7 bottom bars shown in Figure 7.9 are epoxy coated. Assuming normal-weight concrete,
fy = 60,000 psi, and f ′

c = 3500 psi, determine required development lengths
(a) Using the simplified equations of Table 7.2.
(b) Using the full ACI Equation 12-1 with the calculated value of Ktr.
(c) Using ACI Equation 12-1 with Ktr = 0.

SOLUTION

With reference to Table 7.1
ψ t = 1.0 for bottom bars
ψe = 1.5 for epoxy-coated bars with clear spacing < 6db

ψ tψe = (1.0)(1.5) = 1.5 < 1.7 OK
ψs = 1.0 for #7 and larger bars

λ = 1.0 for normal-weight concrete
cb = cover = 3 in.

or
cb = one-half of c. to c. spacing of bars = 11

2 in. ← controls

(a) Using Simplified Equation

ld

db
= fyψtψe

20λ
√

f ′
c

= (60,000 psi) (1.0) (1.5)

20(1.0)
√

3500 psi
= 76 diameters

(b) Using ACI Equation 12-1 with Computed Value of Ktr

Ktr = 40Atr

sn
= (40) (2) (0.11 in.2)

(6 in.) (4)
= 0.367 in.

cb + Ktr

db
= 1.5 in. + 0.367 in.

0.875 in.
= 2.13 < 2.50 OK

ld

db
= 3

40

fy
λ
√

f ′
c

ψtψeψs
cb + Ktr

db

=
(

3
40

)(
60,000 psi

(1.0)
√

3500 psi

)
(1.0) (1.5) (1.0)

2.13

= 54 diameters

(c) Using ACI Equation 12-1 with Ktr = 0

cb + Ktr

db
= 1.5 in. + 0 in.

0.875 in.
= 1.71 < 2.50 OK

ld

db
=
(

3
40

)(
60,000 psi

(1.0)
√

3500 psi

)
(1.0) (1.5) (1.0)

1.71

= 67 diameters
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3 in.

15 in.

3@3 = 9 in.3 in. 3 in.

24 in.
21 in.

#7 bars

#3 stirrups
@ 6 in.

FI GU RE 7.9 Beam cross section for Example 7.3.

Example 7.4

The required reinforcing steel area for the lightweight concrete beam of Figure 7.10 is 2.88 in.2

The #8 top bars shown are uncoated. Compute development lengths if fy = 60,000 psi and
f ′
c = 3500 psi.

(a) Using simplified equations.
(b) Using the full ACI Equation 12-1.
(c) Using Equation 12-1 with Ktr = 0.

SOLUTION

With reference to Table 7.1
ψ t = 1.3 for top bars
ψe = 1.0 for uncoated bars

ψ tψe = (1.3) (1.0) < 1.7 OK
ψs = 1.0 for #7 and larger bars
λ = 0.75 for lightweight concrete

cb = cover = 3 in.
or

cb = one-half of c. to c. spacing of bars = 2 in. ← controls

3 in.

18 in.

3 @ 4 = 12 in.3 in. 3 in.

26 in.
23 in.

4 #8 bars
(3.14 in.2)

#3 stirrups
@ 8 in.

FI GU RE 7.10 Cross section of cantilever beam
for Example 7.4.
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(a) Using Simplified Equations

ld

db
= fyψtψe

20λ
√

f ′
c

= (60,000 psi) (1.3) (1.0)

20(0.75)
√

3500 psi
= 88 diameters

ld

db
reduced for excess reinforcement to

(
2.88 in.2

3.14 in.2

)
(88) = 81 diameters

(b) Using ACI Equation 12-1 with Computed Value of Ktr

Ktr = 40Atr

sn
= (40) (2) (0.11 in.2)

(8 in.) (4)
= 0.275

cb + Ktr

db
= 2.0 in. + 0.275 in.

1.0 in.
= 2.275 < 2.5 OK

ld

db
= 3

40

fy
λ
√

f ′
c

ψtψeψs
cb + Ktr

db

=
(

3
40

)[
60,000 psi

(0.75)
√

3500 psi

]
(1.3) (1.0) (1.0)

2.275

= 58 diameters

ld

db
reduced for excess reinforcement to

(
2.88 in.2

3.14 in.2

)
(58) = 53 diameters

(c) Using ACI Equation 12-1 with Ktr = 0

cb + Ktr

db
= 2.0 in. + 0 in.

1.0 in.
= 2.0 < 2.5

ld

db
=
(

3
40

)[
60,000 psi

(0.75)
√

3500 psi

]
(1.3) (1.0) (1.0)

2.0

= 66 diameters

ld

db
reduced for excess reinforcement to

(
2.88 in.2

3.14 in.2

)
(66) = 61 diameters

7.4 Development Lengths for Bundled Bars
When bundled bars are used, greater development lengths are needed because there is not
a “core” of concrete between the bars to provide resistance to slipping. The code, Section
12.4.1, states that splice and development lengths for bundled bars are to be determined by
first computing the lengths needed for the individual bars and then by increasing those values
by 20% for three-bar bundles and 33% for four-bar bundles.

When the factors relating to cover and clear spacing are being computed for a particular
bundle, the bars are treated as though their area were furnished by a single bar. In other words,
it is necessary to replace the bundle of bars with a fictitious single bar with a diameter such
that its cross-sectional area equals that of the bundle of bars. This is conservative because the
bond properties of the bundled bars are actually better than for the fictitious single bar. When
determining cb, the confinement term, and the ψe factor, the bundle is considered to have a
centroid coinciding with that of the bar bundle. Example 7.5 presents the calculation of the
development length needed for a three-bar bundle of #8 bars.
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Example 7.5

Compute the development length required for the uncoated bundled bars shown in Figure 7.11,
if fy = 60,000 psi and f ′

c = 4000 psi with normal-weight concrete. Use ACI Equation 12-1 and
assume Ktr = 0.

SOLUTION

With reference to Table 7.1
ψt = ψe = ψs = λ = 1.0
Area of 3 #8 bars = 2.35 in.2

Diameter dbf of a single bar of area 2.35 in.2

πd2
bf

4
= 2.35

dbf = 1.73 in.

Find the lowest value for cb [Figure 7.11(b)].

cb1 = side cover of bars = 2 in. + 3
8

in. + 1.00 in. = 3.38 in.

cb2 = bottom cover of bars = 2 in. + 3
8

in. + 0.79db
[4] = 2 in. + 3

8
in. + 0.79(1.00 in.) = 3.16 in. ←

where db is the actual (not the fictitious) bar diameter.

cb3 = 1
2

c. to c. spacing of bars =
10 in. − (2)

(
3
8

in.
)

− (2) (1.00 in.)

2
= 3.62 in.

#3 
stirrup

2 in.

14 in.

10 in.2 in. 2 in.

22 in.
20 in.

measured outside
of stirrups

3 #8 0.79db to centroid
of bundle

(a) Bar location dimenstions

(b) Centroid of three-bar bundle

db

FI GU RE 7.11 Beam cross section for Example 7.5.

4 See Figure 7.11(b) for this dimension.



McCormac c07.tex V2 - January 9, 2013 9:09 P.M. Page 199

7.5 Hooks 199

Using ACI Equation 12-1 with Ktr = 0

cb + Ktr

dbf
= 3.16 in. + 0 in.

1.73 in.
= 1.83 < 2.5

ld

db
=
(

3
40

)(
60,000 psi

(1.0)
√

4000 psi

)
(1.0) (1.0) (1.0)

1.83

= 39 diameters

But should be increased 20% for a three-bar bundle according to ACI Section 12.4.1.

ld

db
= (1.20) (39) = 47 diameters

ld = (47) (1.0 in.) = 47 in.

Note that the actual bar diameter is used in the last equation, not the fictitious bar.

7.5 Hooks
When sufficient space is not available to anchor tension bars by running them straight for their
required development lengths, as described in Section 7.3, hooks may be used. (Hooks are
considered ineffective for compression bars for development length purposes.)

Figure 7.12 shows details of the standard 90◦ and 180◦ hooks specified in Sections 7.1
and 7.2 of the ACI Code. Either the 90◦ hook with an extension of 12 bar diameters (12db)
at the free end or the 180◦ hook with an extension of 4 bar diameters (4db) but not less than
2 1

2 in. may be used at the free end. The radii and diameters shown are measured on the inside
of the bends.

2

r = same as for 180° below

(a) 90° hook

(b) 180° hook

D = 6db for #3 through #8
D = 8db for #9 through #11
D = 10db for #14 and #18

in.1
2

FI GU RE 7.12 Hook configurations.
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The dimensions given for hooks were developed to protect members against splitting of
the concrete or bar breakage, no matter what concrete strengths, bar sizes, or bar stresses are
used. Actually, hooks do not provide an appreciable increase in anchorage strength because the
concrete in the plane of the hook is somewhat vulnerable to splitting. This means that adding
more length (i.e., more than the specified 12db or 4db values) onto bars beyond the hooks
doesn’t really increase their anchorage strengths.

The development length needed for a hook is directly proportional to the bar diameter.
This is because the magnitude of compressive stresses in the concrete on the inside of the hook
is governed by db. To determine the development lengths needed for standard hooks, the ACI
(12.5.2) requires the calculation of

ldh = 0.02ψe fydb

λ
√

f ′
c

The value of ldh , according to ACI Section 12.5.1, may not be less than 6 in. or 8db. For
deformed bars, the ACI, Section 12.5.2, states that ψe in this expression can be taken as equal
to 1.2 for epoxy-coated reinforcing and the λ used as equal to 0.75 for lightweight aggregate
concrete. For all other cases, ψe and λ are to be set equal to 1.0.

In SI units, ldh = 0.24ψe fy

λ
√

f ′
c

db

The development length, ldh , is measured from the critical section of the bar to the
outside end or edge of the hooks, as shown in Figure 7.13.

The modification factors that may have to be successively multiplied by ldh are listed
in Section 12.5.3 of the code and are summarized in subparagraphs (a) to (d). These values
apply only for cases where standard hooks are used. The effect of hooks with larger radii is

2 in. min.1
2

FI GU RE 7.13 Hooked-bar details for development of standard hooks.
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not covered by the code. For the design of hooks, no distinction is made between top bars and
other bars. (It is difficult to distinguish top from bottom anyway when hooks are involved.)

(a) Cover—When hooks are made with #11 or smaller bars and have side cover values
normal to the plane of the hooks no less than 2 1

2 in. and where the cover on the bar
extensions beyond 90◦ hooks is not less than 2 in., multiply by 0.7.

(b) Ties or stirrups—When hooks made of #11 or smaller bars are enclosed either vertically
or horizontally within ties or stirrup ties along their full development length ldh , and
the stirrups or ties are spaced no farther apart than 3db (where db is the diameter of
the hooked bar), multiply by 0.8. This situation is shown in Figure 7.14. (Detailed
dimensions are given for stirrup and tie hooks in Section 7.1.3 of the ACI Code.)

(c) When 180◦ hooks consisting of #11 or smaller bars are used and are enclosed within
ties or stirrups placed perpendicular to the bars being developed, and spaced no further
than 3d apart along the development length ldh of the hook, multiply by 0.8. If the
90◦ hook shown in Figure 7.14 is replaced with a 180◦ hook and ties or stirrups are
perpendicular (not parallel) to the longitudinal bar being developed, Figure 7.14 applies
to this case as well.

(d) Should anchorage or development length not be specially required for fy of the bars, it
is permissible to multiply ldh by As required/As provided.

The danger of a concrete splitting failure is quite high if both the side cover (perpendicular
to the hook) and the top and bottom cover (in the plane of the hook) are small. The code
(12.5.4), therefore, states that when standard hooks with less than 2 1

2 in. side and top or
bottom cover are used at discontinuous ends of members, the hooks shall be enclosed within
ties or stirrups spaced no farther than 3db for the full development length, ldh . The first tie
or stirrup must enclose the bent part of the hook within a distance of 2dbh of the outside of
the bend. Furthermore, the modification factor of 0.8 of items (b) and (c) herein shall not be

< 3db< 2db

longitudinal bar being developed
with diameter db (≤ #11)

stirrups or ties perpendicular
to the bar being developed

ldh

FI GU RE 7.14 Stirrup or tie detail for 90◦ hooks complying with
the 0.8 multiplier. The stirrups or ties shown can be either
vertical (as illustrated) or horizontal.
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applicable. If the longitudinal bar being developed with the hook shown in Figure 7.14 were at
a discontinuous end of a member, such as the free end of a cantilever beam, the ties or stirrups
shown in that figure would be required, unless side and top cover both were at least 21

2 in.
Example 7.6, which follows, illustrates the calculations necessary to determine the devel-

opment lengths required at the support for the tensile bars of a cantilever beam. The lengths
for straight or hooked bars are determined.

Example 7.6

Determine the development or embedment length required for the epoxy-coated bars of the
beam shown in Figure 7.15

(a) If the bars are straight, assuming Ktr = 0.
(b) If a 180◦ hook is used.
(c) If a 90◦ hook is used.

The six #9 bars shown are considered to be top bars. f ′
c = 4000 psi and fy = 60,000 psi.

SOLUTION

(a) Straight Bars
ψ t = 1.3 for top bars
ψe = 1.5 for coated bars with cover < 3db or clear spacing < 6db

ψ tψe = (1.3)(1.5) = 1.95 > 1.7 ∴ Use 1.7
ψs = 1.0 for 9 bars

λ = 1.0 for normal-weight concrete
cb = side cover = top cover = 2.5 in.
cb = one-half of c. to c. spacing of bars = 2.25 in. ← controls

cb + Ktr

db
= 2.25 in. + 0 in.

1.128 in.
= 1.99 < 2.5 OK

ld

db
=
(

3
40

)(
60,000 psi

(1.0)
√

4000 psi

)
(1.7) (1.0)

1.99
= 61 diameters

ld = (61) (1.128 in.) = 69 in.

14 in.

2 @ 4    = 9 in.

20 in.

13 in.

6 #9
(6.00 in.2)

6 #9

2 1
2

1
2

in. 2 1
2

in.

2 1
2

in.

4 1
2

in.

FI GU RE 7.15 Given information for Example 7.6.
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(b) Using 180◦ hooks (see Figure 7.16) note that ψe = 1.2 as required in ACI Section 12.5.2 for
epoxy-coated hooks

ldh = 0.02ψefydb

λ
√

f ′
c

= (0.02) (1.2) (60,000 psi) (1.128 in.)

(1.0)
√

4000 psi
= 25.68 in. Say 26 in.

Note: The dimensions shown in the beam cross section (Figure 7.15) indicate 21
2 in. from the

bar center to the top and side of the beam. The cover is 2.5 in. − db/2 = 1.936 in. < 2.5 in.
If this hook were in the free end of a cantilever beam, ties or stirrups would be required, and
the 0.8 reduction factor would not be applicable. In this example, the hook is in a column,
so special ties are not required. If they were provided, a reduction of 0.8 would apply. In this
example, they are not provided.

55db =
4db 

critical section

ldh = 26 in.

 in.5
8 = 4 in.1

2

FI GU RE 7.16 Details for 180◦ hook.

(c) Using 90◦ hooks (see Figure 7.17)
ldh = 26 in.

as the 0.8 reduction factor does not apply because ties or stirrups are not provided.

12db = 13

critical section

point of
tangency

ldh = 26 in.

in.1
2

FI GU RE 7.17 Details for 90◦ hook.

7.6 Development Lengths for Welded Wire Fabric in Tension
Section 12.7 of the ACI Code provides minimum required development lengths for deformed
welded wire fabric, whereas Section 12.8 provides minimum values for plain welded wire
fabric.

The minimum required development length for deformed welded wire fabric in tension
measured from the critical section equals the value determined for ld , as per ACI Section
12.2.2 or 12.2.3, multiplied by a wire fabric factor, ψw, from ACI Section 12.7.2 or 12.7.3.

This factor, which follows, contains the term s, which is the spacing of the wire to
be developed. The resulting development length may not be less than 8 in. except in the
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computation of lap splices. You might note that epoxy coatings seem to have little effect on
the lengths needed for welded wire fabric, and it is thus permissible to use ψe = 1.0.

The wire fabric factor, ψw, for welded wire fabric with at least one crosswire within the
development length not less than 2 in. from the critical section is

ψw = fy − 35,000

fy
not less than

5db

s

but need not be taken > 1.0.

In SI units for welded wire fabric with at least one crosswire within the development length
and not less than 50 mm from the point of the critical section, the wire fabric factor, ψw,
is (fy − 240)/fy, not less than 5db/s but need not be taken > 1.0.

The yield strength of welded plain wire fabric is considered to be adequately developed
by two crosswires if the closer one is not less than 2 in. from the critical section. The code
(Section 12.8), however, says that the development length, ld , measured from the critical
section to the outermost crosswire may not be less than the value computed from the following
equation, in which Aw is the area of the individual wire to be developed.

ld = 0.27
Aw

s

(
fy

λ
√

f ′
c

)
but not < 6 in.

Or in SI units

ld = 3.3
Aw

s

(
fy

λ
√

f ′
c

)
but not < 150 mm

The development lengths obtained for either plain or deformed wire may be reduced, as
were earlier development lengths, by multiplying them by (As required/As furnished) (ACI 12.2.5),
but the modified results may not be less than the minimum values given in this section.

7.7 Development Lengths for Compression Bars
There is not a great deal of experimental information available about bond stresses and needed
embedment lengths for compression steel. It is obvious, however, that embedment lengths will
be smaller than those required for tension bars. For one reason, there are no tensile cracks
present to encourage slipping. For another, there is some bearing of the ends of the bars on
concrete, which also helps develop the load.

The code (12.3.2) states that the minimum basic development length provided for com-
pression bars (ldc) may not be less than the value computed from the following expression.

ldc = 0.02fy db

λ
√

f ′
c

≥ 0.0003 fydb but not less than 8 in.

Or in SI units

ldc = 0.02fy db

λ
√

f ′
c

≥ 0.0003 fy db but not less than 200 mm



McCormac c07.tex V2 - January 9, 2013 9:09 P.M. Page 205

7.7 Development Lengths for Compression Bars 205

If more compression steel is used than is required by analysis, ldc may be multiplied
by (As required/As provided) as per ACI Section 12.3.3. When bars are enclosed in spirals for any
kind of concrete members, the members become decidedly stronger due to the confinement
or lateral restraint of the concrete. The normal use of spirals is in spiral columns, which are
discussed in Chapter 9. Should compression bars be enclosed by spirals of not less than 1

4 in.
diameter and with a pitch not greater than 4 in., or within #4 ties spaced at not more than
4 in. on center, the value of ldc may be multiplied by 0.75 (ACI 12.3.3). In no case can the
development length be less than 8 in. Thus

ld = ldc × applicable modification factors ≥ 8.0 in.

An introductory development length problem for compression bars is presented in
Example 7.7. The forces in the bars at the bottom of the column of Figure 7.18 are to be
transferred down into a reinforced concrete footing by means of dowels. Dowels such as
these are usually bent at their bottoms (as shown in the figure) and set on the main footing
reinforcing where they can be tied securely in place. The bent or hooked parts of the dowels,
however, do not count as part of the required development lengths for compression bars (ACI
12.5.5), as they are ineffective.

In a similar fashion, the dowel forces must be developed up into the column. In
Example 7.7, the required development lengths up into the column and down into the footing
are different because the f ′

c values for the footing and the column are different in this case.
The topic of dowels and force transfer from walls and columns to footings is discussed
in some detail in Chapter 12. (The development lengths determined in this example are
for compression bars, as would normally be the case at the base of columns. If uplift is
possible, however, it will be necessary to consider tension development lengths, which could
very well control.)

Example 7.7

The forces in the column bars of Figure 7.18 are to be transferred into the footing with #9 dowels.
Determine the development lengths needed for the dowels (a) down into the footing and (b) up
into the column if fy = 60,000 psi. The concrete in both the column and the footing is normal
weight.

ld  up into column

ld  down into column

FI GU RE 7.18 Information for Example 7.7.
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SOLUTION

(a) Down into the footing,

ldc = 0.02dbfy
λ
√

f ′
c

= (0.02) (1.128 in.) (60,000 psi)

(1.0)
√

3000 psi
= 24.71 in. ←

ldc = (0.0003) (1.128 in.) (60,000 psi) = 20.30 in.

Hence ld = 24.71 in., say 25 in., as there are no applicable modification factors. Under no
circumstances may ld be less than 8 in.

(b) Up into column,

ldc = (0.02) (1.128 in.) (60,000 psi)

(1.0)
√

5000 psi
= 19.14 in.

ldc = (0.0003) (1.128 in.) (60,000 psi) = 20.30 in. ←

Hence ld = 20.30 in., say 21 in. (can’t be < 8 in.), as there are no applicable modification
factors. (Answer: Extend the dowels 25 in. down into the footing and 21 in. up into the
column.)

Note: The bar details shown in Figure 7.18 are unsatisfactory for seismic areas, as the bars
should be bent inward and not outward. The reason for this requirement is that the code, Chapter
21, on seismic design, stipulates that hooks must be embedded in confined concrete.

7.8 Critical Sections for Development Length
Before the development length expressions can be applied in detail, it is necessary to understand
clearly the critical points for tensile and compressive stresses in the bars along the beam.

First, it is obvious that the bars will be stressed to their maximum values at those points
where maximum moments occur. Thus, those points must be no closer in either direction to
the bar ends than the ld values computed.

There are, however, other critical points for development lengths. As an illustration, a
critical situation occurs whenever there is a tension bar whose neighboring bars have just been
cut off or bent over to the other face of the beam. Theoretically, if the moment is reduced by
a third, one-third of the bars are cut off or bent, and the remaining bars would be stressed to
their yield points. The full development lengths would be required for those bars.

This could bring up another matter in deciding the development length required for the
remaining bars. The code (12.10.3) requires that bars that are cut off or bent be extended a
distance beyond their theoretical flexure cutoff points by d or 12 bar diameters, whichever
is greater. In addition, the point where the other bars are bent or cut off must also be at
least a distance ld from their points of maximum stress (ACI 12.10.4). Thus, these two items
might very well cause the remaining bars to have a stress less than fy, thus permitting their
development lengths to be reduced somewhat. A conservative approach is normally used,
however, in which the remaining bars are assumed to be stressed to fy.

7.9 Effect of Combined Shear and Moment
on Development Lengths

The ACI Code does not specifically consider the fact that shear affects the flexural tensile stress
in the reinforcing. The code (12.10.3) does require bars to be extended a distance beyond their
theoretical cutoff points by a distance no less than the effective depth of the member d or
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12 bar diameters, whichever is larger. The commentary (R12.10.3) states that this extension
is required to account for the fact that the locations of maximum moments may shift due
to changes in loading, support settlement, and other factors. It can be shown that a diagonal
tension crack in a beam without stirrups can shift the location of the computed tensile stress a
distance approximately equal to d toward the point of zero moment. When stirrups are present,
the effect is still there but is somewhat less severe.

The combined effect of shear and bending acting simultaneously on a beam may produce
premature failure due to overstress in the flexural reinforcing. Professor Charles Erdei5,6,7 has
done a great deal of work on this topic. His work demonstrates that web reinforcing participates
in resisting bending moment. He shows that the presence of inclined cracks increases the force
in the tensile reinforcing at all points in the shear span except in the region of maximum
moment. The result is just as though we have a shifted moment diagram, which leads us to the
thought that we should be measuring ld from the shifted moment diagram rather than from
the basic one. He clearly explains the moment shift and the relationship between development
length and the shift in the moment diagram.

The late Professor P. M. Ferguson8 stated that whether or not we decide to use the shifted
moment concept, it is nevertheless desirable to stagger the cutoff points of bars (and it is better
to bend them than to cut them).

7.10 Effect of Shape of Moment Diagram
on Development Lengths

A further consideration of development lengths will show the necessity of considering the
shape of the moment diagram. To illustrate this point, the uniformly loaded beam of Figure 7.19
with its parabolic moment diagram is considered. It is further assumed that the length of the

ld

2

Mu

2
Mu

Mu

2

less than

ld ld

FI GU RE 7.19 Effects of shape of moment
diagram.

5 Erdei, C. K., 1961, “Shearing Resistance of Beams by the Load-Factor Method,” Concrete and Constructional Engineering,
56(9), pp. 318–319.
6 Erdei, C. K., 1962, “Design of Reinforced Concrete for Combined Bending and Shear by Ultimate Lead Theory,” Journal
of the Reinforced Concrete Association, 1(1).
7 Erdei, C. K., 1963, “Ultimate Resistance of Reinforced Concrete Beams Subjected to Shear and Bending,” European Concrete
Committees Symposium on Shear, Wiesbaden, West Germany, pp. 102–114.
8 Ferguson, P. M., 1979, Reinforced Concrete Fundamentals, 4th ed. (New York: John Wiley & Sons), p. 187.
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reinforcing bars on each side of the beam centerline equals the computed development length
ld . The discussion to follow will prove that this distance is not sufficient to properly develop
the bars for this moment diagram.9

At the centerline of the beam of Figure 7.19, the moment is assumed to equal Mu, and
the bars are assumed to be stressed to fy. Thus the development length of the bars on either
side of the beam centerline must be no less than ld . If one then moves along this parabolic
moment diagram on either side to a point where the moment has fallen off to a value of Mu/2,
it is correct to assume a required development length from this point equal to ld/2.

The preceding discussion clearly shows that the bars will have to be extended farther
out from the centerline than ld . For the moment to fall off 50%, one must move more than
halfway toward the end of the beam.

7.11 Cutting Off or Bending Bars (Continued)
This section presents a few concluding remarks concerning the cutting off of bars, a topic that
was introduced in Section 7.1. The last several sections have offered considerable information
that affects the points where bars may be cut off. Here we give a summary of the previously
mentioned requirements, together with some additional information. First, a few comments
concerning shear are in order.

When some of the tensile bars are cut off at a point in a beam, a sudden increase in the
tensile stress will occur in the remaining bars. For this increase to occur, there must be a rather
large increase in strain in the beam. Such a strain increase quite possibly may cause large
tensile cracks to develop in the concrete. If large cracks occur, there will be a reduced beam
cross section left to provide shear resistance—and thus a greater possibility of shear failure.

To minimize the possibility of a shear failure, Section 12.10.5 of the ACI Code states
that at least one of the following conditions must be met if bars are cut off in a tension zone:

1. The shear at the cutoff point must not exceed two-thirds of the design shear strength, φVn,
in the beam, including the strength of any shear reinforcing provided (ACI 12.10.5.1).

2. An area of shear reinforcing in excess of that required for shear and torsion must be
provided for a distance equal to 3

4 d from the cutoff point. The minimum area of this
reinforcing and its maximum spacing are provided in Section 12.10.5.2 of the code.

3. When #11 or smaller bars are used, the continuing bars should provide twice the area of
steel required for flexure at the cutoff point, and the shear should not exceed three-fourths
of the permissible shear (ACI 12.10.5.3).

The moment diagrams used in design are only approximate. Variations in loading, settle-
ment of supports, the application of lateral loads, and other factors may cause changes in those
diagrams. In Section 7.9 of this chapter, we saw that shear forces could appreciably offset the
tensile stresses in the reinforcing bars, thus in effect changing the moment diagrams. As a result
of these factors, the code (12.10.3) says that reinforcing bars should be continued for a distance
of 12 bar diameters or the effective depth d of the member, whichever is greater (except at
the supports of simple spans and the free ends of cantilevers), beyond their theoretical cutoff
points.

Various other rules for development lengths apply specifically to positive-moment rein-
forcement, negative-moment reinforcement, and continuous beams. These are addressed in

9 Ibid., pp. 191–193.
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Chapter 14 of this text. Another item presented in that chapter, which is usually of consider-
able interest to students, are the rules of thumb that are frequently used in practice to establish
cutoff and bend points.

Another rather brief development length example is presented in Example 7.8. A rect-
angular section and satisfactory reinforcing have been selected for the given span and loading
condition. It is desired to determine where two of the four bars may be cut off, considering
both moment and development length.

Example 7.8

The rectangular beam with four #8 bars shown in Figure 7.20(b) has been selected for the
span and loading shown in part (a) of the figure. Determine the cutoff point for two of the bars,
considering both the actual moment diagram and the required development length.
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32 ft

3 in.

18 in.
12 in.

3 @ 4 in.
3 in.

3 in.

(3.14 in.2)

30 in.
27 in.

FI GU RE 7.20 Given information for Example 7.8.

The design moment capacity (φMn) of this beam has been computed to equal 359.7 ft-k
when it has four bars and 185.3 ft-k when it has two bars. (Notice that ρ with two bars =
1.57 in.2/(18 in.) (27 in.) = 0.00323 < ρmin = 200/60,000 psi = 0.00333, but is considered to be
close enough.) In addition, ld for the bars has been determined to equal 41 in., using ACI
Equation 12-1 with λ = 0.75 and Ktr = 0.275 in. based on #3 stirrups at s = 8 in. (similar to
Example 7.4).

SOLUTION

The solution for this problem is shown in Figure 7.21. There are two bars beginning at the left end
of the beam. As no development length is available, the design moment capacity of the member
is zero. If we move a distance ld from point A at the left end of the beam to point B, the design
moment capacity will increase in a straight line from 0 to 185.3 ft-k. From point B to point C, it
will remain equal to 185.3 ft-k.

At point C, we reach the cutoff point of the bars, and from C to D (a distance equal to ld ),
the design moment capacity will increase from 185.3 ft-k to 359.7 ft-k. (In Figure 7.21(a) the bars
seem to be shown in two layers. They are actually on one level, but the authors have shown
them this way so that the reader can get a better picture of how many bars there are at any point
along the beam.)

At no point along the span may the design strength of the beam be less than the actual
bending moment caused by the loads. We can then see that point C is located where the
actual bending moment equals 185.3 ft-k. The left reaction for this beam is 44.8 k, as shown in
Figure 7.20(a). Using this value, an expression is written for the moment at point C (185.3 ft-k) at
a distance x from the left support. The resulting expression can be solved for x.

44.8x − (2.8x)
( x

2

)
= 185.3 ft-k

x = 4.88 ft Say, 4 ft 10 in.

By the time we reach point D (3 ft 5 in. to the right of C and 8 ft 3 in. from the left support),
the required moment capacity is

Mu = (44.8 k) (8.25 ft) − (2.8 klf) (8.25 ft)
(

8.25 ft
2

)
= 274.3 ft-k
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D
359.7 ft-k359.7 ft-k

358.4 ft-k
274.3 ft-k274.3 ft-k

185.3 ft-k185.3 ft-k
185.3 ft-k

CB 185.3 ft-k

A

design moment capacity
of beam

moment diagram
due to beam loads

15 ft 6 in.

22 ft 4 in. (length of cutoff bars)1 ft 5 in. 1 ft 5 in.

2 bars

R = 44.8 k

4 bars

8.25 ft
2

)
cutoff points

(a)

(b)

Mu = (44.8 k)(8.25 ft) – (2.8 klf)(8.25 ft)( = 274.3 ft-k

2 bars

ld = 3 ft 5 in. ld = 3 ft 5 in. ld = 3 ft 5 in. ld = 3 ft 5 in.

FI GU RE 7.21 Comparison of moment diagram to moment capacities.

Earlier in this section, reference was made to ACI Section 12.10.5, where shear at bar
cutoff points was considered. It is assumed that this beam will be properly designed for shear
as described in the next chapter and will meet the ACI shear requirements.

7.12 Bar Splices in Flexural Members
Field splices of reinforcing bars are often necessary because of the limited bar lengths available,
requirements at construction joints, and changes from larger bars to smaller bars. Although steel
fabricators normally stock reinforcing bars in 60-ft lengths, it is often convenient to work in
the field with bars of shorter lengths, thus necessitating the use of rather frequent splices.

The reader should carefully note that the ACI Code, Sections 1.2.1(h) and 12.14.1, clearly
state that the designer is responsible for specifying the types and locations for splices for rein-
forcement.

The most common method of splicing #11 or smaller bars is simply to lap the bars one
over the other. Lapped bars may be either separated from each other or placed in contact,
with the contact splices being much preferred since the bars can be wired together. Such bars
also hold their positions better during the placing of the concrete. Although lapped splices are
easy to make, the complicated nature of the resulting stress transfer and the local cracks that
frequently occur in the vicinity of the bar ends are disadvantageous. Obviously, bond stresses
play an important part in transferring the forces from one bar to another. Thus the required
splice lengths are closely related to development lengths. It is necessary to understand that the
minimum specified clear distances between bars also apply to the distances between contact
lap splices and adjacent splices or bars (ACI Section 7.6.4).

Lap splices are not very satisfactory for several situations. They include: (1) where they
would cause congestion; (2) where the laps would be very long, as they are for #9 to #11
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Grade 60 bars; (3) where #14 or #18 bars are used because the code (12.14.2) does not permit
them to be lap spliced except in a few special situations; and (4) where very long bar lengths
would be left protruding from existing concrete structures for purposes of future expansion.
For such situations, other types of splices, such as those made by welding or by mechanical
devices, may be used. Welded splices, from the view of stress transfer, are the best splices, but
they may be expensive and may cause metallurgical problems. The result may be particularly
disastrous in high seismic zones. The ACI Code (12.14.3.4) states that welded splices must
be accomplished by welding the bars together so that the connection will be able to develop
at least 125% of the specified yield strength of the bars. It is considered desirable to butt the
bars against each other, particularly for #7 and larger bars. Splices not meeting this strength
requirement can be used at points where the bars are not stressed to their maximum tensile
stresses. It should be realized that welded splices are usually the most expensive because of
the high labor costs and the costs of proper inspection.

Mechanical connectors usually consist of some type of sleeve splice, which fits over the
ends of the bars to be joined and into which a metallic grout filler is placed to interlock the
grooves inside the sleeve with the bar deformations. From the standpoint of stress transfer,
good mechanical connectors are next best to welded splices. They do have the disadvantage
that some slippage may occur in the connections; as a result, there may be some concrete
cracks in the area of the splices.

Before the specific provisions of the ACI Code are introduced, the background for these
provisions should be explained briefly. The following remarks are taken from a paper by
George F. Leyh of the CRSI.10

1. Splicing of reinforcement can never reproduce exactly the same effect as continuous
reinforcing.

2. The goal of the splice provisions is to require a ductile situation where the reinforcing
will yield before the splices fail. Splice failures occur suddenly without warning and
with dangerous results.

3. Lap splices fail by splitting of the concrete along the bars. If some type of closed
reinforcing is wrapped around the main reinforcing (such as ties and spirals, described
for columns in Chapter 9), the chances of splitting are reduced and smaller splice lengths
are needed.

4. When stresses in reinforcement are reduced at splice locations, the chances of splice
failure are correspondingly reduced. For this reason, the code requirements are less
restrictive where stresses are low.

Splices should be located away from points of maximum tensile stress. Furthermore,
not all of the bars should be spliced at the same locations—that is, the splices should be
staggered. Should two bars of different diameters be lap spliced, the lap length used shall be
the splice length required for the smaller bar or the development length required for the larger
bar, whichever is greater (ACI Code 12.15.3).

The length of lap splices for bundled bars must be equal to the required lap lengths for
individual bars of the same size, but increased by 20% for three-bar bundles and 33% for
four-bar bundles (ACI Code 12.4) because there is a smaller area of contact between the bars
and the concrete, and thus less bond. Furthermore, individual splices within the bundles are
not permitted to overlap each other.

10 Portland Cement Association, 1972, Proceedingsof the PCA-ACI Teleconference on ACI 318-71 Building Code Requirements
(Skokie, IL: Portland Cement Association), p. 14–1.
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TABLE 7.3 Tension Lap Splices

Maximum Percent of As Spliced within
Required Lap Length

As provided

As required
50 100

Equal to or greater than 2 Class A Class B

Less than 2 Class B Class B

7.13 Tension Splices
The code (12.15) divides tension lap splices into two classes, A and B. The class of splice
used is dependent on the level of stress in the reinforcing and on the percentage of steel that
is spliced at a particular location.

Class A splices are those where the reinforcing is lapped for a minimum distance of
1.0ld (but not less than 12 in.) and where one-half or less of the reinforcing is spliced at any
one location.

Class B splices are those where the reinforcing is lapped for a minimum distance of 1.3 ld
(but not less than 12 in.) and where all the reinforcing is spliced at the same location.

The code (12.15.2) states that lap splices for deformed bars and deformed wire in tension
must be Class B unless (1) the area of reinforcing provided is equal to two or more times the
area required by analysis over the entire length of the splice and (2) one-half or less of the
reinforcing is spliced within the required lap length. A summary of this information is given
in Table 7.3, which is Table R12.15.2 in the ACI Commentary.

In calculating the value of ld to be multiplied by 1.0 or 1.3, the reduction for excess
reinforcing furnished, As provided/As required , should not be used because the class of splice (A
or B) already reflects any excess reinforcing at the splice location (see ACI Commentary
R12.15.1).

7.14 Compression Splices
Compression bars may be spliced by lapping, by end bearing, and by welding or mechanical
devices. (Mechanical devices consist of bars or plates or other pieces welded or otherwise
attached transversely to the flexural bars in locations where sufficient anchorage is not avail-
able.) The code (12.16.1) says that the minimum splice length of such bars should equal
0.0005fydb for bars with fy of 60,000 psi or less, (0.0009fy − 24)db for bars with higher fy
values, but not less than 12 in. Should the concrete strengths be less than 3000 psi, it is nec-
essary to increase the computed laps by one-third. Reduced values are given in the code for
cases where the bars are enclosed by ties or spirals (12.17.2.4 and 12.17.2.5).

The required length of lap splices for compression bars of different sizes is the larger of
the computed compression lap splice length of the smaller bars or the compression development
length, ldc of the larger bars. It is permissible to lap splice #14 and #18 compression bars to
#11 and smaller bars (12.16.2).

The transfer of forces between bars that are always in compression can be accomplished
by end bearing, according to Section 12.16.4 of the code. For such transfer to be permitted,
the bars must have their ends square cut (within 1 1

2
◦ of a right angle), must be fitted within 3◦

of full bearing after assembly, and must be suitably confined (by closed ties, closed stirrups,
or spirals). Section 12.17.4 further states that when end-bearing splices are used in columns,
in each face of the column more reinforcement has to be added that is capable of providing
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Picture of #7 GR75 Dywidag THREADBAR (R) reinforcing bar
including a couple for transferring tension loads.

a tensile strength at least equal to 25% of the yield strength of the vertical reinforcement
provided in that face.

The code (12.14.2.1), with one exception, prohibits the use of lap splices for #14 or #18
bars. When column bars of those sizes are in compression, it is permissible to connect them to
footings by means of dowels of smaller sizes with lap splices, as described in Section 15.8.2.3
of the code.

7.15 Headed and Mechanically Anchored Bars
Headed deformed bars (Figure 1.3 in Chapter 1) were added to the code in the 2008 edition.
Such devices transfer force from the bar to the concrete through a combination of bearing force
at the head and bond forces along the bar. There are several limitations to the use of headed
bars, as follows:

(a) bar fy shall not exceed 60,000 psi

(b) bar size shall not exceed No. 11

(c) concrete shall be normal weight

(d) net bearing area of head Abrg shall not be less than four times the area of the bar Ab

(e) clear cover for bar shall not be less than 2db

(f) clear spacing between bars shall not be less than 4db

Clear cover and clear spacing requirements in (e) and (f) are measured to the bar, not to the
head.

Headed bars are limited to those types that meet the requirements of HA heads in ASTM
A970 because a number of methods are used to attach heads to bars, some involving significant
obstructions or interruptions of the bar deformations. Headed bars with significant obstructions
or interruptions of the bar deformations were not evaluated in the tests used to formulate the
provisions in ACI Section 12.6.2.
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The development length in tension for headed deformed bars that comply with the ASTM
A970 and other special requirements pertaining to obstructions (ACI Section 3.5.9) is given
by

ldt = 0.016ψe fy√
f ′

c

db

In applying this equation, f ′
c cannot be taken as greater than 6000 psi, and ψe is 1.2 for

epoxy-coated bars and 1.0 otherwise. The calculated value of ldt cannot be less than 8db
or 6 in., whichever is larger. The multiplier used earlier for deformed bars without heads,
As required/As provided, is not permitted. There are no λ, ψ t or ψ s terms in this expression.

In SI units, ldt = 0.192ψe fy√
f ′

c

db

The code (ACI 12.6.4) also permits other mechanical devices shown by tests to be effective
and approved by the building official.

Example 7.9

Repeat Example 7.6 using a headed bar, and compare with the results of Example 7.6.

ldt = 0.016ψefy√
f ′
c

db = (0.016) (1.2) (60,000 psi)√
4000 psi

(1.128 in.) = 20.54 in. Say 21 in.

This value compares with 69 in. for a straight bar and 26 in. for a 90◦ or 180◦ hooked bar.

7.16 SI Example

Example 7.10

Determine the development length required for the epoxy-coated bottom bars shown in
Figure 7.22.
(a) assuming Ktr = 0 and
(b) computing Ktr with the appropriate equation, fy = 420 MPa and f ′

c = 21 MPa.

SOLUTION

From Table 6.1 in Chapter 6

ψ t = 1.0 for bottom bars

ψe = 1.5 for epoxy-coated bars with clear spacing < 6db

ψtψe = (1.0) (1.5) = 1.5 < 1.7 OK

ψs = λ = 1.0

cb = side cover of bars = 80 mm

cb = 1
2 of c. to c. spacing of bars = 40 mm ← controls
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80 mm

600 mm

3@80 mm
= 240 mm

400 mm

80
mm

80
mm

680 mm

4 #25

#10
stirrups @
200 mm
o.c.

FI GU RE 7.22 Beam cross section for
Example 7.10.

(a) Using SI Equation 12-1 with Ktr = 0

cb + Ktr

db
= 40 mm + 0 mm

25.4 mm
= 1.575 < 2.5 OK

ld

db
= 9

10

fy
λ
√

f ′
c

= ψtψeψs
cb + Ktr

db

=
(

9
10

)(
420 MPa

(1.0)
√

21 MPa

)
(1.0) (1.5) (1.0)

1.575
= 78.6 diameters

(b) Using Computed Value of Ktr and SI Equation 12-1

Ktr = 42Atr

sn
= (42) (2) (71 mm2)

(200 mm) (4)
= 7.45 mm

cb + Ktr

db
= 40 mm + 7.45 mm

25.4 mm
= 1.87 < 2.5 OK

ld

db
=
(

9
10

)(
420

(1.0)
√

21

)
(1.0) (1.5) (1.0)

1.87
= 66.2 diameters

7.17 Computer Example

Example 7.11

Using the worksheet entitled ‘‘devel length tens - calc As’’ in the spreadsheet for Chapter 7,
determine the required tension development length ld of the beam shown in Figure 7.20 if
lightweight aggregate concrete and #3 stirrups at 8 in. centers are used.
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=

⎥
⎦

⎤
⎢
⎣

⎡ +
= db

db

Ktrcbf'c

fyld
λ40

3 ψt ψe ψs

Development Length, Tension

f'c = 4000 psi
fy = 60,000 psi

fyt = 60,000 psi

b = 18 in.*
d = 27 in.*
h = 30 in.*

As = 3.14 in.2*

Atr = 0.22 in.2*

db = 1 in.

n = 4 *
s = 8 in.*

ψt 1.00

ψe 1.00 *Cells indicate that this information is optional.

ψs 1.00 Mu, b, d, h, and As are needed only to calculate.

λ 0.75 As required, Atr, n, and s are needed only if the Ktr term is

cb

=

2.00 in. to be used. All terms with * can be omitted , and

Mu = 358.40 ft-k* a conservative value of ld will result.

ψt  ψe 1

Ktr = 0.275

(cb + Ktr)⎢db = 2.28

41.7 diameters
41.7 in. (not adjusted for As⎢As provided)

As required = 3.12736 in.2

As required⎢As provided = 0.995975 ld  = 41.5 in. (adjusted for As⎢As provided)

but not less than 12 in.

h

b

d

As

=

=

=

=

=

Printout of Example 7.11 results.

SOLUTION

Input the values of the cells highlighted in yellow (only in the Excel spreadsheets, not the printed
example). Some cells are optional (see note marked with * in the printout for Example 7.11 shown
above). Pass the cursor over cells for comments explaining what is to be input. Note that two
answers are given, one with the As required/As provided reduction and one without. In this example,
there is little difference because this ratio is nearly 1.0.

P R O B L E M S

Problem 7.1 Why is it difficult to calculate actual bond
stresses?

Problem 7.2 What are top bars? Why are the required
development lengths greater than they would be if they were not
top bars?

Problem 7.3 Why do the cover of bars and the spacing of
those bars affect required development lengths?

Problem 7.4 Why isn’t the anchorage capacity of a standard
hook increased by extending the bar well beyond the end of the
hook?



McCormac c07.tex V2 - January 9, 2013 9:09 P.M. Page 218

218 CHA P T E R 7 Bond, Development Lengths, and Splices

Problem 7.5 For the cantilever beam shown, determine the point where two bars theoretically can be cut off from the standpoint
of the calculated moment strength, φMn, of the beam. fy = 60,000 psi and f ′

c = 3000 psi. (Ans. 9.96 ft from free end)

32 in.
29 in.

3 in.

16 in.

#3
stirrups

12 ft

wu = 5 k/ft

3 @ 3 in. = 9 in.

4 #9

3
1
2 in.3

1
2 in.

For Problems 7.6 to 7.9, determine the development lengths
required for the tension bar situations described using ACI
Equation 12-1 and: (a) assuming Ktr = 0, and (b) the calculated
value of Ktr.

Problem 7.6 Uncoated bars in normal-weight concrete.
As required = 3.44 in.2.

3 #10

3 in.

30 in.

3 in.4 in.4 in.3 in.

#3 stirrups
@ 8 in. o.c.

fy = 60,000 psi

f 'c = 4000 psi

Problem 7.7 Uncoated bars in normal-weight concrete.
As required = 4.25 in.2. (Ans. 43 in., 27 in.)

6 #8

3 in.

3 in. 3 in. 3 in. 3 in.

#4 stirrups
@ 6 in. o.c.

fy = 60,000 psi

f 'c = 4000 psi

3 in.

26 in.

Problem 7.8 Epoxy-coated bars in lightweight concrete,
As required = 2.76 in.2.

3 #9

3 in.

24 in.#3 stirrups
@ 7 in. o.c.

fy = 60,000 psi

f 'c = 3000 psi

3 in. 3 in. 3 in. 3 in.

Problem 7.9 Uncoated top bars in normal-weight concrete.
As required = 3.68 in.2. (Ans. 59 in., 50 in.)

#3 stirrups
@ 8 in. o.c. fy = 60,000 psi

f 'c = 6000 psi

4 #9

3 in.

27 in.

3 @ 3 in. = 9 in.3 in. 3 in.

Problem 7.10 Repeat Problem 7.6 if the bars are epoxy
coated.

Problem 7.11 Repeat Problem 7.7 if all-lightweight concrete
with f ′

c = 3000 psi and epoxy-coated bars are used. (Ans.
98.8 in., 62.1 in.)
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Problem 7.12 Repeat Problem 7.8 if three uncoated #6 bars
are used and As required = 1.20 in.2.

Problem 7.13 Repeat Problem 7.9 if the bars are four #8 and
epoxy coated and all-lightweight concrete is used. (Ans.
81.6 in., 69.0 in.)

Problem 7.14 The bundled #10 bars shown are uncoated and
used in normal-weight concrete. As required = 4.44 in.2.

#10 bars

4 in.

32 in.
#4 stirrups
@ 6 in. o.c.

fy = 60,000 psi

f 'c = 5000 psi

measured to c.g. of outside
longitudinal bar

9 in.3 in. 3 in.

Problem 7.15 Repeat Problem 7.14 if the bars are epoxy
coated and used in sand-lightweight concrete with
f ′

c = 4000 psi. (Ans. 78.3 in., 63.4 in., etc.)

Problem 7.16 Set up a table for required development lengths
for the beam shown, using fy = 60,000 psi and f ′

c values of
3000 psi, 3500 psi, 4000 psi, 4500 psi, 5000 psi, 5500 psi, and
6000 psi. Assume the bars are uncoated and normal-weight
concrete is used. Use ACI Equation 12-1 and assume Ktr = 0.

#9 bars

3 in.

40 in.#3 stirrups
@ 6 in. o.c.

3 @ 4 in. = 12 in.

3 in. 3 in.

Problem 7.17 Repeat Problem 7.16 if #8 bars are used. (Ans.
41.1 in., 38.0 in., 35.6 in., 33.5 in., 31.8 in., etc.)

Problem 7.18 Repeat Problem 7.16 if #7 bars are used.

Problem 7.19 Repeat Problem 7.16 if #6 epoxy-coated bars
are used in lightweight concrete. (Ans. 39.4 in., 36.5 in.,
34.2 in., 32.2 in., 30.6 in., etc.)

Problem 7.20

(a) Determine the tensile development length required for the uncoated #8 bars shown if normal-weight concrete is used and the
bars are straight. Use ACI Equation 12-1 and compute the value of Ktr. f ′

c = 4000 psi and fy = 60,000 psi.

(b) Repeat part (a) if 180◦ hooks are used.

Assume side, top, and bottom cover in all cases to be at least 2 1
2 in.

21 in.

3 in.3 in.

3 in.

27 in. 30 in.

#3 stirrups
@ 6 in. o.c.

4 #8

3 @ 5 in.
= 15 in.
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Problem 7.21 Are the uncoated #8 bars shown anchored
sufficiently with their 90◦ hooks? f ′

c = 3000 psi and
fy = 60 ksi. Side and top cover is 2 1

2 in. on bar extensions.
Normal-weight concrete is used. As required = 2.20 in.2. (Ans.
ldh = 14.3 in., sufficient)

3 #8
2 in. clear

12 in. clear

16 in.

15 in.

Problem 7.22 Repeat Problem 7.21 if headed bars are used
instead of 90◦ hooks and f ′

c = 5000 psi.

Problem 7.23 Repeat Problem 7.7 if the bars are in
compression. (Ans. 17.9 in.)

For Problems 7.24 to 7.29, use ACI Equation 12-1 and assume Ktr = 0.

Problem 7.24 The required bar area for the wall footing shown is 0.65 in.2 per foot of width and #8 epoxy-coated bars 12 in. on
center are used. Maximum moment is assumed to occur at the face of the wall. If fy = 60,000 psi and f ′

c = 4000 psi, do the bars
have sufficient development lengths? Assume cb = 3 in.

Problem 7.25 Repeat Problem 7.24 using #7 @ 9 in. and
without epoxy coating. (Ans. ld = 20.2 in. < 27 in. OK)

Problem 7.26 Problem 7.24 has insufficient embedment
length. List four design modifications that would reduce the
required development length.

Problem 7.27 The beam shown is subjected to an Mu of
250 ft-k at the support. If cb = 1.5, Ktr = 0, the concrete is
lightweight, fy = 60,000 psi, and f ′

c = 4000 psi, do the
following: (a) select #9 bars to be placed in one row,
(b) determine the development lengths required if straight bars
are used in the beam, and (c) determine the development lengths
needed if 180◦ hooks are used in the support. (Ans. 3 #9,
95.2 in., 26.0 in.)

b = 12 in.

d = 22     in.1
2
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Problem 7.28 In the column shown, the lower column bars
are #8 and the upper ones are #7. The bars are enclosed by ties
spaced 12 in. on center. If fy = 60,000 psi and f ′

c = 4000 psi,
what is the minimum lap splice length needed? Normal-weight
concrete is to be used for the 12-in. × 12-in. column.

Problem 7.29 Calculations show that 2.64 in.2 of top or
negative moment steel is required for the beam shown. Three #9
bars have been selected. Are the 4 ft. 6 in. embedment lengths
shown satisfactory if f ′

c = 4000 psi and fy = 60,000 psi? Bars
are spaced 3 in. o.c. with 3-in. side and top cover measured
from c.g. of bars. Use Ktr = 0. (Ans. No; ld = 69 in. >

4 ft 6 in., not adequate)

4 ft 6 in. 4 ft 6 in.

3 #9 3 #9

4 ft 6 in. 4 ft 6 in.

21 in.

3 in.

Problem 7.30 Calculations show that 4.90 in.2 of top or
negative steel is required for the beam shown. If four uncoated
#10 bars have been selected, f ′

c = 4000 psi, and
fy = 60,000 psi, determine the minimum development length
needed for the standard 90◦ hooks shown. Assume bars have
3-in. side and top cover measured from c.g. of bars and are used
in normal-weight concrete. The bars are not enclosed by ties or
stirrups spaced at 3db or less.

Problem 7.31 If fy = 75,000 psi, f ′
c = 4000 psi, wD = 1.5 k/ft, and wL = 5 k/ft, are the development lengths of the straight

bars satisfactory? Assume that the bars extend 6 in. beyond the centerline of the reactions and that Ktr = 0. As required = 3.05 in.2.
The bars are uncoated and the concrete is normal weight. (Ans. ld = 57.6 in., embedment length is adequate)

3 in.

15 in.

3 @ 3 in.
3 in.

3 in.

21 in.

1 ft 6 in.

14 ft 0 in.

11 ft 0 in. 1 ft 6 in.
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Compression Splices

Problem 7.32 Determine the compression lap splices needed
for a 14-in. × 14-in. reinforced concrete column with ties
(whose effective area exceeds 0.0015 hs, as described in Section
12.17.2.4 of the code) for the cases to follow. There are eight
#8 longitudinal bars equally spaced around the column.

(a) f ′
c = 4000 psi and fy = 60,000 psi

(b) f ′
c = 2000 psi and fy = 50,000 psi

Problems in SI Units

For Problems 7.33 to 7.36, determine the tensile development
lengths required using: (a) ACI Metric Equation 12-1, assuming
Ktr = 0, and (b) ACI Metric Equation 12-1 and the computed
value of Ktr. Use fy = 420 MPa and f ′

c = 28 MPa.

Problem 7.33 (Ans. 922 mm, 769 mm)

80 mm

460 mm

3 @ 100 mm
= 300 mm

80
mm

80
mm

700 mm

620 mm

4 #25

#10 
stirrups @
150 mm
o.c.

Problem 7.34

75 mm

75
mm

75
mm

2 @ 100
mm

350 mm

500 mm
425 mm

3 #32

#13 
stirrups @
200 mm
o.c.

Problem 7.35 Repeat Problem 7.33 if the longitudinal bars
are #19. (Ans. 437 mm, 437 mm)

Problem 7.36 Repeat Problem 7.34 if the bars are epoxy
coated.

Computer Problems

For Problems 7.37 and 7.38, use the Chapter 7 spreadsheet.

Problem 7.37 Repeat Problem 7.6. (Ans. 52.1 in., 44.0 in.)

Problem 7.38 Repeat Problem 7.9.

Problem 7.39 Repeat Problem 7.22. (Ans. ldt = 13.6 in. >

13 in. available ∴ no good)
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CHAPTER 8Shear and Diagonal Tension

8.1 Introduction
As repeatedly mentioned earlier in this book, the objective of today’s reinforced concrete
designer is to produce ductile members that provide warning of impending failure. To achieve
this goal, the code provides design shear values that have larger safety factors against shear
failures than do those provided for bending failures. The failures of reinforced concrete beams
in shear are quite different from their failures in bending. Shear failures occur suddenly with
little or no advance warning. Therefore, beams are designed to fail in bending under loads that
are appreciably smaller than those that would cause shear failures. As a result, those members
will fail ductilely. They may crack and sag a great deal if overloaded, but they will not fall
apart, as they might if shear failures were possible.

8.2 Shear Stresses in Concrete Beams
Although no one has ever been able to accurately determine the resistance of concrete to pure
shearing stress, the matter is not very important because pure shearing stress is probably never
encountered in concrete structures. Furthermore, according to engineering mechanics, if pure
shear is produced in a member, a principal tensile stress of equal magnitude will be produced
on another plane. Because the tensile strength of concrete is less than its shearing strength, the
concrete will fail in tension before its shearing strength is reached.

You have previously learned that in elastic homogeneous beams, where stresses are
proportional to strains, two kinds of stresses occur (bending and shear), and they can be
calculated with the following expressions:

f = Mc

I

v = VQ

Ib

An element of a beam not located at an extreme fiber or at the neutral axis is subject to
both bending and shear stresses. These stresses combine into inclined compressive and tensile
stresses, called principal stresses, which can be determined from the following expression:

fp = f

2
±
√(

f

2

)2

+ v2

The direction of the principal stresses can be determined with the formula to follow, in
which α is the inclination of the stress to the beam’s axis:

tan 2α = 2v

f

223
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Obviously, at different positions along the beam, the relative magnitudes of v and f
change, and thus the directions of the principal stresses change. It can be seen from the
preceding equation that at the neutral axis, the principal stresses will be located at a 45◦ angle
with the horizontal.

You understand by this time that tension stresses in concrete are a serious matter. Diag-
onal principal tensile stresses, called diagonal tension, occur at different places and angles in
concrete beams, and they must be carefully considered. If they reach certain values, additional
reinforcing, called web reinforcing, must be supplied.

The discussion presented up to this point relating to diagonal tension applies rather well
to plain concrete beams. If, however, reinforced concrete beams are being considered, the
situation is quite different because the longitudinal bending tension stresses are resisted quite
satisfactorily by the longitudinal reinforcing. These bars, however, do not provide significant
resistance to the diagonal tension stresses.

8.3 Lightweight Concrete
In the 2008 ACI 318 Code, the effect of lightweight aggregate concrete on shear strength
was modified by the introduction of the term λ (see Section 1.12). This term was added to
most equations containing

√
f ′
c . The resulting combined term, λ

√
f ′
c , appears throughout this

chapter as well as in Chapter 7 on development length and Chapter 15 on torsion. If normal-
weight concrete is used, then λ is simply taken as 1. This unified approach to the effects
of lightweight aggregate on the strength and other properties of concrete is a logical and
simplifying improvement found in the 2008 ACI Code.
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8.4 Shear Strength of Concrete
A great deal of research has been done on the subject of shear and diagonal tension for
nonhomogeneous reinforced concrete beams, and many theories have been developed. Despite
all this work and all the resulting theories, no one has been able to provide a clear explanation
of the failure mechanism involved. As a result, design procedures are based primarily on test
data.

If Vu is divided by the effective beam area, bw d , the result is what is called an average
shearing stress. This stress is not equal to the diagonal tension stress but merely serves as an
indicator of its magnitude. Should this indicator exceed a certain value, shear or web reinforcing
is considered necessary. In the ACI Code, the basic shear equations are presented in terms of
shear forces, not shear stresses. In other words, the average shear stresses described in this
paragraph are multiplied by the effective beam areas to obtain total shear forces.

For this discussion, Vn is considered to be the nominal or theoretical shear strength of a
member. This strength is provided by the concrete and by the shear reinforcement.

Vn = Vc + Vs

The design shear strength of a member, φVn , is equal to φVc plus φVs , which must at
least equal the factored shear force to be taken, Vu

Vu = φVc + φVs

The shear strength provided by the concrete, Vc , is considered to equal an average shear
stress strength (normally 2λ

√
f ′
c ) times the effective cross-sectional area of the member, bw d ,

where bw is the width of a rectangular beam or of the web of a T beam or an I beam.

Vc = 2λ
√

f ′
c bw d (ACI Equation 11-3)

Or in SI units with f ′
c in MPa

Vc =
(

λ
√

f ′
c

6

)
bw d

Beam tests have shown some interesting facts about the occurrence of cracks at different
average shear stress values. For instance, where large moments occur even though appropriate
longitudinal steel has been selected, extensive flexural cracks will be evident. As a result,
the uncracked area of the beam cross section will be greatly reduced, and the nominal shear
strength, Vc , can be as low as 1.9λ

√
f ′
c bw d. In regions where the moment is small, however,

the cross section will be either uncracked or slightly cracked, and a large portion of the cross
section is available to resist shear. For such a case, tests show that a Vc of about 3.5λ

√
f ′
c bw d

can be developed before shear failure occurs.1

Based on this information, the code (11.2.1.1) suggests that, conservatively, Vc (the shear
force that the concrete can resist without web reinforcing) can go as high as 2λ

√
f ′
c bw d. As

an alternative, the following shear force (from Section 11.2.1.2 of the code) may be used,
which takes into account the effects of the longitudinal reinforcing and the moment and shear

1 ACI-ASCE Committee 326, 1962, “Shear and Diagonal Tension,” part 2, Journal ACI, 59, p. 277.
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magnitudes. This value must be calculated separately for each point being considered in the
beam.

Vc =
(

1.9λ
√

f ′
c + 2500ρw

Vud

Mu

)
bw d ≤ 3.5λ

√
f ′
c bw d (ACI Equation 11-5)

In SI units

Vc =
(

λ
√

f ′
c + 120ρw

Vu d

Mu

)
bw d

7
≤ 0.3λ

√
f ′
c bw d

In these expressions, ρw = As/bw d and Mu are the factored moment occurring simulta-
neously with Vu , the factored shear at the section considered. The quantity Vu d/Mu cannot be
taken to be greater than unity in computing Vc by means of the above expressions.

From these expressions, it can be seen that Vc increases as the amount of reinforcing
(represented by ρw ) is increased. As the amount of steel is increased, the length and width of
cracks will be reduced. If the cracks are kept narrower, more concrete is left to resist shear,
and there will be closer contact between the concrete on opposite sides of the cracks. Hence
there will be more resistance to shear by friction (called aggregate interlock) on the two sides
of cracks.

Although this more complicated expression for Vc can easily be used for computer
designs, it is quite tedious to apply when handheld calculators are used. The reason is that
the values of ρw , Vu , and Mu are constantly changing as we move along the span, requiring
the computation of Vc at numerous positions. As a result, the alternate value 2λ

√
f ′
c bw d is

normally used. If the same member is to be constructed many times, the use of the more
complex expression may be justified.

8.5 Shear Cracking of Reinforced Concrete Beams
Inclined cracks can develop in the webs of reinforced concrete beams, either as extensions
of flexural cracks or occasionally as independent cracks. The first of these two types is the
flexure–shear crack, an example of which is shown in Figure 8.1. These are the ordinary types
of shear cracks found in both prestressed and nonprestressed beams. For them to occur, the
moment must be larger than the cracking moment, and the shear must be rather large. The
cracks run at angles of about 45◦ with the beam axis and probably start at the top of a flexure
crack. The approximately vertical flexure cracks shown are not dangerous unless a critical
combination of shear stress and flexure stress occurs at the top of one of the flexure cracks.

Occasionally, an inclined crack will develop independently in a beam, even though
no flexure cracks are in that locality. Such cracks, which are called web–shear cracks, will

flexure–shear cracksecondary crack

initiating or
flexural cracks

FI GU RE 8.1 Flexure–shear crack.
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web–shear cracks

FI GU RE 8.2 Web–shear cracks.

sometimes occur in the webs of prestressed sections, particularly those with large flanges and
thin webs. They also sometimes occur near the points of inflection of continuous beams or near
simple supports. At such locations, small moments and high shear often occur. These types
of cracks will form near the mid-depth of sections and will move on a diagonal path to the
tension surface. Web–shear cracks are illustrated in Figure 8.2.

As a crack moves up to the neutral axis, the result will be a reduced amount of concrete
left to resist shear—meaning that shear stresses will increase on the concrete above the crack.

It will be remembered that at the neutral axis, the bending stresses are zero, and the
shear stresses are at their maximum values. The shear stresses will therefore determine what
happens to the crack there.

After a crack has developed, the member will fail unless the cracked concrete section
can resist the applied forces. If web reinforcing is not present, the items that are available to
transfer the shear are as follows: (1) the shear resistance of the uncracked section above the
crack (estimated to be 20% to 40% of the total resistance); (2) the aggregate interlock, that
is, the friction developed due to the interlocking of the aggregate on the concrete surfaces on
opposite sides of the crack (estimated to be 33% to 50% of the total); (3) the resistance of the
longitudinal reinforcing to a frictional force, often called dowel action (estimated to be 15%
to 25%); and (4) a tied-arch type of behavior that exists in rather deep beams produced by the
longitudinal bars acting as the tie and by the uncracked concrete above and to the sides of the
crack acting as the arch above.2

8.6 Web Reinforcement
When the factored shear, Vu , is high, it shows that large cracks are going to occur unless some
type of additional reinforcing is provided. This reinforcing usually takes the form of stirrups
that enclose the longitudinal reinforcing along the faces of the beam. The most common
stirrups are  shaped, but they can be shaped or perhaps have only a single vertical
prong, as shown in Figure 8.3(c). Multiple stirrups such as the ones shown in Figure 8.3(e)
are considered to inhibit splitting in the plane of the longitudinal bars. As a consequence, they
are generally more desirable for wide beams than the ones shown in Figure 8.3(d). Sometimes
it is rather convenient to use lap spliced stirrups, such as the ones shown in Figure 8.3(g).
These stirrups, which are described in ACI Section 12.13.5, are occasionally useful for deep
members, particularly those with gradually varying depths. However, they are considered to be
unsatisfactory in seismic areas.

Bars called hangers (usually with about the same diameter as that of the stirrups)
are placed on the compression sides of beams to support the stirrups, as illustrated in

2 Taylor, H. P. J., 1974, “The Fundamental Behavior of Reinforced Concrete Beams in Bending and Shear,” Shear in Reinforced
Concrete, Vol. 1, SP-42 (Detroit: American Concrete Institute), pp. 43–47.
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(a) (b) (c) (d) (e)

(g)(f)

(h) (i) (j)

hangers

These types of
stirrups are not
satisfactory for
members designed
for seismic forces.

concrete confinement
both sides

concrete confinement
one side

concrete confinement
one side

not less
than
1.3 d

Closed stirrups for beams with significant torsion (see ACI 11.5.2.1)

Open stirrups for beams with negligible torsion (ACI 11.5.1)

FI GU RE 8.3 Types of stirrups.

Figure 8.3(a) to (j). The stirrups are passed around the tensile steel and, to meet anchorage
requirements, they are run as far into the compression side of the beam as practical and hooked
around the hangers. Bending of the stirrups around the hangers reduces the bearing stresses
under the hooks. If these bearing stresses are too high, the concrete will crush and the stirrups
will tear out. When a significant amount of torsion is present in a member, it will be necessary
to use closed stirrups as shown in parts (f) through (j) of Figure 8.3 and as discussed in
Chapter 15.

The width of diagonal cracks is directly related to the strain in the stirrups. Consequently,
the ACI 11.4.2 does not permit the design yield stress of the stirrups to exceed 60 ksi. This
requirement limits the width of cracks that can develop. Such a result is important from the
standpoint of both appearance and aggregate interlock. When the width of cracks is limited,
it enables more aggregate interlock to develop. A further advantage of a limited yield stress
is that the anchorage requirements at the top of the stirrups are not quite as stringent as they
would be for stirrups with greater yield strengths.

The 60,000-psi limitation does not apply to deformed welded wire fabric because recent
research has shown that the use of higher-strength wires has been quite satisfactory. Tests have
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shown that the width of inclined shear cracks at service load conditions is less for high-strength
wire fabric than for those occurring in beams reinforced with deformed Grade 60 stirrups. The
maximum stress permitted for deformed welded wire fabric is 80,000 psi (ACI 11.4.2).

In SI units, the maximum design yield stress values that may be used are 420 MPa for
regular shear reinforcing and 550 MPa for welded deformed wire fabric.

8.7 Behavior of Beams with Web Reinforcement
The actual behavior of beams with web reinforcement is not really understood, although several
theories have been presented through the years. One theory, which has been widely used for 100
years, is the so-called truss analogy, wherein a reinforced concrete beam with shear reinforcing
is said to behave much like a statically determinate parallel chord truss with pinned joints. The
flexural compression concrete is thought of as the top chord of the truss, whereas the tensile
reinforcing is said to be the bottom chord. The truss web is made up of stirrups acting as vertical
tension members and pieces of concrete between the approximately 45◦ diagonal tension cracks
acting as diagonal compression members.3 ,4 The shear reinforcing used is similar in its action
to the web members of a truss. For this reason, the term web reinforcement is used when
referring to shear reinforcing. A “truss” of the type described here is shown in Figure 8.4.

Although the truss analogy has been used for many years to describe the behavior of
reinforced concrete beams with web reinforcing, it does not accurately describe the manner in
which shear forces are transmitted. For example, the web reinforcing does increase the shearing
strength of a beam, but it has little to do with shear transfer in a beam before inclined cracks
form.

The code requires web reinforcement for all major beams. In Section 11.4.6.1, a minimum
area of web reinforcing is required for all concrete flexural members except (a) footings and
solid slabs; (b) certain hollow-core units; (c) concrete floor joists; (d) shallow beams with h not
more than 10 in.; (e) beams integral with slabs with h less than 24 in. and h not greater than
the larger of two and a half times their flange thicknesses or one-half their web widths; or (f)
beams constructed with steel fiber–reinforced, normal-weight concrete with f ′

c not exceeding
6000 psi, h not greater than 24 in., and Vu not greater than 2φ

√
f ′
c bw d . Various tests have shown

that shear failures do not occur before bending failures in shallow members. Shear forces are

concrete between
inclined cracks (diagonals) stirrups (verticals)

compression concrete
(top chord)

diagonal tension crackstensile steel
(bottom chord)

FI GU RE 8.4 Truss analogy.

3 Ritter, W., 1899, “Die Bauweise Hennebique,” Schweizerische Bauzeitung, Vol. 33, No. 7.
4 Mörsch, E., 1912, Der Eisenbetenbau, seine Theorie und Anwendung (Stuttgart: Verlag Konrad Wittwer).
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FI GU RE 8.5 Bent-up bar web reinforcing.

distributed across these wide sections. For joists, the redistribution is via the slabs to adjacent
joists. Hooked or crimped steel fibers in dosages ≥100 lb per cubic yard exhibit higher shear
strengths in laboratory tests. However, use of such fibers is not recommended when the concrete
is exposed to chlorides, such as deicing salts.

Inclined or diagonal stirrups lined up approximately with the principal stress directions
are more efficient in carrying the shears and preventing or delaying the formation of diagonal
cracks. Such stirrups, however, are not usually considered to be very practical in the United
States because of the high labor costs required for positioning them. Actually, they can be
rather practical for precast concrete beams where the bars and stirrups are preassembled into
cages before being used and where the same beams are duplicated many times.

Bent-up bars (usually at 45◦ angles) are another satisfactory type of web reinforcing
(see Figure 8.5). Although bent-up bars are commonly used in flexural members in the United
States, the average designer seldom considers the fact that they can resist diagonal tension.
Two reasons for not counting their contribution to diagonal tension resistance are that there
are only a few, if any, bent-up bars in a beam and that they may not be conveniently located
for use as web reinforcement.

Diagonal cracks will occur in beams with shear reinforcing at almost the same loads at
which they occur in beams of the same size without shear reinforcing. The shear reinforcing
makes its presence known only after the cracks begin to form. At that time, beams must have
sufficient shear reinforcing to resist the shear force not resisted by the concrete.

After a shear crack has developed in a beam, only a little shear can be transferred across
the crack unless web reinforcing is used to bridge the gap. When such reinforcing is present,
it keeps the pieces of concrete on the two sides of the crack from separating. Several benefits
result. These include:

1. The steel reinforcing passing across the cracks carries shear directly.

2. The reinforcing keeps the cracks from becoming larger, and this enables the concrete to
transfer shear across the cracks by aggregate interlock.

3. The stirrups wrapped around the core of concrete act like hoops and thus increase the
beam’s strength and ductility. In a related fashion, the stirrups tie the longitudinal bars
into the concrete core of the beam and restrain them from prying off the covering
concrete.

4. The holding together of the concrete on the two sides of the cracks helps keep the
cracks from moving into the compression zone of the beam. Remember that other than
for deformed wire fabric, the yield stress of the web reinforcing is limited to 60 ksi to
limit the width of the cracks.
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8.8 Design for Shear
The maximum shear, Vu , in a beam must not exceed the design shear capacity of the beam
cross section, φVn , where φ is 0.75 and Vn is the nominal shear strength of the concrete and
the shear reinforcing.

Vu ≤ φVn

The value of φVn can be broken down into the design shear strength of the concrete,
φVc , plus the design shear strength of the shear reinforcing, φVs . The value of φVc is provided
in the code for different situations, and thus we are able to compute the required value of φVs
for each situation:

Vu ≤ φVc + φVs

For this derivation, an equal sign is used:

Vu = φVc + φVs

The purpose of stirrups is to minimize the size of diagonal tension cracks or to carry the
diagonal tension stress from one side of the crack to the other. Very little tension is carried by
the stirrups until after a crack begins to form. Before the inclined cracks begin to form, the
strain in the stirrups is equal to the strain in the adjacent concrete. Because this concrete cracks
at very low diagonal tensile stresses, the stresses in the stirrups at that time are very small,
perhaps only 3 ksi to 6 ksi. You can see that these stirrups do not prevent inclined cracks and
that they really aren’t a significant factor until the cracks begin to develop.

Tests made on reinforced concrete beams show that they will not fail by the widening
of the diagonal tension cracks until the stirrups going across the cracks have been stressed to
their yield stresses. For the derivation to follow, it is assumed that a diagonal tension crack has
developed and has run up into the compression zone but not all the way to the top, as shown
in Figure 8.6. It is further assumed that the stirrups crossing the crack have yielded.

The nominal shear strength of the stirrups, Vs , crossing the crack can be calculated from
the following expression, where n is the number of stirrups crossing the crack and Av is the
cross-sectional area each stirrup has crossing the crack. If a  stirrup is used, Av equals two
times the cross-sectional area of the stirrup bar. If it is a stirrup, Av equals four times the
cross-sectional area of the stirrup bar. The term fyt is the specified yield strength of transverse
reinforcement, or stirrups in this case.

Vs = Av fyt n

If it is conservatively assumed that the horizontal projection of the crack equals the
effective depth, d, of the section (thus a 45◦ crack), the number of stirrups crossing the crack
can be determined from the expression to follow, in which s is the center-to-center spacing of
the stirrups:

n = d

s

Avfyt

Vu

d

s s

d
FI GU RE 8.6 Beam with diagonal crack and
vertical stirrups.
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Then

Vs = Av fyt
d

s
(ACI Equation 11-15)

From this expression, the required spacing of vertical stirrups is

s = Av fyt d

Vs

and the value of Vs can be determined as follows:

Vu = φVc + φVs

Vs = Vu − φVc

φ

Going through a similar derivation, the following expression can be determined for
the required area for inclined stirrups, in which α is the angle between the stirrups and the
longitudinal axis of the member. Inclined stirrups should be placed so they form an angle of
at least 45◦ with respect to the longitudinal bars, and they must be securely tied in place.

Vs = Av fyt(sin α + cos α)d

s
(ACI Equation 11-16)

And for a bent-up bar or a group of bent-up bars at the same distance from the support,
we have

Vs = Av fyt sin α ≤ 3
√

f ′
c bw d (ACI Equation 11-17)

8.9 ACI Code Requirements
This section presents a detailed list of the code requirements controlling the design of web
reinforcing, even though some of these items have been previously mentioned in this chapter:

1. When the factored shear, Vu , exceeds one-half the shear design strength, φVc , the
code (11.4.6.1) requires the use of web reinforcing. The value of Vc is normally taken as
2λ
√

f ′
c bw d , but the code (11.2.2.1) permits the use of the following less conservative value:

Vc =
(

1.9λ
√

f ′
c + 2500ρw

Vud

Mu

)
bw d ≤ 3.5λ

√
f ′
c bw d (ACI Equation 11-5)

As previously mentioned, Mu is the moment occurring simultaneously with Vu at the
section in question. The value of Vud/Mu must not be taken as greater than 1.0 in calculating
Vc , according to the code.

2. When shear reinforcing is required, the code states that the amount provided must fall
between certain clearly specified lower and upper limits. If the amount of reinforcing is too
low, it may yield or even snap immediately after the formation of an inclined crack. As soon
as a diagonal crack develops, the tension previously carried by the concrete is transferred to
the web reinforcing. To prevent the stirrups (or other web reinforcing) from snapping at that
time, their area is limited to the minimum value provided at the end of the next paragraph.

ACI Section 11.4.6.3 specifies a minimum amount of web reinforcing so as to
provide an ultimate shear strength no less than 0.75λ

√
f ′
c bw s. Using this provision of

the code should prevent a sudden shear failure of the beam when inclined cracks occur.
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The shear strength calculated with this expression may not be less than 50bw s. If a
0.75λ

√
f ′
c psi strength is available for a web width bw and a length of beam s equal to the

stirrup spacing, we will have

0.75
√

f ′
c bw s = Av fyt

Av min = 0.75
√

f ′
c bw s

fyt
(ACI Equation 11-13)

but not less than the value obtained with a 50-psi strength 50bw s/fyt.
If
√

f ′
c is greater than 4444 psi, the minimum value of Av is controlled by the expression

0.75
√

f ′
c bw s/fyt . Should f ′

c be less than 4444 psi, the minimum Av value will be controlled by
the 50bw s/fyt expression.

In SI units

Av min = 1

16

√
f ′
c

bw s

fyt
≥ 0.33bw s

fyt

This expression from ACI Section 11.4.6.3 provides the minimum area of web rein-
forcing, Av , that is to be used as long as the factored torsional moment, Tu , does not exceed
one-fourth of the cracking torque, Tcr . Such a torque will not cause an appreciable reduction
in the flexural or shear strength of a member and may be neglected (ACI Section 11.5.1). For
nonprestressed members, this limiting value is

φλ
√

f ′
c

(
A2

cp

pcp

)

In SI units
φλ
√

f ′
c

12

A2
cp

pcp

In this expression, φ = 0.75, Acp is the area enclosed by the outside perimeter of the con-
crete cross section, and pcp is the outside perimeter of the concrete cross section. The compu-
tation of Tu and Tcr for various situations is presented in Chapter 15.

Although you may feel that the use of such minimum shear reinforcing is not necessary,
studies of earthquake damage in recent years have shown very large amounts of shear damage
occurring in reinforced concrete structures, and it is felt that the use of this minimum value will
greatly improve the resistance of such structures to seismic forces. Actually, many designers
believe that the minimum area of web reinforcing should be used throughout beams, not just
where Vu is greater than φVc/2.

This requirement for a minimum amount of shear reinforcing may be waived if tests have
been conducted showing that the required bending and shear strengths can be met without the
shear reinforcing (ACI 11.4.6.2).

3. As previously described, stirrups cannot resist appreciable shear unless they are
crossed by an inclined crack. Thus, to make sure that each 45◦ crack is intercepted by at
least one stirrup, the maximum spacing of vertical stirrups permitted by the code (11.4.5.1)
is the lesser of d/2 or 24 in. for nonprestressed members and 3

4 h for prestressed members or
24 in. where h is the overall thickness of a member. Should, however, Vs exceed 4

√
f ′
c bw d ,5

5 In SI, Vs = 1
3

√
f ′
c bw d .
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these maximum spacings are to be reduced by one-half (ACI 11.4.5.3). These closer spacings
will lead to narrower inclined cracks.

Another advantage of limiting maximum spacing values for stirrups is that closely spaced
stirrups will hold the longitudinal bars in the beam. They reduce the chance that the steel may
tear or buckle through the concrete cover or possibly slip on the concrete.

Under no circumstances may Vs be allowed to exceed 8
√

f ′
c bw d (Code 11.4.7.9).6 The

shear strength of a beam cannot be increased indefinitely by adding more and more shear
reinforcing, because the concrete will eventually disintegrate no matter how much shear rein-
forcing is added. The reader can understand the presence of an upper limit if he or she thinks
for a little while about the concrete above the crack. The greater the shear in the member that
is transferred by the shear reinforcing to the concrete above, the greater will be the chance of
a combination shear and compression failure of that concrete.

4. Section 11.1.2 of the code states that the values of
√

f ′
c used for the design of web

reinforcing may not exceed 100 psi7 except for certain cases listed in Section 11.1.2.1. In
that section, permission is given to use a larger value for members having the minimum
reinforcing specified in ACI Sections 11.4.6.3, 11.4.6.4, and 11.5.5.2. Members meeting these
requirements for extra shear reinforcing have sufficient postcrack capacities to prevent diagonal
tension failures.

5. Section 12.13 of the code provides requirements about dimensions, development
lengths, and so forth. For stirrups to develop their design strengths, they must be adequately
anchored. Stirrups may be crossed by diagonal tension cracks at various points along their
depths. Since these cracks may cross very close to the tension or compression edges of the

6 It’s 2
3

√
f ′
c bw d in SI units.

7 It’s 25
3 MPa in SI units.
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members, the stirrups must be able to develop their yield strengths along the full extent of
their lengths. It can then be seen why they should be bent around longitudinal bars of greater
diameters than their own and extended beyond by adequate development lengths. Should there
be compression reinforcing, the hooking of the stirrups around them will help prevent them
from buckling.

Stirrups should be carried as close to the compression and tension faces of beams as the
specified cover and longitudinal reinforcing will permit. The ends of stirrup legs should ideally
have 135◦ or 180◦ hooks bent around longitudinal bars, with development lengths as specified
in ACI Sections 8.1 and 12.13. Detailed information on stirrups follows:

(a) Stirrups with 90◦ bends and 6db extensions at their free ends may be used for #5 and
smaller bars, as shown in Figure 8.7(a). Tests have shown that 90◦ bends with 6db
extensions should not be used for #6 or larger bars (unless fy is 40,000 psi or less)
because they tend to pop out under high loads.

(b) If fy is greater than 40,000 psi, #6, #7, and #8 bars with 90◦ bends may be used if the
extensions are 12db [see Figure 8.7(b)]. The reason for this specification is that it is
not possible to bend these higher-strength bars tightly around the longitudinal bars.

(c) Stirrups with 135◦ bends and 6db extensions may be used for #8 and smaller bars, as
shown in Figure 8.7(c).

6. When a beam reaction causes compression in the end of a member in the same
direction as the external shear, the shearing strength of that part of the member is increased.
Tests of such reinforced concrete members have shown that, in general, as long as a gradually
varying shear is present (as with a uniformly loaded member), the first crack will occur at
a distance d from the face of the support. It is therefore permissible, according to the code
(11.1.3.1), to decrease somewhat the calculated shearing force for a distance d from the face
of the support. This is done by using a Vu in that range equal to the calculated Vu at a distance
d from the face of the support. Should a concentrated load be applied in this region, no such

6db but not
less than 2 1

212db 12db6db6db

(a) 90° bends for #5
 and smaller stirrups
 (also for #6, #7, and
 #8 stirrups with
 fyt ≤ 40,000 psi)

(b) 90° bends for #6,
 #7, and #8 stirrups
 with fyt > 40,000 psi
 (135° or 180° 
 hooks preferred)

or

(c) 135° bends for
 #8 and smaller
 stirrups

Note: Fit stirrups as close to compression and tension surfaces as cover and other reinforcing permits.

in.

FI GU RE 8.7 Stirrup details.
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shear reduction is permitted. Such loads will be transmitted directly to the support above the
45◦ cracks, with the result that we are not permitted a reduction in the end shear for design
purposes.

Should the reaction tend to produce tension in this zone, no shear stress reduction is
permitted, because tests have shown that cracking may occur at the face of the support or
even inside it. Figure 8.8 shows two cases where the end shear reduction is not permitted. In
the situation shown in Figure 8.8(a), the critical section will be at the face of the support. In
Figure 8.8(b), an I-shaped section is shown, with the load applied to its tension flange. The
loads have to be transferred across the inclined crack before they reach the support. Another
crack problem like this one occurs in retaining wall footings and is discussed in Section 13.10
of this text.

7. Various tests of reinforced concrete beams of normal proportions with sufficient web
reinforcing have shown that shearing forces have no significant effect on the flexural capacities
of the beams. Experiments with deep beams, however, show that large shears will often keep
those members from developing their full flexural capacities. As a result, the code requirements
given in the preceding paragraphs are not applicable to beams whose clear spans divided by
their effective depths are less than four or for regions of beams that are loaded with concentrated
loads within a distance from the support equal to the member depth and that are loaded on
one face and supported on the opposite face. Such a situation permits the development of
compression struts between the loads and the supports. For such members as these, the code in
its Appendix A provides an alternate method of design, which is referred to as “strut and tie”
design. This method is briefly described in Appendix C of this text. Should the loads be applied
through the sides or bottom of such members, their shear design should be handled as it is for
ordinary beams. Members falling into this class include beams, short cantilevers, and corbels.
Corbels are brackets that project from the sides of columns and are used to support beams and
girders, as shown in Figure 8.9. They are quite commonly used in precast construction. Special
web reinforcing provisions are made for such members in Section 11.7 of the code and are
considered in Section 8.12 of this chapter.

8. Section 8.11.8 of the ACI Code permits a shear of 1.1Vc for the ribs of joist
construction, as where we have closely spaced T beams with tapered webs. For the 10%
increase in Vc , the joist proportions must meet the provisions of ACI Section 8.11. In ACI
Section 8.11.2, it is stated that the ribs must be no less than 4 in. wide, must have depths
not more than three and a half times the minimum width of the ribs, and may not have clear
spacings between the ribs greater than 30 in.

reaction

(a) (b)

load applied to
tension flange

crack
load

reaction

FI GU RE 8.8 Two situations where end shear reduction is not permitted.
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FI GU RE 8.9 Corbel supporting beam reaction.

8.10 Shear Design Example Problems
Example 8.1 illustrates the selection of a beam with a sufficiently large cross section so that no
web reinforcing is required. The resulting beam is unusually large. It is normally considered
much better practice to use appreciably smaller sections constructed with web reinforcing.
The reader should also realize that it is good construction practice to use some stirrups in
all reinforced concrete beams (even though they may not be required by shear) because they
enable the workers to build for each beam a cage of steel that can be conveniently handled.

Example 8.1

Determine the minimum cross section required for a rectangular beam from a shear standpoint
so that no web reinforcing is required by the ACI Code if Vu = 38 k and f ′

c = 4000 psi. Use the
conservative value of Vc = 2λ

√
f ′
cbwd.

SOLUTION

Shear strength provided by concrete is determined by the equation

φVc = (0.75)
[
2 (1.0) (

√
4000 psi )bwd

]
= 94.87bwd

But the ACI Code 11.4.6.1 states that a minimum area of shear reinforcement is to be
provided if Vu exceeds 1

2φVc

38,000 lb = 1
2

(
94.87bwd

)
bwd = 801.1 in.2

Use 24-in. × 36-in. beam (d = 33.5 in.)

The design of web reinforcing is illustrated by Examples 8.2 through 8.6. Maximum
vertical stirrup spacings have been given previously, whereas no comment has been made
about minimum spacings. Stirrups must be spaced far enough apart to permit the aggregate to
pass through, and, in addition, they must be reasonably few in number so as to keep within
reason the amount of labor involved in fabricating and placing them. Accordingly, minimum
spacings of 3 in. or 4 in. are normally used. Usually #3 stirrups are assumed, and if the
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calculated design spacings are less than d/4, larger-diameter stirrups can be used. Another
alternative is to use stirrups instead of  stirrups. Different diameter stirrups should not
be used in the same beam, or confusion will result.

As is illustrated in Examples 8.3, 8.5, and 8.6, it is quite convenient to draw the Vu
diagram and carefully label it with values of such items as φVc , φVc/2, and Vu at a distance
d from the face of the support and to show the dimensions involved.

Some designers place their first stirrup a distance of one-half of the end-calculated spacing
requirement from the face. Others put the first stirrup 2 in. or 3 in. from the support.

From a practical viewpoint, stirrups are usually spaced with center-to-center dimensions
that are multiples of 3 in. or 4 in. to simplify the fieldwork. Although this procedure may
require an additional stirrup or two, total costs should be less because of reduced labor costs.
A common field procedure is to place chalk marks at 2-ft intervals on the forms and to place
the stirrups by eye in between those marks. This practice is combined with a somewhat violent
placing of the heavy concrete in the forms, followed by vigorous vibration. These field practices
should clearly show the student that it is foolish to specify odd theoretical stirrup spacings
such as 4 @ 6 7

16 in. and 6 @ 5 3
8 in., because such careful positioning will not be achieved in

the actual members. Thus, the designer will normally specify stirrup spacings in multiples of
whole inches and perhaps in multiples of 3 in. or 4 in.

With available computer programs, it is easily possible to obtain theoretical arrangements
of stirrups with which the least total amounts of shear reinforcing will be required. The use
of such programs is certainly useful to the designer, but he or she needs to take the resulting
values and revise them into simple economical patterns with simple spacing arrangements—as
in multiples of 3 in., for example.

A summary of the steps required to design vertical stirrups is presented in Table 8.1. For
each step, the applicable section number of the code is provided. The authors have found this
to be a very useful table for students to refer to while designing stirrups.

TABLE 8.1 Summary of Steps Involved in Vertical Stirrup Design

Is Shear Reinforcing Necessary?

1. Draw Vu diagram. 11.1.3.1 and
Commentary
(R11.1.3.1)

2. Calculate Vu at a distance d from the support (with certain exceptions). 11.2.1.1

3. Calculate φVc = 2φλ
√

f ′
cbwd (or use the alternate method). 11.2.2.1

4. Stirrups are needed if Vu > 1
2 φVc (with some exceptions for slabs, footings,

shallow members, hollow-core units, steel fiber–reinforced beams, and joists).
11.4.6.1

Design of Stirrups

1. Calculate theoretical stirrup spacing, s = Avfytd/Vs where Vs = (Vu − φVc)/φ. 11.4.7.2

2. Determine maximum spacing to provide minimum area of shear reinforcement,
s = Avfyt/0.75

√
f ′
cbw but not more than Avfyt/50bw.

11.4.6.3

3. Compute maximum spacing: d/2 ≤ 24 in. if Vs ≤ 4
√

f ′
cbwd. 11.4.5.1

4. Compute maximum spacing: d/4 ≤ 12 in. if Vs > 4
√

f ′
cbwd. 11.4.5.3

5. Vs may not be > 8
√

f ′
cbwd. 11.4.7.9

6. Minimum practical spacing ≈ 3 in. or 4 in.
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Example 8.2

The beam shown in Figure 8.10 was selected using fy = 60,000 psi and f ′
c = 3000 psi, normal

weight. Determine the theoretical spacing of #3  stirrups for each of the following shears:

(a) Vu = 12,000 lb
(b) Vu = 40,000 lb
(c) Vu = 60,000 lb
(d) Vu = 150,000 lb

SOLUTION

(a) Vu = 12,000 lb (using λ = 1.0 for normal-weight concrete)

φVc = φ2λ
√

f ′
cbwd = (0.75) [2(1.0)

√
3000 psi](14 in.) (24 in.) = 27,605 lb

1
2

φVc = 13,803 lb > 12,000 lb ∴ Stirrups not required

(b) Vu = 40,000 lb

Stirrups needed because Vu >
1
2

φVc.

Theoretical spacing

φVc + φVs = Vu

Vs = Vu − φVc

φ
= 40,000 lb − 27,605 lb

0.75
= 16,527 lb

s = Avfytd

Vs
= (2) (0.11 in.2) (60,000 psi) (24 in.)

16,527 lb
= 19.17 in. ←

Maximum spacing to provide minimum Av

s = Avfyt

0.75
√

f ′
cbw

= (2) (0.11 in.2) (60,000 psi)

(0.75
√

3000 psi) (14 in.)
= 22.95 in.

s = Avfyt

50bw
= (2) (0.11 in.2) (60,000 psi)

(50) (14 in.)
= 18.86 in.

Vs = 16,527 lb < (4) (
√

3000 psi) (14 in.) (24 in.) = 73,614 lb

∴ Maximum s = d
2

= 12 in. s = 12.0 in.

14 in.

3 in.

27 in.
24 in.

FI GU RE 8.10 Beam cross section for Example 8.2.
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(c) Vu = 60,000 lb

Theoretical spacing

Vs = Vu − φVc

φ
= 60,000 lb − 27,605 lb

0.75
= 43,193 lb

s = Avfytd

Vs
= (2) (0.11 in.2) (60,000 psi) (24 in.)

43,193 lb
= 7.33 in. ←

Maximum spacing to provide minimum Av

s = Avfyt

0.75
√

f ′
cbw

= (2) (0.11 in.2) (60,000 psi)

(0.75
√

3000 psi) (14 in.)
= 22.95 in.

s = Avfyt

50bw
= (2) (0.11 in.2) (60,000 psi)

(50) (14 in.)
= 18.86 in.

Vs = 43,193 lb < (4) (
√

3000 psi) (14 in.) (24 in.) = 73,614 lb

∴ Maximum s = d
2

= 12 in. s = 7.33 in.

(d) Vu = 150,000 lb

Vs = 150,000 lb − 27,605 lb
0.75

= 163,193 lb

163,193 lb > (8) (
√

3000 psi) (14 in.) (24 in.) = 147,228 lb

Vs may not be taken > 8
√

f ′
cbwd

∴ Need larger beam and/or one with larger f ′
c value

Example 8.3

Select #3  stirrups for the beam shown in Figure 8.11, for which wD = 4 k/ft and wL = 6 k/ft.
f ′
c = 4000 psi, normal weight, and fyt = 60,000 psi.

SOLUTION

Vu at the face of the left support = (7 ft) (1.2 × 4 klf + 1.6 × 6 klf) = 100.8 k = 100,800 lb

Vu at a distance d from face of support =
(

84 in. − 22.5 in.
84 in.

)
(100,800 lb) = 73,800 lb

φVc = φ2λ
√

f ′
cbwd = (0.75) [2(1.0)

√
4000 psi] (15 in.) (22.5 in.) = 32,018 lb

These values are shown in Figure 8.12.

Vu = φVc + φVs

φVs = Vu − φVc = 73,800 lb − 32,018 lb = 41,782 lb

Vs = 41,782 lb
0.75

= 55,709 lb

Maximum spacing of stirrups = d/2 = 11.25 in., since Vs is < 4
√

f ′
cbwd = 85,382 lb. Maximum

theoretical spacing at left end

s = Avfytd

Vs
= (2) (0.11 in.2) (60,000 psi) (22.5 in.)

(55,709 lb)
= 5.33 in. ←
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12 in.

14 ft 0 in.

12 in.

15 in.

25 in.

2 – in.1
2

22 – in.1
2

FI GU RE 8.11 Given information for Example 8.3.

7 ft 0 in.

22     in. = 1.875 ft1 
2

φVc⏐2 = 16,0009 lb

FI GU RE 8.12 Shear diagram for Example 8.3.
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Maximum spacing to provide minimum Av of stirrups

s = Avfyt

0.75
√

f ′
cbw

= (2) (0.11 in.2) (60,000 psi)

(0.75
√

4000 psi) (15 in.)
= 18.55 in.

s = Avfyt

50bw
= (2) (0.11 in.2) (60,000 psi)

(50) (15 in.)
= 17.6 in.

At what location is s = 9 in. OK?

Vu = φVc + φVs = 32,018 lb + 0.75
[Avfyd

s

]

= 32,018 lb + (0.75) (2) (0.11 in.2) (60,000 psi) (22.5 in.)
9 in.

= 56,768 lb

Vu = 100,800 lb − 14,400x = 56,768 lb, x = 3.058 ft = 36.69 in.

Results of similar calculations that relate the value of x to stirrup spacing, s, are shown in
the table.

Distance from Face of Support (ft) Vu (lb) Vs = Vu − φVc

φ
(lb) Theoretical s = Av fyt d

Vs
(in.)

0 to d = 1.875 73,800 55,709 5.33

2 72,000 53,309 5.57

3 57,600 34,109 8.71

3.058 56,768 33,000 9

4 43,200 14,909 > Maximum of d/2 = 11.25

Spacings selected

1@ 2 in. = 2 in.

7 @ 5 in. = 35 in.

4 @ 9 in. = 36 in.

73 in. Symmetric about centerline

As previously mentioned, it is a good practice to space stirrups at multiples of 3 in. or
4 in. on center. As an illustration, it is quite reasonable to select for Example 8.3 the following
spacings: 1 @ 2 in., 7 @ 5 in., and 4 @ 9 in. In rounding off the spacings to multiples
of 3 in., it was necessary to exceed the theoretical spacings by a small amount near the end of
the beam. However, the values are quite close to the required ones, and the overall number of
stirrups used in the beam is more than adequate.

In Example 8.4, which follows, the value of Vc for the beam of Example 8.3 is computed
by the alternate method of Section 11.2.2.1 of the code.

Example 8.4

Compute the value of Vc at a distance 3 ft from the face of the left support of the beam of
Example 8.3 and Figure 8.11 by using ACI Equation 11-5.

Vc =
(

1.9λ
√

f ′
c + 2500ρw

Vud
Mu

)
bwd ≤ 3.5λ

√
f ′
cbwd
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SOLUTION

λ = 1.0 (normal-weight aggregate)

wu = (1.2) (4 klf) + (1.6) (6 klf) = 14.4 k/ft

Measuring x from the center of the left support, the value of x corresponding to 3 ft from the face
is 3.5 ft.

Vu = wul
2

− wux = (14.4 k/ft) (15ft)
2

− (14.4 k/ft)(x)

= 57.6 k (at x = 3.5 ft from center of the left support)

Mu = wulx
2

− wux2

2
= (14.4 k/ft) (15 ft) (3.5 ft)

2
− (14.4 k/ft) (3.5 ft)2

2

= (14.4 k/ft) (100.8 k) − (3 ft) (1.5 ft) (14.4 k/ft) = 289.8 ft-k

ρw = 5.06 in.2

(15 in.) (22.5 in.)
= 0.0150

Vud
Mu

= (57.6 k) (22.5 in.)
(12) (289.8 ft-k)

= 0.374 < 1.0

Vc = [1.9(1.0)
√

4000 psi + (2500) (0.0150) (0.374)] (15 in.) (22.5 in.)

= 45,290 lb < (3.5
√

4000 psi) (15 in.) (22.5 in.) = 74,709 lb

For the uniformly loaded beams considered up to this point, it has been assumed that both
dead and live loads extended from end to end of the spans. Although this practice will produce
the maximum Vu at the ends of simple spans, it will not produce maximums at interior points.
For such points, maximum shears will be obtained when the uniform live load is placed from
the point in question to the most distant end support. For Example 8.5, shear is determined at
the beam end (live load running for entire span) and then at the beam centerline (live load to
one side only), and a straight-line relationship is assumed in between. Although the ACI does
not specifically comment on the variable positioning of live load to produce maximum shears,
it certainly is their intent for engineers to position loads so as to maximize design shear forces.

Example 8.5

Select #3  stirrups for the beam of Example 8.3, assuming the live load is placed to produce
maximum shear at beam end and centerline.

SOLUTION

Maximum Vu at left end = (7 ft) (1.2 × 4 klf + 1.6 × 6 klf) = 110.8 k = 100,800 lb.
For maximum Vu at centerline, the live load is placed as shown in Figure 8.13.

Vu at centerline = 50,400 lb − (7 ft) (1.2 × 4 klf) = 16.8 k = 16,800 lb

Vc = 2(1.0) (
√

4000 psi) (15 in.) (22.5 in.) = 42,691 lb

Vu at a distance d from face of support = 78,300 lb as determined by proportions from
Figure 8.14.

Vu = φVc + φVs

φVs = Vu − φVc = 78,300 lb − (0.75) (42,691 lb) = 46,282 lb at left end

Vs = 46,282 lb
0.75

= 61,709 lb
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At what location is s = 9 in. OK?

Vu = φVc + φVs = 32,018 + 0.75
(Avfytd

s

)
= 32,016 + (0.75) (2) (0.11 in.2) (60,000 psi) (22.5 in.)

9 in.

= 56,768 lb

Vu = 100,800 − 12,000x = 56,768, x = 3.67 ft = 44.0 in.

Results of similar calculations that relate the value of x to stirrup spacing, s, are shown in the
table.

7 ft 0 in. 7 ft 0 in.

FI GU RE 8.13 Load arrangement for maximum shear at beam midspan.

22     in. = 1.88 ft1 
2

stirrups needed
to centerline

FI GU RE 8.14 Shear diagram for Example 8.5.
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The limiting spacings are the same as in Example 8.3. The theoretical spacings are given
in the following table:

Distance from Face
Theoretical Spacing

of Support (ft) Vu (lb) Vs = Vu − φVc

φ
(lb) Required s = Av fyt d

Vs
(in.)

0 to d = 1.875 78,300 61,709 4.81

2 76,800 59,709 4.97

2.638 69,143 49,500 6

3.67 56,768 33,000 9

5 40,800 11,709 > Maximum 11.25

One possible arrangement (#4 stirrups might be better)

1 @ 2 in. = 2 in.

8 @ 4 in. = 32 in.

2 @ 6 in. = 12 in.

5 @ 9 in. = 45 in.

91 in. > 84 in. Symmetrical about centerline

Example 8.6

Select spacings for #3  stirrups for a T beam with bw = 10 in. and d = 20 in. for the Vu diagram
shown in Figure 8.15, with fy = 60,000 psi and f ′

c = 3000 psi, normal-weight concrete.

SOLUTION

(with reference to Figure 8.16)
Vu at a distance d from face of support

= 44,000 lb +
(

72 in. − 20 in.
72 in.

)
(68,000 lb − 44,000 lb) = 61,333 lb

λ = 1.0 for normal-weight concrete

φVc = (0.75) [2(1.0)
√

3000 psi] (10 in.) (20 in.) = 16,432 lb

φVc

2
= 16,432 lb

2
= 8216 lb

Stirrups are needed for a distance = 72 in. +
(

24,000 lb − 8216 lb
24,000 lb

)
(72 in.) = 119.5 in.

Vs at left end (Vu − φVc)/φ = (61,333 lb − 16,432 lb)/0.75 = 59,868 lb, which is larger than
4
√

f ′
cbwd = (4

√
3000 psi) (10 in.) (20 in.) = 43,818 lb but less than 8

√
f ′
cbwd. Therefore, the maxi-

mum spacing of stirrups in that range is d/4 = 5 in.
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d = 20 in.

Vu = 61.33 k

6 ft 6 ft 6 ft 6 ft

FI GU RE 8.15 Shear diagram for Example 8.6.

no stirrups

needed

stirrups needed
to here

24    in.1 
2

24    in.1 
2

23 in.
52 in.

72 in.

d = 20 in.

72 in.

9 ft 11    in.1 
2

FI GU RE 8.16 More detailed shear diagram for Example 8.6.

Maximum spacing of stirrups = d/4 = 20/4 = 5 in. when Vs > 4
√

f ′
cbwd = (4

√
3000 psi)

(10 in.) (20 in.) = 43,818 lb. By proportions from the Vs column in the table, Vs falls to 43,818 lb
at approximately 4.66 ft, or 56 in., from the left end of the beam.

Maximum spacing permitted to provide minimum Av of stirrups is the smaller of the two
following values of s.

s = Avfyt

0.75
√

f ′
cbw

= (2) (0.11 in.2) (60,000 psi)

(0.75
√

3000 psi) (10 in.)
= 32.13 in.

s = Avfyt

50bw
= (2) (0.11 in.2) (60,000 psi)

(50) (10 in.)
= 26.4 in.
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20 in.
36 in.

72 in.
144 in.

s = 4.41 in.

s = 5.00 in.

s = 7.18 in.

s = 26.16 in.

smax =     = 5 in.d
2

smax =     = 10 in.d
2

FI GU RE 8.17 Detailed shear diagram for Example 8.6.

The theoretical spacings at various points in the beam are computed in the following table:

Distance from Face Maximum
Theoretical Spacing

of Support (ft) Vu (lb) Vs = Vu − φVc

φ
(lb) Required s = Av fyt d

Vs
(in.) Spacing (in.)

0 to d = 1.667 61,333 59,868 4.41 4.41

3 56,000 52,758 5.00 5.00

6− 44,000 36,757 7.18 5.00

6+ 24,000 10,091 26.16 10.00

A summary of the results of the preceding calculations is shown in Figure 8.17, where the
solid dark line represents the maximum stirrup spacings permitted by the code and the dashed
line represents the calculated theoretical spacings required for Vu − φVc.

From this information, the authors selected the following spacings:

1 @ 3 in. = 3 in.

17 @ 4 in. = 68 in.

5 @ 10 in. = 50 in.

121 in. Symmetrical about centerline

8.11 Economical Spacing of Stirrups
When stirrups are required in a reinforced concrete member, the code specifies maximum
permissible spacings varying from d/4 to d/2. However, it is usually thought that stirrup
spacings less than d/4 are rather uneconomical. Many designers use a maximum of three
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TABLE 8.2 Values for 60-ksi Stirrups

s φVs for #3 � Stirrups (k) φVs for #4 � Stirrups (k)

d/2 19.8 36

d/3 29.7 54

d/4 39.6 72

different spacings in a beam. These are d/4, d/3, and d/2. It is easily possible to derive a
value of φVs for each size and style of stirrups for each of these spacings.8

Note that the number of stirrups is equal to d/s and that if we use spacings of d/4, d/3,
and d/2 we can see that n equals 4, 3, or 2. Then the value of φVs can be calculated for any
particular spacing, size, and style of stirrup. For instance, for #3  stirrups spaced at d/2 with
φ = 0.75 and fy = 60 ksi,

φVs = φAv fyt d

s
= (0.75) (2 × 0.11 in.2) (60 ksi) (d)

d/2
= 19.8 k

The values shown in Table 8.2 were computed in this way for 60-ksi stirrups.
For an example using this table, reference is made to the beam and Vu diagram of

Example 8.3, which was shown in Figure 8.12 where 60-ksi #3  stirrups were selected for
a beam with a d of 22 1

2 in. For our closest spacing, d/4, we can calculate φVc + 39.6 k =
32.018 k + 39.6 k = 71.6 k. Similar calculations are made for d/3 and d/2 spacings, and we
obtain, respectively, 61.7 k and 51.8 k. The shear diagram is repeated in Figure 8.18, and the
preceding values are located on the diagram by proportions or by scaling.

2.72 ft

spacing:

73.8 k
φVc + 39.6 k = 71.6 k

φVc + 29.7 k = 61.7 k

φVc + 19.8 k = 51.8 k

φVc = 32.0 k

0.68 ft
2.49 ft

FI GU RE 8.18 Application of Table 8.2 to Example 8.3.

8 Neville, B. B., ed., 1984, Simplified Design Reinforced Concrete Buildings of Moderate Size and Height (Skokie, IL: Portland
Cement Association), pp. 3-12 to 3-16.
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From this information, we can see that we can use d/4 for the first 2.72 ft, d/3 for the
next 0.68 ft, and d/2 for the remaining 2.49 ft. Then the spacings are smoothed (preferably to
multiples of 3 in.). Also, for this particular beam, we would probably use the d/4 spacing on
through the 0.68-ft section and then use d/2 the rest of the required distance.

8.12 Shear Friction and Corbels
If a crack occurs in a reinforced concrete member (whether caused by shear, flexure, shrinkage,
etc.) and if the concrete pieces on opposite sides of the crack are prevented from moving apart,
there will be a great deal of resistance to slipping along the crack due to the rough and irregular
concrete surfaces. If reinforcement is provided across the crack to prevent relative displacement
along the crack, shear will be resisted by friction between the faces, by resistance to shearing
off of protruding portions of the concrete, and by dowel action of the reinforcing crossing the
crack. The transfer of shear under these circumstances is called shear friction.

Shear friction failures are most likely to occur in short, deep members subject to high
shears and small bending moments. These are the situations where the most nearly vertical
cracks will occur. If moment and shear are both large, diagonal tension cracks will occur
at rather large angles from the vertical. This situation has been discussed in Sections 8.1
through 8.11.

A short cantilever member having a ratio of clear span to depth (a/d) of 1.0 or less is
often called a bracket or corbel. One such member is shown in Figure 8.19. The shear friction
concept provides a convenient method for designing for cases where diagonal tension design is
not applicable. The most common locations where shear friction design is used are for brackets,
corbels, and precast connections, but it may also be applied to the interfaces between concretes
cast at different times, to the interfaces between concrete and steel sections, and so on.

When brackets or corbels or short, overhanging ends or precast connections support
heavy concentrated loads, they are subject to possible shear friction failures. The dashed lines
in Figure 8.19 show the probable locations of these failures. It will be noted that for the end-
bearing situations, the cracks tend to occur at angles of about 20◦ from the direction of the
force application.

Space is not taken in this chapter to provide an example of shear friction design, but a
few general remarks are presented. (In Section 12.13 of this text, a numerical shear friction

precast section

FI GU RE 8.19 Possible shear friction failures.
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example is presented in relation to the transfer of horizontal forces at the base of a column
to a footing.) It is first assumed that a crack has occurred, as shown by the dashed lines of
Figure 8.19. As slip begins to occur along the cracked surface, the roughness of the concrete
surfaces tends to cause the opposing faces of the concrete to separate.

As the concrete separates, it is resisted by the tensile reinforcement (Avf ) provided across
the crack. It is assumed that this steel is stretched until it yields. (An opening of the crack of
0.01 in. will probably be sufficient to develop the yield strength of the bars.) The clamping
force developed in the bars Avf fy will provide a frictional resistance equal to Avf fyμ, where μ

is the coefficient of friction (values of which are provided for different situations in Section
11.6.4.3 of the code).

Then the design shear strength of the member must at least equal the shear, to be taken
as

φVn = Vu = φAvf fyμ

The value of fy used in this equation cannot exceed 60 ksi, and the shear friction rein-
forcement across or perpendicular to the shear crack may be obtained by

Avf = Vu

φfyμ

This reinforcing should be appropriately placed along the shear plane. If there is no
calculated bending moment, the bars will be uniformly spaced. If there is a calculated moment,
it will be necessary to distribute the bars in the flexural tension area of the shear plane. The
bars must be anchored sufficiently on both sides of the crack to develop their yield strength
by means of embedment, hooks, headed bars, or other methods. Since space is often limited
in these situations, it is often necessary to weld the bars to special devices, such as crossbars
or steel angles. The bars should be anchored in confined concrete (i.e., column ties or external
concrete or other reinforcing shall be used).

When beams are supported on brackets or corbels, there may be a problem with shrinkage
and expansion of the beams, producing horizontal forces on the bracket or corbel. When such
forces are present, the bearing plate under the concentrated load should be welded down to
the tensile steel. Based on various tests, the ACI Code (11.8.3.4) says that the horizontal force
used must be at least equal to 0.2Vu unless special provisions are made to avoid tensile forces.

The presence of direct tension across a cracked surface obviously reduces the shear-
transfer strength. Thus direct compression will increase its strength. As a result, Section 11.6.7
of the code permits the use of a permanent compressive load to increase the shear friction
clamping force. A typical corbel design and its reinforcing are shown in Figure 8.20.

Enough concrete area must also be provided, and Section 11.6.5 of the code gives the
upper limits on the shear force, Vn , transferred across a shear-friction failure surface based on
concrete strength and contact area. For normal-weight concrete placed monolithically or placed
against intentionally roughened concrete, Vn cannot exceed the smaller of

Vn ≤ 0.2f ′
c Ac

≤ (480 + 0.08f ′
c)Ac

≤ 1600Ac

For all other cases,

Vn ≤ 0.2f ′
c Ac

≤ 800Ac

where Ac is the concrete contact area along the shear-friction failure surface. Units for these
equations are: Vn (lb), f ′

c (lb/in.2), and Ac(in.2).
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FI GU RE 8.20 Example of corbel.

8.13 Shear Strength of Members Subjected to Axial Forces
Reinforced concrete members subjected to shear forces can at the same time be loaded with
axial compression or axial tension forces due to wind, earthquake, gravity loads applied to
horizontal or inclined members, shrinkage in restrained members, and so on. These forces
can affect the shear design of our members. Compressive loads tend to prevent cracks from
developing. As a result, they provide members with larger compressive areas and thus greater
shear strengths. Tensile forces exaggerate cracks and reduce shear resistances because they will
decrease compression areas.

When we have appreciable axial compression, the following equation can be used to
compute the shear-carrying capacity of a concrete member:

Vc = 2

(
1 + Nu

2000Ag

)
λ
√

f ′
c bw d (ACI Equation 11-4)

For a member subjected to a significant axial tensile force, the shear capacity of the
concrete may be determined from the following expression:

Vc = 2

(
1 + Nu

500Ag

)
λ
√

f ′
c bw d (ACI Equation 11-8)

In this expression, Nu , the axial load, is minus if the load is tensile. You might note that
if the computed value of Nu/Ag for use in this equation is 500 psi or more, the concrete will
have lost its capacity to carry shear. (The value of Vc used need not be taken as less than zero.)

The SI values for ACI Equations 11-4 and 11-8 are, respectively,

Vc =
(

1 + Nu

14Ag

)(
λ
√

f ′
c

6

)
bw d

Vc =
(

1 + 0.3Nu

Ag

)(
λ
√

f ′
c

6

)
bw d
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Instead of using ACI Equation 11-4 to compute the shear capacity of sections subject to
axial compressive loads, ACI Equation 11-5 may be used. In this equation, a revised moment,
Mm , may be substituted for Mu at the section in question, and Vu d/Mu is not limited to
1.0 as it normally is. For this case, Vc may not be larger than the value obtained with ACI
Equation 11-7.

Vc =
(

1.9λ
√

f ′
c + 2500ρw

Vud

Mu

)
bw d ≤ 3.5λ

√
f ′
c bw d (ACI Equation 11-6)

Mm = Mu − Nu

(
4h − d

8

)
(ACI Equation 11-7)

Vc may not be > 3.5λ
√

f ′
c bw d

√
1 + Nu

500Ag
(ACI Equation 11-8)

In SI units, ACI Equation 11-5 is

Vc =
(

λ
√

f ′
c + 120ρw

Vud

Mu

)
bw d

7
≤ 0.3λ

√
f ′
c bw d

Equation 11-7 is

Vc = 0.3λ
√

f ′
c bw d

√
1 + 0.3Nu

Ag

Example 8.7, which follows, illustrates the computation of the shear strength of an axially
loaded concrete member.

Example 8.7

For the concrete section shown in Figure 8.21 for which f ′
c is 3000 psi, normal weight (λ = 1.0),

(a) Determine Vc if no axial load is present using ACI Equation 11-3.
(b) Compute Vc using ACI Equation 11-4 if the member is subjected to an axial compression

load of 12,000 lb.
(c) Repeat part (b) using revised ACI Equation 11-5. At the section in question, assume

Mu = 30 ft-k and Vu = 40 k. Use Mm in place of Mu.
(d) Compute Vc if the 12,000-lb load is tensile.

3 in.

14 in.

2 @ 4 in. = 8 in.

26 in.
23 in.

3 #9

3 in. 3 in.

FI GU RE 8.21 Beam cross section for Example 8.7.
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SOLUTION

(a) Vc = 2(1.0)
√

3000 psi (14 in.) (23 in.) = 35,273 lb

(b) Vc = 2
[

1 + 20,000 lb
(2000) (14 in.) (26 in.)

]
[(1.0)

√
3000 psi](14 in.) (23 in.) = 36,242 lb

< 3.5(1.0)
√

3000 psi(14 in.) (23 in.) = 61,728 lb

(c) Mm = (12 in/ft) (30,000 ft-lb) − 12,000 lb
(

4 × 26 in. − 23 in.
8

)
= 238,500 in-lb

Vud
Mm

= (40 k) (23 in.)
238.5 in-k

= 3.857 > 1.00, however, it is not limited to 1.0

Vc =
[

1.9 (1.0)
√

3000 psi + (2500)

(
3.00 in.2

(14 in.) (23 in.)

)
(3.857)

]
(14 in.) (23 in.)

= 62,437 lb

But not > 3.5(1.0)
√

3000 psi (14 in.) (23 in.)

√
1 + 12,000 lb

(500 psi) (14 in.) (26 in.)
= 63,731 lb OK

(d) Vc = 2
[

1 + −12,000 lb
(500) (14 in.) (26 in.)

]
[(1.0)

√
3000 psi(14 in.) (23 in.)]

= 32,950 lb

8.14 Shear Design Provisions for Deep Beams
There are some special shear design provisions given in Section 11.7 of the code for deep
flexural members with ln/d values equal to or less than four that are loaded on one face and
supported on the other face, so that compression struts can develop between the loads and the
supports. Such a member is shown in Figure 8.22(a). Some members falling into this class are
short, deep, heavily loaded beams; wall slabs under vertical loads; shear walls; and perhaps
floor slabs subjected to horizontal loads.

If the loads are applied through the sides or the bottom (as where beams are framing
into its sides or bottom) of the member, as illustrated in Figure 8.22(b) and (c), the usual
shear design provisions described earlier in this chapter are to be followed, whether or not the
member is deep.

FI GU RE 8.22 Deep beam configurations.
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The angles at which inclined cracks develop in deep flexural members (measured from
the vertical) are usually much smaller than 45◦—on some occasions being very nearly vertical.
As a result, web reinforcing when needed has to be more closely spaced than for beams of
regular depths. Furthermore, the web reinforcing needed is in the form of both horizontal and
vertical reinforcing. These almost vertical cracks indicate that the principal tensile forces are
primarily horizontal, and thus horizontal reinforcing is particularly effective in resisting them.

The detailed provisions of the code relating to shear design for deep beams, together
with the applicable ACI Section numbers, are as follows:

1. Deep beams are to be designed using the procedure described in Appendix A of the
code (Appendix C in this textbook) or by using a nonlinear analysis (ACI 11.7.2).

2. The nominal shear strength, Vn , for deep beams shall not exceed 10
√

f ′
c bw d (ACI 11.7.3).

3. The area of shear reinforcing, Av , perpendicular to the span must at least equal
0.0025 bw s, and s may not be greater than d/5 or 12 in. (ACI 11.7.4.1). s is the spacing
of the shear or torsion reinforcing measured in a direction parallel to the logitudinal
reinforcing.

4. The area of shear reinforcing parallel to the span must not be less than 0.0015bws2, and s2
may not be greater than d/5 or 12 in. (ACI 11.7.4.2). s2 is the spacing of shear reinforcing
measured in a direction perpendicular to the beam’s longitudinal reinforcement.

You will note that more vertical than horizontal shear reinforcing is required because
vertical reinforcing has been shown to be more effective than horizontal reinforcing. The
subject of deep beams is continued in Appendix C of this textbook.

8.15 Introductory Comments on Torsion
Until recent years, the safety factors required by design codes for proportioning members for
bending and shear were very large, and the resulting large members could almost always be
depended upon to resist all but the very largest torsional moments. Today, however, with the
smaller members selected using the strength design procedure, this is no longer true, and torsion
needs to be considered much more frequently.

Torsion may be very significant for curved beams, spiral staircases, beams that have large
loads applied laterally off center, and even spandrel beams running between exterior building
columns. These latter beams support the edges of floor slabs, floor beams, curtain walls, and
façades, and they are loaded laterally on one side. Several situations where torsion can be a
problem are shown in Figure 8.23.

When plain concrete members are subjected to pure torsion, they will crack along 45◦

spiral lines when the resulting diagonal tension exceeds the design strength of the concrete.
Although these diagonal tension stresses produced by twisting are very similar to those caused
by shear, they will occur on all faces of a member. As a result, they add to the stresses caused
by shear on one side of the beam and subtract from them on the other.

Reinforced concrete members subjected to large torsional forces may fail quite suddenly
if they are not provided with torsional reinforcing. The addition of torsional reinforcing does
not change the magnitude of the torsion that will cause diagonal cracks, but it does prevent
the members from tearing apart. As a result, they will be able to resist substantial torsional
moments without failure. Tests have shown that both longitudinal bars and closed stirrups
or spirals are necessary to intercept the numerous diagonal tension cracks that occur on all
surfaces of beams subject to appreciable torsional forces. There must be a longitudinal bar in
each corner of the stirrups to resist the horizontal components of the diagonal tension caused
by torsion. Chapter 15 of this text is completely devoted to torsion.
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(a) Rectangular beam
 with off-center load

(b) Inverted T beam supporting
 beam reactions

(c) Balcony beams

(d) Spandrel beam with torsion caused
 by floor beams

floor beam

floor beam
spandrel beam

FI GU RE 8.23 Some situations where torsion stresses may be significant.
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8.16 SI Example

Example 8.8

Determine required spacing of #10 stirrups at the left end of the beam shown in Figure 8.24
if f ′

c = 21 MPa, normal weight, and fy = 420 MPa.

338.4 kN

274.95 kN

= 171.85 kNVc

4.000 m

stirrups needed for 2.98 m
1.02 m

beam
centerline 

d = 
0.750 m

= 85.92 kN
2
Vc

concrete carries

SOLUTION

Vu @ left end = (4 m)(84.6 kN/m) = 338.4 kN

Vu @ a distance d from left end

= 338.4 kN −
(

750 mm
1000 mm

)
(84.6 kN/m) = 274.95 kN

φVc = (φ)

(
λ
√

f ′
c

6

)
bwd = (0.75)

[
(1.0) (

√
21 MPa)
6

]
(400 mm) (750 mm)

= 171 847 N = 171.85 kN

Vu = φVc + φVs

Vs = Vu − φVc

φ
= 274.95 kN − 171.85 kN

0.75
= 137.47 kN

Assuming #10 Stirrups

Theoretical s = Avfytd

Vs
= (2) (71 mm2) (420 MPa) (750 mm)

(137.47 kN) (103)
= 325 mm

Maximum s to provide minimum Av for stirrups

s = 3Avfyt

bw
= (3) (2 × 71 mm2) (420 MPa)

400 mm
= 447 mm (ACI Equation 11-13)
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Vs = 137.47 kN <
1
3

√
f ′
cbwd (From ACI metric Section 11.4.4.3)

= 1
3

√
21 MPa(400 mm) (750 mm) = 458,257 N = 458.26 kN OK

∴ Maximum s = d
2

= 700 mm
2

= 375 mm ←

Use s = 325 mm.

70 mm

400 mm

820 mm
750 mm

Wu = 84.6 kN/m

8 m

FI GU RE 8.24 Given information for Example 8.8.

8.17 Computer Example

Example 8.9

Repeat Example 8.2(c) using the Excel spreadsheet provided for Chapter 8.

SOLUTION

Open the spreadsheet and enter values in the cells highlighted in yellow (only in the Excel
spreadsheets, not the printed example). These include values for Vu, f ′

c,λ, bw, d, Av, and fyt. The
required stirrup spacing s is shown in cell C19 (s = 7.33 in.). Use good judgment to enter an
actual value for spacing in the cell (choose s). A value of choose s = 7.00 in. is shown. This value
must not exceed the calculated value of s as well as the ‘‘Controlling smax’’ listed a few cells. In
the cell labeled ‘‘Check φVc + φVs’’ is the shear capacity of the section with the actual stirrup
spacing you entered in ‘‘choose s.’’ It will exceed the input value of Vu if the design is OK. In this
case, the capacity is 61,548 lb, which exceeds Vu of 60,000 lb. Several warnings will appear if
your ‘‘choose s =’’ value is too large.
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Shear Design—Beams

Vu = 60,000 lb

f ′c = 3000 psi
1

bw = 14 in.
d = 24 in.

Av = 0.22 in.2

fyt =

φ Vc =

60,000 psi

0.75
Vc = 36,807 lb

27,605 lb

13,803 lb

Vs = (Vu –  φVc)⎪φ = 43,193 lb
-

Required φVs = 32,395 lb
s = 7.33 in.

choose s = 7.00 in. -

smax = 12 in. Code Section 11.4.5 -

Av min = 0.082 in.2 Code Eq. 11-13 -

smax = 22.95 in. also Code Eq. 11-13
Code Eq. 11-13 with 50 psi limitsmax = 18.86 in.

Controlling smax = 12.00 in.

Actual φVs = 33,943 lb
Check φVc – φVs = 61,548 lb

-

λ =

φ =

φ Vc =
1
2

P R O B L E M S

Problem 8.1 The ACI Code provides the following limiting
shear values for members subject only to shear and flexure:
2
√

f ′
c , 4
√

f ′
c , and 8

√
f ′
c . What is the significance of each of these

limits?

Problem 8.2 If the maximum shear force in a member occurs
at a support, the code permits the designer to calculate the shear
at a distance d from the face of the support in the presence of a
certain condition. Describe the situation when this reduced shear
may be used.

Problem 8.3 Why does the code limit the maximum design
yield stress that may be used in the design calculations for shear
reinforcing to 60,000 psi (not including welded wire fabric)?

Problem 8.4 What is shear friction and where is it most likely
to be considered in reinforced concrete design?

Shear Analysis
Problem 8.5 What is the design shear strength of the beam
shown if f ′

c = 4000 psi and fy = 60,000 psi? No shear
reinforcing is provided. (Ans. theoretical φVc = 31,876 lb,
φVc/2 = 15,938 lb controls)

24 in.
27 in.

14 in.

3 #8

3 in.

Problem 8.6 Repeat Problem 8.5 if the total depth of the
beam is 32 in. and f ′

c = 3000 psi.
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For Problems 8.7 to 8.9, compute φVn for the sections shown if
fyt of stirrups is 60 ksi and f ′

c = 4000 psi.

Problem 8.7 (Ans. 79,519 lb)

30 in.
27 in.

3 in.
18 in.

#3 stirrups
@ 8 in.

Problem 8.8

3 in.

12 in.

#3 stirrups
@ 10 in.

21 in.

4 in.

Problem 8.9 (Ans. 38,331 lb)

32 in.22 in.

16 in.

5 in.

#3 stirrups
@ 6 in.

5 in.

2    in.1 
2

2    in.1 
2

Shear Design

Problem 8.10 If f ′
c = 3000 psi, Vu = 60 k, and bw = 1

2 d ,
select a rectangular beam section if no web reinforcing is used.
Use sand-lightweight concrete. bw is an integer inch.

For Problems 8.11 to 8.19, for the beams and loads given, select stirrup spacings if f ′
c = 4000 psi normal-weight concrete and

fyt = 60,000 psi. The dead loads shown include beam weights. Do not consider movement of live loads unless specifically requested.
Assume #3  stirrups unless given otherwise.

Problem 8.11 (One ans. 1 @ 6 in., 10 @ 12 in.)

28 ft

15 in.
3 in.

27 in.
24 in.

wD = 1 k/ft
wL = 2 k/ft
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Problem 8.12

18 ft

12 in.
3 in.

27 in. 30 in.

4 #9

wD = 2 k/ft
wL = 4 k/ft

Problem 8.13 Repeat Problem 8.12 if live load positions are
considered to cause maximum end and centerline shear. (One
ans. 1 @ 4 in., 4 @ 8 in., 2 @ 10 in., 4 @ 13 in.)

Problem 8.14

6 ft 6 ft

PL = 20 k PL = 20 k

wD = 4 k/ft

6 ft

15 in.

28 in.

2    in.1 
2

25    in.1 
2

Problem 8.15 (One ans. 1 @ 6 in., 8 @ 12 in.)

12 ft 12 ft

24 ft
20 in. 3 in.

3 in.

38 in.
32 in.

PL = 30 k

1    in.1 
2

Problem 8.16 Use #4  stirrups.

14 ft

14 in.

27 in.24 in.

3 in.

4 #11
wD = 3 k/ft

PL = 20 k
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Problem 8.17 Use #4  stirrups. (One ans. 1 @ 3 in.,
8 @ 5 in., 2 @ 8 in., 5 @ 10 in.)

12 ft

14 in.

24 in.21 in.

3 in.

4 #10wD = 2 k/ft
wL = 4 k/ft

Problem 8.18

30 ft

10 in.

23 in.

4 in.
60 in.

27 in.

Problem 8.19 If the beam of Problem 8.14 has a factored axial
compression load of 120 k in addition to other loads, calculate
φVc and redesign the stirrups. (One ans. 3 stirrups, 1 @ 4 in.,
3 @ 10 in., 4 @ 12 in.)

Problem 8.20 Repeat Problem 8.19 if the axial load is tensile.
Use #4  stirrups.

For Problems 8.21 and 8.22, repeat the problems given using the
Chapter 8 Excel spreadsheet.

Problem 8.21 If Vu = 56,400 lb at a particular section,
determine the theoretical spacing of #3  stirrups for the beam
of Problem 8.11. (Ans. Theoretical s = 10.68 in., use
maximum = 10 in.)

Problem 8.22 If Vu = equals 79,600 lb at a particular section,
determine the spacing of #4  stirrups for the beam of Problem
8.12.

Problem 8.23 Prepare a flowchart for the design of stirrups
for rectangular T or I beams.
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Problems in SI Units

For Problems 8.24 to 8.26, for the beams and loads given, select stirrup spacings if f ′
c = 21 MPa and fyt = 420 MPa. The dead

loads shown include beam weights. Do not consider movement of live loads. Use #10  stirrups.

Problem 8.24

Problem 8.25 (One ans. #10 stirrups, 1 @ 100 mm, 13 @ 300 mm)

Problem 8.26
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CHAPTER 9Introduction to Columns

9.1 General
This chapter presents an introductory discussion of reinforced concrete columns, with particular
emphasis on short, stocky columns subjected to small bending moments. Such columns are
often said to be “axially loaded.” Short, stocky columns with large bending moments are
discussed in Chapter 10, while long or slender columns are considered in Chapter 11.

Concrete columns can be roughly divided into the following three categories:

Short compression blocks or pedestals—If the height of an upright compression member is less
than three times its least lateral dimensions, it may be considered to be a pedestal. The ACI
(2.2 and 10.14) states that a pedestal may be designed with unreinforced or plain concrete
with a maximum design compressive stress equal to 0.85φf ′

c , where φ is 0.65. Should the
total load applied to the member be larger than 0.85φf ′

cAg, it will be necessary either to
enlarge the cross-sectional area of the pedestal or to design it as a reinforced concrete
column, as described in Section 9.9 of this chapter.

Short reinforced concrete columns—Should a reinforced concrete column fail due to initial
material failure, it is classified as a short column. The load that it can support is controlled by
the dimensions of the cross section and the strength of the materials of which it is constructed.
We think of a short column as being a rather stocky member with little flexibility.

Long or slender reinforced concrete columns—As columns become more slender, bending
deformations will increase, as will the resulting secondary moments. If these moments are
of such magnitude as to significantly reduce the axial load capacities of columns, those
columns are referred to as being long or slender.

When a column is subjected to primary moments (those moments caused by applied
loads, joint rotations, etc.), the axis of the member will deflect laterally, with the result that
additional moments equal to the column load times the lateral deflection will be applied to the
column. These latter moments are called secondary moments or P� moments and are illustrated
in Figure 9.1.

A column that has large secondary moments is said to be a slender column, and it is
necessary to size its cross section for the sum of both the primary and secondary moments.
The ACI’s intent is to permit columns to be designed as short columns if the secondary or
P� effect does not reduce their strength by more than 5%. Effective slenderness ratios are
described and evaluated in Chapter 11 and are used to classify columns as being short or
slender. When the ratios are larger than certain values (depending on whether the columns are
braced or unbraced laterally), they are classified as slender columns.

The effects of slenderness can be neglected in about 40% of all unbraced columns and
about 90% of those braced against sidesway.1 These percentages are probably decreasing year
by year, however, due to the increasing use of slenderer columns designed by the strength
method, using stronger materials and with a better understanding of column buckling behavior.

1 Portland Cement Association, 2005, Notes on ACI 318-05. Building Code Requirements for Structural Concrete (Skokie, IL),
p. 11-3.

263
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secondary moment = PΔ

FI GU RE 9.1 Secondary or P� moment.

9.2 Types of Columns
A plain concrete column can support very little load, but its load-carrying capacity will be
greatly increased if longitudinal bars are added. Further substantial strength increases may
be made by providing lateral restraint for these longitudinal bars. Under compressive loads,
columns tend not only to shorten lengthwise but also to expand laterally due to the Poisson
effect. The capacity of such members can be greatly increased by providing lateral restraint
in the form of closely spaced closed ties or helical spirals wrapped around the longitudinal
reinforcing.

Reinforced concrete columns are referred to as tied or spiral columns, depending on the
method used for laterally bracing or holding the bars in place. If the column has a series of
closed ties, as shown in Figure 9.2(a), it is referred to as a tied column. These ties are effective
in increasing the column strength. They prevent the longitudinal bars from being displaced
during construction, and they resist the tendency of the same bars to buckle outward under
load, which would cause the outer concrete cover to break or spall off. Tied columns are
ordinarily square or rectangular, but they can be octagonal, round, L shaped, and so forth.

The square and rectangular shapes are commonly used because of the simplicity of
constructing the forms. Sometimes, however, when they are used in open spaces, circular
shapes are very attractive. The forms for round columns are often made from cardboard or
plastic tubes, which are peeled off and discarded once the concrete has sufficiently hardened.

If a continuous helical spiral made from bars or heavy wire is wrapped around the lon-
gitudinal bars, as shown in Figure 9.2(b), the column is referred to as a spiral column. Spirals
are even more effective than ties in increasing a column’s strength. The closely spaced spirals
do a better job of holding the longitudinal bars in place, and they also confine the concrete
inside and greatly increase its resistance to axial compression. As the concrete inside the spi-
ral tends to spread out laterally under the compressive load, the spiral that restrains it is put
into hoop tension, and the column will not fail until the spiral yields or breaks, permitting
the bursting of the concrete inside. Spiral columns are normally round, but they also can be
made into rectangular, octagonal, or other shapes. For such columns, circular arrangements
of the bars are still used. Spirals, though adding to the resilience of columns, appreciably
increase costs. As a result, they are usually used only for large heavily loaded columns
and for columns in seismic areas due to their considerable resistance to earthquake loadings.
(In nonseismic zones, probably more than 9 out of 10 existing reinforced concrete columns
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(a) Tied column (b) Spiral column

(c) Composite column (d) Composite column

structural
steel pipe

concrete

spiral

core

shell

longitudinal
bars

ties

FI GU RE 9.2 Types of columns.
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are tied.) Spirals very effectively increase the ductility and toughness of columns, but they are
much more expensive than ties.

Composite columns, illustrated in Figure 9.2(c) and (d), are concrete columns that are
reinforced longitudinally by structural steel shapes, which may or may not be surrounded
by structural steel bars, or they may consist of structural steel tubing filled with concrete
(commonly called lally columns).

9.3 Axial Load Capacity of Columns
In actual practice, there are no perfect axially loaded columns, but a discussion of such members
provides an excellent starting point for explaining the theory involved in designing real columns
with their eccentric loads. Several basic ideas can be explained for purely axially loaded
columns, and the strengths obtained provide upper theoretical limits that can be clearly verified
with actual tests.

It has been known for several decades that the stresses in the concrete and the reinforcing
bars of a column supporting a long-term load cannot be calculated with any degree of accuracy.
You might think that such stresses could be determined by multiplying the strains by the
appropriate moduli of elasticity. But this idea does not work too well practically because the
modulus of elasticity of the concrete is changing during loading due to creep and shrinkage.
Thus, the parts of the load carried by the concrete and the steel vary with the magnitude and
duration of the loads. For instance, the larger the percentage of dead loads and the longer they
are applied, the greater the creep in the concrete and the larger the percentage of load carried
by the reinforcement.

Though stresses cannot be predicted in columns in the elastic range with any degree
of accuracy, several decades of testing have shown that the ultimate strength of columns can
be estimated very well. Furthermore, it has been shown that the proportions of live and dead
loads, the length of loading, and other such factors have little effect on the ultimate strength.
It does not even matter whether the concrete or the steel approaches its ultimate strength first.
If one of the two materials is stressed close to its ultimate strength, its large deformations will
cause the stress to increase quicker in the other material.

For these reasons, only the ultimate strength of columns is considered here. At failure, the
theoretical ultimate strength or nominal strength of a short axially loaded column is quite accu-
rately determined by the expression that follows, in which Ag is the gross concrete area and Ast
is the total cross-sectional area of longitudinal reinforcement, including bars and steel shapes:

Pn = 0.85f ′
c(Ag − Ast) + fyAst

9.4 Failure of Tied and Spiral Columns
Should a short, tied column be loaded until it fails, parts of the shell or covering concrete will
spall off and, unless the ties are quite closely spaced, the longitudinal bars will buckle almost
immediately, as their lateral support (the covering concrete) is gone. Such failures may often
be quite sudden, and apparently they have occurred rather frequently in structures subjected to
earthquake loadings.

When spiral columns are loaded to failure, the situation is quite different. The covering
concrete or shell will spall off, but the core will continue to stand, and if the spiral is closely
spaced, the core will be able to resist an appreciable amount of additional load beyond the load
that causes spalling. The closely spaced loops of the spiral, together with the longitudinal bars,
form a cage that very effectively confines the concrete. As a result, the spalling off of the shell of
a spiral column provides a warning that failure is going to occur if the load is further increased.

American practice is to neglect any excess capacity after the shell spalls off, since it
is felt that once the spalling occurs, the column will no longer be useful—at least from the
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viewpoint of the occupants of the building. For this reason, the spiral is designed so that it is
just a little stronger than the shell that is assumed to spall off. The spalling gives a warning of
impending failure, and then the column will take a little more load before it fails. Designing
the spiral so that it is just a little stronger than the shell does not increase the column’s ultimate
strength much, but it does result in a more gradual or ductile failure.

The strength of the shell is given by the following expression, where Ac is the area of
the core, which is considered to have a diameter that extends from out to out of the spiral:

Shell strength = 0.85f ′
c(Ag − Ac)

By considering the estimated hoop tension that is produced in spirals due to the lateral
pressure from the core and by tests, it can be shown that spiral steel is at least twice as effective
in increasing the ultimate column capacity as is longitudinal steel.2,3 Therefore, the strength
of the spiral can be computed approximately by the following expression, in which ρs is the
percentage of spiral steel:

Spiral strength = 2ρsAc fyt

Equating these expressions and solving for the required percentage of spiral steel, we
obtain

0.85f ′
c(Ag − Ac) = 2ρsAc fyt

ρs = 0.425
(Ag − Ac)f

′
c

Ac fyt
= 0.425

(
Ag

Ac
− 1

)
f ′

c

fyt

To make the spiral a little stronger than the spalled concrete, the code (10.9.3) specifies
the minimum spiral percentage with the expression to follow, in which fyt is the specified yield
strength of the spiral reinforcement up to 100,000 psi.

ρs = 0.45

(
Ag

Ac
− 1

)
f ′

c

fyt
(ACI Equation 10-5)

Once the required percentage of spiral steel is determined, the spiral may be selected
with the expression to follow, in which ρs is written in terms of the volume of the steel in one
loop:

ρs = volume of spiral in one loop

volume of concrete core for a pitch s

= Vspiral

Vcore

= asπ(Dc − db)

(πD2
c /4)s

= 4as(Dc − db)

sD2
c

In this expression, as is the cross-sectional area of the spiral bar, Dc is the diameter of the core
out to out of the spiral, and db is the diameter of the spiral bar (see Figure 9.3). The designer
can assume a diameter for the spiral bar and solve for the pitch required. If the results do
not seem reasonable, he or she can try another diameter. The pitch used must be within the
limitations listed in the next section of this chapter. Actually, Table A.14 (see Appendix A),
which is based on this expression, permits the designer to select spirals directly.

2 Park, A., and Paulay, T., 1975, Reinforced Concrete Structures (Hoboken, NJ: John Wiley & Sons), pp. 25, 119–121.
3 Considere, A., 1902, “Compressive Resistance of Concrete Steel and Hooped Concrete, Part I,” Engineering Record,
December 20, pp. 581–583; “Part II,” December 27, pp. 605–606.
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FI GU RE 9.3 Drawing showing column spiral terms.
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Columns and hammerhead cap forms for the Gandy Bridge, Tampa, Florida.

9.5 Code Requirements for Cast-in-Place Columns
The ACI Code specifies quite a few limitations on the dimensions, reinforcing, lateral restraint,
and other items pertaining to concrete columns. Some of the most important limitations are as
follows.

1. The percentage of longitudinal reinforcement may not be less than 1% of the gross
cross-sectional area of a column (ACI Code 10.9.1). It is felt that if the amount of steel
is less than 1%, there is a distinct possibility of a sudden nonductile failure, as might
occur in a plain concrete column. The 1% minimum steel value will also lessen creep
and shrinkage and provide some bending strength for the column. Actually, the code
(10.8.4) does permit the use of less than 1% steel if the column has been made larger
than is necessary to carry the loads because of architectural or other reasons. In other
words, a column can be designed with 1% longitudinal steel to support the factored load,
and then more concrete can be added with no increase in reinforcing and no increase
in calculated load-carrying capacity. In actual practice, the steel percentage for such
members is kept to an absolute minimum of 0.005.

2. The maximum percentage of steel may not be greater than 8% of the gross cross-sectional
area of the column (ACI Code 10.9.1). This maximum value is given to prevent too
much crowding of the bars. Practically, it is rather difficult to fit more than 4% or 5%
steel into the forms and still get the concrete down into the forms and around the bars.
When the percentage of steel is high, the chances of having honeycomb in the concrete is
decidedly increased. If this happens, there can be a substantial reduction in the column’s
load-carrying capacity. Usually the percentage of reinforcement should not exceed 4%
when the bars are to be lap spliced. It is to be remembered that if the percentage of steel
is very high, the bars may be bundled.

3. The minimum numbers of longitudinal bars permissible for compression members (ACI
Code 10.9.2) are as follows: four for bars within rectangular or circular ties, three for
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bars within triangular-shaped ties, and six for bars enclosed within spirals. Should there
be fewer than eight bars in a circular arrangement, the orientation of the bars will affect
the moment strength of eccentrically loaded columns. This matter should be considered
in design according to the ACI Commentary (R10.9.2).

4. The code does not directly provide a minimum column cross-sectional area, but it is
obvious that minimum widths or diameters of about 8 in. to 10 in. are necessary to
provide the necessary cover outside of ties or spirals and to provide the necessary
clearance between longitudinal bars from one face of the column to the other. To use
as little rentable floor space as possible, small columns are frequently desirable. In fact,
thin columns may often be enclosed or “hidden” in walls.

5. When tied columns are used, the ties shall not be less than #3, provided that the lon-
gitudinal bars are #10 or smaller. The minimum size is #4 for longitudinal bars larger
than #10 and for bundled bars. Deformed wire or welded wire fabric with an equivalent
area may also be used (ACI 7.10.5.1).

In SI units, ties should not be less than #10 for longitudinal bars #32 or smaller
and #13 for larger longitudinal bars.

The center-to-center spacing of ties shall not be more than 16 times the diameter
of the longitudinal bars, 48 times the diameter of the ties, or the least lateral dimension
of the column. The ties must be arranged so that every corner and alternate longitudinal
bar will have lateral support provided by the corner of a tie having an included angle
not greater than 135◦. No bars can be located a greater distance than 6 in. clear4 on
either side from such a laterally supported bar. These requirements are given by the
ACI Code in its Section 7.10.5. Figure 9.4 shows tie arrangements for several column
cross sections. Some of the arrangements with interior ties, such as the ones shown in
the bottom two rows of the figure, are rather expensive. Should longitudinal bars be
arranged in a circle, round ties may be placed around them and the bars do not have to
be individually tied or restrained otherwise (7.10.5.3). The ACI also states (7.10.3) that
the requirements for lateral ties may be waived if tests and structural analysis show that
the columns are sufficiently strong without them and that such construction is feasible.

There is little evidence available concerning the behavior of spliced bars and bun-
dled bars. For this reason, Section R7.10.5 of the commentary states that it is advisable
to provide ties at each end of lap spliced bars and presents recommendations concerning
the placing of ties in the region of end-bearing splices and offset bent bars.

Ties should not be placed more than one-half a spacing above the top of a footing
or slab and not more than one-half a spacing below the lowest reinforcing in a slab or
drop panel (to see a drop panel, refer to Figure 16.1 in Chapter 16). Where beams frame
into a column from all four directions, the last tie may be below the lowest reinforcing
in any of the beams.

6. The code (7.10.4) states that spirals may not have diameters less than 3
8 in.[5] and that

the clear spacing between them may not be less than 1 in. or greater than 3 in.[6]

Should splices be necessary in spirals, they are to be provided by welding or by lapping
deformed uncoated spiral bars or wires by the larger of 48 diameters or 12 in.[7] Other

4 150 mm in SI.
5 10 mm in SI.
6 25 mm and 75 mm in SI.
7 300 mm in SI.
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6 in. max 6 in. max 6 in. max
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> 6 in.

> 6 in.

> 6 in.

6 in. max

6 in. max

> 6 in. > 6 in.> 6 in. > 6 in.> 6 in. > 6 in.

FI GU RE 9.4 Typical tie arrangements.

lap splice lengths are also given in ACI Section 7.10.4 for plain uncoated bars and
wires, for epoxy-coated deformed bars and wires, and so on. Special spacer bars may
be used to hold the spirals in place and at the desired pitch until the concrete hardens.
These spacers consist of vertical bars with small hooks. Spirals are supported by the
spacers, not by the longitudinal bars. Section R7.10.4 of the ACI Commentary provides
suggested numbers of spacers required for different-size columns.

7. The ACI 318 Code (Section 7.10.5.4) states that where longitudinal bars are located
around the perimeter of a circle, a complete circular tie is permitted. The ends of the
circular tie must overlap by not less than 6 in. and terminate with standard hooks that
engage a longitudinal column bar. Overlaps at ends of adjacent circular ties shall be stag-
gered around the perimeter enclosing the longitudinal bars. The code commentary for
this provision warns that vertical splitting and loss of tie restraint are possible where the
overlapped ends of adjacent circular ties are anchored at a single longitudinal bar. Adja-
cent circular ties should not engage the same longitudinal bar with end hook anchorages.
While the transverse reinforcement in members with longitudinal bars located around
the periphery of a circle can be either spirals or circular ties, spirals are usually more
effective.

9.6 Safety Provisions for Columns
The values of φ to be used for columns as specified in Section 9.3.2 of the code are well below
those used for flexure and shear (0.90 and 0.75, respectively). A value of 0.65 is specified for
tied columns and 0.75 for spiral columns. A slightly larger φ is specified for spiral columns
because of their greater toughness.
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The failure of a column is generally a more severe matter than is the failure of a beam,
because a column generally supports a larger part of a structure than does a beam. In other
words, if a column fails in a building, a larger part of the building will fall down than if a
beam fails. This is particularly true for a lower-level column in a multistory building. As a
result, lower φ values are desirable for columns.

There are other reasons for using lower φ values in columns. As an example, it is more
difficult to do as good a job in placing the concrete for a column than it is for a beam. The
reader can readily see the difficulty of getting concrete down into narrow column forms and
between the longitudinal and lateral reinforcing. As a result, the quality of the resulting concrete
columns is probably not as good as that of beams and slabs.

The failure strength of a beam is normally dependent on the yield stress of the tensile
steel—a property that is quite accurately controlled in the steel mills. The failure strength of a
column is closely related to the concrete’s ultimate strength, a value that is quite variable. The
length factors also drastically affect the strength of columns and thus make the use of lower φ

factors necessary.
It seems impossible for a column to be perfectly axially loaded. Even if loads could

be perfectly centered at one time, they would not stay in place. Furthermore, columns may
be initially crooked or have other flaws, with the result that lateral bending will occur. Wind
and other lateral loads cause columns to bend, and the columns in rigid-frame buildings are
subjected to moments when the frame is supporting gravity loads alone.

9.7 Design Formulas
In the pages that follow, the letter e is used to represent the eccentricity of the load. The reader
may not understand this term because he or she has analyzed a structure and has computed
an axial load, Pu, and a bending moment, Mu, but no specific eccentricity, e, for a particular
column. The term e represents the distance the axial load, Pu, would have to be off center of
the column to produce Mu. Thus

Pu e = Mu

or

e = Mu

Pu

Nonetheless, there are many situations where there are no calculated moments for the
columns of a structure. For many years, the code specified that such columns had to be
designed for certain minimum moments even though no calculated moments were present.
This was accomplished by requiring designers to assume certain minimum eccentricities for
their column loads. These minimum values were 1 in. or 0.05h, whichever was larger, for
spiral columns and 1 in. or 0.10h for tied columns. (The term h represents the outside diameter
of round columns or the total depth of square or rectangular columns.) A moment equal to the
axial load times the minimum eccentricity was used for design.

In today’s code, minimum eccentricities are not specified, but the same objective is
accomplished by requiring that theoretical axial load capacities be multiplied by a factor some-
times called α, which is equal to 0.85 for spiral columns and 0.80 for tied columns. Thus, as
shown in Section 10.3.6 of the code, the axial load capacity of columns may not be greater
than the following values:

For spiral columns (φ = 0.75)

φPn(max) = 0.85φ[0.85f ′
c(Ag − Ast) + fy Ast ] (ACI Equation 10-1)
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For tied columns (φ = 0.65)

φPn (max) = 0.80φ[0.85f ′
c(Ag − Ast) + fy Ast ] (ACI Equation 10-2)

It is to be clearly understood that the preceding expressions are to be used only when the
moment is quite small or when there is no calculated moment.

The equations presented here are applicable only for situations where the moment is
sufficiently small so that e is less than 0.10h for tied columns or less than 0.05h for spiral
columns. Short columns can be completely designed with these expressions as long as the e
values are under the limits described. Should the e values be greater than the limiting values
and/or should the columns be classified as long ones, it will be necessary to use the procedures
described in the next two chapters.

9.8 Comments on Economical Column Design
Reinforcing bars are quite expensive, and thus the percentage of longitudinal reinforcing used
in reinforced concrete columns is a major factor in their total costs. This means that under
normal circumstances, a small percentage of steel should be used (perhaps in the range of
1.5% to 3%). This can be accomplished by using larger column sizes and/or higher-strength
concretes. Furthermore, if the percentage of bars is kept in approximately this range, it will be
found that there will be sufficient room for conveniently placing them in the columns.

Higher-strength concretes can be used more economically in columns than in beams.
Under ordinary loads, only 30% to 40% of a beam cross section is in compression, while the
remaining 60% to 70% is in tension and thus assumed to be cracked. This means that if a
high-strength concrete is used for a beam, 60% to 70% of it is wasted. For the usual column,
however, the situation is quite different because a much larger percentage of its cross section is
in compression. As a result, it is quite economical to use high-strength concretes for columns.
Although some designers have used concretes with ultimate strengths as high as 19,000 psi
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(as at Two Union Square in Seattle) for column design with apparent economy, the use
of 5000-psi to 6000-psi columns is the normal rule when higher strengths are specified for
columns.

Grade 60 reinforcing bars are generally used for best economy in the columns of most
structures. However, Grade 75 bars may provide better economy in high-rise structures, par-
ticularly when they are used in combination with higher-strength concretes.

In general, tied columns are more economical than spiral columns, particularly if square
or rectangular cross sections are to be used. Of course, spiral columns, high-strength concretes,
and high percentages of steel save floor space.

As few different column sizes as possible should be used throughout a building. In this
regard, it is completely uneconomical to vary a column size from floor to floor to satisfy the
different loads it must support. This means that the designer may select a column size for the
top floor of a multistory building (using as small a percentage of steel as possible) and then
continue to use that same size vertically for as many stories as possible, by increasing the steel
percentage floor by floor as required. Furthermore, it is desirable to use the same column size
as much as possible on each floor level. This consistency of sizes will provide appreciable
savings in labor costs.

The usual practice for the columns of multistory reinforced concrete buildings is to
use one-story-length vertical bars tied together in preassembled cages. This is the preferred
procedure when the bars are #11[8] or smaller, where all the bars can be spliced at one location
just above the floor line. For columns where staggered splice locations are required (as for
larger-size bars), the number of splices can be reduced by using preassembled two-story cages
of reinforcing.

Unless the least column dimensions or longitudinal bar diameters control tie spacings, the
selection of the largest practical tie sizes will increase their spacings and reduce their number.
This can result in some savings. Money can also be saved by avoiding interior ties, such as
the ones shown in the bottom two rows of columns in Figure 9.4. With no interior ties, the
concrete can be placed more easily and lower slumps used (thus lower-cost concrete).

In fairly short buildings, the floor slabs are often rather thin, and thus deflections may
be a problem. As a result, rather short spans and thus close column spacings may be used. As
buildings become taller, the floor slabs will probably be thicker to help provide lateral stability.
For such buildings, slab deflections will not be as much of a problem, and the columns may
be spaced farther apart.

Even though the columns in tall buildings may be spaced at fairly large intervals, they
still will occupy expensive floor space. For this reason, designers try to place many of their
columns on the building perimeters so they will not use up the valuable interior space. In
addition, the omission of interior columns provides more flexibility for the users for placement
of partitions and also makes large open spaces available.

9.9 Design of Axially Loaded Columns
As a brief introduction to columns, the design of three axially loaded short columns is presented
in this section and the next. Moment and length effects are completely neglected. Examples
9.1 and 9.3 present the design of axially loaded square tied columns, while Example 9.2
illustrates the design of a similarly loaded round spiral column. Table A.15 in Appendix
A provides several properties for circular columns that are particularly useful for designing
round columns.

8 #36 in SI.
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Example 9.1

Design a square tied column to support an axial dead load D of 130 k and an axial live load L of
180 k. Initially assume that 2% longitudinal steel is desired, f ′

c = 4000 psi, and fy = 60,000 psi.

SOLUTION

Pu = (1.2) (130 k) + (1.6) (180 k) = 444 k

Selecting Column Dimensions

φPn = φ0.80[0.85f ′
c(Ag − Ast) + fyAst] (ACI Equation 10-2)

444 = (0.65) (0.80) [(0.85) (4 ksi) (Ag − 0.02Ag) + (60 ksi) (0.02Ag)]

Ag = 188.40 in.2 Use 14 in. × 14 in. (Ag = 196 in.2)

Selecting Longitudinal Bars

Substituting into column equation with known Ag and solving for Ast, we obtain from ACI
Equation 10-2,

444 = (0.65) (0.80) [(0.85) (4 ksi) (196 in.2 − Ast) + (60 ksi)Ast]

Ast = 3.31 in.2 Use 6 #7 bars (3.61 in.2)

Design of Ties (Assuming #3 Bars)

Spacing:

(a) 48 in. × 3
8 in. = 18 in.

(b) 16 in. × 7
8 in. = 14 in. ←

(c) Least dim. = 14 in. ← Use #3 ties @ 14 in.

A sketch of the column cross section is shown in Figure 9.5.

2    in.1
2

2    in.1
2

2    in.1
2

2    in.1
2

9 in.
14 in.

14 in.

9 in.

FI GU RE 9.5 Final column cross section for Example 9.1.
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Check Code Requirements

Following are the ACI Code limitations for columns. Space is not taken in future examples to
show all of these essential checks, but they must be made.

(7.6.1) Longitudinal bar clear spacing = 9
2 in. − 7

8 in. = 3.625 in. > 1 in. and db of 7
8 in. OK

(10.9.1) Steel percentage 0.01 < ρ = 3.61
(14 in.) (14 in.)

= 0.0184 < 0.08 OK

(10.9.2) Number of bars = 6 > min. no. of 4 OK

(7.10.5.1) Minimum tie size = # 3 for #7 bars OK

(7.10.5.2) Spacing of ties OK

(7.10.5.3) Arrangement of ties OK

Example 9.2

Design a round spiral column to support an axial dead load PD of 240 k and an axial live load PL
of 300 k. Initially assume that approximately 2% longitudinal steel is desired, f ′

c = 4000 psi, and
fy = 60,000 psi.

SOLUTION

Pu = (1.2) (240 k) + (1.6) (300 k) = 768 k

Selecting Column Dimensions and Bar Sizes

φPn = φ0.85[0.85f ′
c(Ag − Ast) + fyAst] (ACI Equation 10-1)

768 k = (0.75) (0.85) [(0.85) (4 ksi) (Ag − 0.02Ag) + (60 ksi) (0.02Ag)]

Ag = 266 in.2 Use 18-in. diameter column (255 in.2)

Using a column diameter with a gross area less than the calculated gross area (255 in.2 <

266 in.2) results in a higher percentage of steel than originally assumed.

768 k = (0.75) (0.85) [(0.85) (4 ksi) (255 in.2 − Ast) + (60 ksi)Ast]

Ast = 5.97 in.2 Use 6 #9 bars (6.00 in.2)

Check code requirements as in Example 9.1. A sketch of the column cross section is shown in
Figure 9.6.

1    in.1
2

1    in.1
2

Dc = 15 in.

h = 18 in.

#3 spiral @ 2 in.

6 #9 bars

FI GU RE 9.6 Final design for Example 9.2.
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Design of Spiral

Ac = (π ) (15 in.)2

4
= 177 in.2

Minimum ρs = (0.45)
(Ag

Ac
− 1
)

f ′
c

fy
= (0.45)

(
255 in.2

177 in.2
− 1

)(
4 ksi
60 ksi

)
= 0.0132

Assume a #3 spiral, db = 0.375 in. and as = 0.11 in.2

ρs = 4as (Dc − db)

sD2
c

0.0132 = (4) (0.11 in.2) (15 in. − 0.375 in.)
(s) (15 in.)2

s = 2.17 in. Say 2 in.

(Checked with Appendix A, Table A.14.)

9.10 SI Example

Example 9.3

Design an axially loaded short square tied column for Pu = 2600 kN if f ′
c = 28 MPa and

fy = 350 MPa. Initially assume ρ = 0.02.

SOLUTION

Selecting Column Dimensions

φPn = φ0.80[0.85f ′
c(Ag − Ast) + fy Ast] (ACI Equation 10-2)

2600 kN = (0.65) (0.80)[(0.85) (28 MPa) (Ag − 0.02Ag) + (350 MPa) (0.02Ag)]

Ag = 164 886 mm2

Use 400 mm × 400 mm (Ag = 160 000 mm2)

Selecting Longitudinal Bars

2600 kN = (0.65) (0.80)[(0.85) (28 MPa) (160 000 mm2 − Ast) + (350 MPa)Ast]

Ast = 3654 mm2

Use 6 #29 (3870 mm2)

Design of Ties (Assuming #10 SI Ties)

(a) 16 mm × 28.7 mm = 459.2 mm
(b) 48 mm × 9.5 mm = 456 mm
(c) Least col. dim. = 400 mm ← Use #10 ties @ 400 mm

Check code requirements as in Example 9.1. A sketch of the column cross section is shown
in Figure 9.7.
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FI GU RE 9.7 Final design for Example 9.3.

9.11 Computer Example

Example 9.4

Using the Excel spreadsheets for Chapters 9 and 10, repeat Example 9.2.

SOLUTION

Open the Circular Column worksheet and enter the material properties (f ′
c = 4000 psi, fy =

60,000 psi). For γ , any value less than one is acceptable for Chapter 8 problems with no moment
or eccentricity. Enter a trial value of h (cell C4) and Ast (cell C8). The corresponding axial load
capacity will appear in cell D19, which is identified as φP0. If this value is greater than or equal
to 768 kips, the design is acceptable. It is a more economical design if the capacity is also close
to the design value of 768 kips. As an example,
start with h = 10 in. and Ast = 1.00 in.2. The value
of φP0 is only 206 kips. Obviously a larger column
is needed. Keep increasing h until the φP0 value is
close to 768 kips, keeping in mind that the value
of Ast is still set very low. Several iterations show
that for h = 18 in., φP0 = 588 kips. Now begin
incrementing Ast and see its effect on φP0. Several
trials lead to Ast = 6.00 in.2 with a corresponding
value of φP0 = 768 kips.
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It is also possible to use ‘‘goal seek’’ to solve this problem. Input a trial value for h (say,
10 in.). Then highlight cell D19 and select goal seek from the tools on the Excel toolbar. Input
768 in. in the second window and C8 in the bottom one (as shown). Click OK, and a value of
Ast = 16.57 in.2 will appear in cell C8. This is way too much steel because the steel percentage
exceeds 8%. Clearly, a larger-diameter column is needed. Repeat this process, increasing h until
an acceptable value of Ast is obtained. If h = 16 in. is input, goal seek indicates Ast = 9.21 in.2.
This may not be the best choice, but it shows how the spreadsheet can be used to get different
answers, all of which may be acceptable.

Circular Column Capacity

h = 16 in.
0.7

f'c = 4,000 psi
fy = 60,000 psi

Ast = 9.21 in.2

Ag = 201.1 in.2

0.0458

0.85

0.00207

Es = 29,000 ksi
cbal = 8.05

5.1
in.

c0.005 =

²y =

in.

Po = (0.85f'c An + As fy) = 1204.7 kips

φPo = 768.0 kips ACI Equation 10-1

β1 =

ρt =
h

d5

d4

d3

d2

d1

γh

γ =

P R O B L E M S

Problem 9.1 Distinguish among tied, spiral, and
composite columns.

Problem 9.2 What are primary and secondary moments?

Problem 9.3 Distinguish between long and short columns.

Problem 9.4 List several design practices that may help make
the construction of reinforced concrete columns more
economical.

Analysis of Axially Loaded Columns

For Problems 9.5 to 9.8, compute the load-bearing capacity, φPn ,
of the concentrically loaded short column. fy = 60,000 psi
and f ′

c = 4000 psi.

Problem 9.5 A 20-in. square column reinforced with eight
#10 bars. (Ans. 1005 k)

Problem 9.6

6 #9
bars

15 in.

15 in.

Problem 9.7 (Ans. 609.2 k)

20 in.

12 in.8 #8 bars
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Problem 9.8

6 #10
bars

24 in.

a spiral
column

Problem 9.9 Determine the load-bearing capacity of the
concentrically loaded short column shown if fy = 60,000 psi
and f ′

c = 3000 psi. (Ans. 982.3 k)

4 #11

3 in. 3 in.
24 in.

30 in.

3 in.

3 in.

14 in. 20 in.

Design of Axially Loaded Columns

For Problems 9.10 to 9.15, design columns for axial load only.
Include the design of ties or spirals and a sketch of the cross
sections selected, including bar arrangements. All columns are
assumed to be short, and form sizes are available in 2-in. incre-
ments.

Problem 9.10 Square tied column: PD = 280 k, PL = 500 k,
f ′

c = 4000 psi, and fy = 60, 000 psi. Initially assume ρg = 2%.

Problem 9.11 Repeat Problem 9.10 if ρg is to be 4% initially.
(One ans. 20-in. × 20-in. column with 10 #11 bars)

Problem 9.12 Round spiral column: PD = 300 k,
PL = 400 k, f ′

c = 3500 psi, and fy = 60, 000 psi. Initially
assume ρg = 4%.

Problem 9.13 Round spiral column: PD = 400 k, PL = 250 k,
f ′

c = 4000 psi, fy = 60, 000 psi, and pg initially assumed = 2%.
(One ans. 20-in. diameter column with 6 #9 bars)

Problem 9.14 Smallest possible square tied column:
PD = 200 k, PL = 300 k, f ′

c = 4000 psi, and fy = 60, 000 psi.

Problem 9.15 Design a rectangular tied column with the long
side equal to two times the length of the short side. PD = 650 k,
PL = 400 k, f ′

c = 3000 psi, and fy = 60, 000 psi. Initially
assume that pg = 2%. (One ans. 20-in. × 40-in. column with
8 #11 bars)

Problems in SI Units

For Problems 9.16 to 9.18, design columns for axial load only
for the conditions described. Include the design of ties or spi-
rals and a sketch of the cross sections selected, including bar
arrangements. All columns are assumed to be short and not
exposed to the weather. Form sizes are in 50-mm increments.

Problem 9.16 Square tied column: PD = 600 kN,
PL = 800 kN, f ′

c = 24 MPa, and fy = 420 MPa. Initially
assume ρg = 0.02.

Problem 9.17 Smallest possible square tied column:
PD = 700 kN, PL = 300 kN, f ′

c = 28 MPa, and
fy = 300 MPa. (One ans. 250-mm × 250-mm column with
6 #29 bars)

Problem 9.18 Round spiral column: PD = 500 kN,
PL = 650 kN, f ′

c = 35 MPa, and fy = 420 MPa. Initially
assume ρg = 0.03.

For problems 9.19 to 9.21, use the Chapters 9 and 10 Excel
spreadsheets. Assume d ′ = 2.5 in. for each column.

Problem 9.19 Repeat Problem 9.6. (Ans. φPn = 574.4 k)

Problem 9.20 Repeat Problem 9.10.

Problem 9.21 Repeat Problem 9.12. (One ans. 20-in.-diameter
column with 9 #10 bars for which φPn = 1010 k)
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CHAPTER 10Design of Short Columns Subject
to Axial Load and Bending

10.1 Axial Load and Bending
All columns are subjected to some bending as well as axial forces, and they need to be
proportioned to resist both. The so-called axial load formulas presented in Chapter 9 do take
into account some moments, because they include the effect of small eccentricities with the
0.80 and 0.85 factors. These values are approximately equivalent to the assumption of actual
eccentricities of 0.10h for tied columns and 0.05h for spiral columns.

Columns will bend under the action of moments, and those moments will tend to produce
compression on one side of the columns and tension on the other. Depending on the relative
magnitudes of the moments and axial loads, there are several ways in which the sections might
fail. Figure 10.1 shows a column supporting a load, Pn. In the various parts of the figure, the
load is placed at greater and greater eccentricities (thus producing larger and larger moments)
until finally in part (f) the column is subject to such a large bending moment that the effect of
the axial load is negligible. Each of the six cases shown is briefly discussed in the paragraphs
to follow, where the letters (a) through (f) correspond to those same letters in the figure. The
column is assumed to reach its ultimate capacity when the compressive concrete strain reaches
0.003.

(a) Large axial load with negligible moment—For this situation, failure will occur by the
crushing of the concrete, with all reinforcing bars in the column having reached their
yield stress in compression.

(b) Large axial load and small moment such that the entire cross section is in
compression—When a column is subject to a small bending moment (i.e., when the
eccentricity is small), the entire column will be in compression, but the compression
will be higher on one side than on the other. The maximum compressive stress in the
column will be 0.85f ′

c , and failure will occur by the crushing of the concrete with all
the bars in compression.

(c) Eccentricity larger than in case (b) such that tension begins to develop on one side of
the column—If the eccentricity is increased somewhat from the preceding case, tension
will begin to develop on one side of the column, and the steel on that side will be in
tension but less than the yield stress. On the other side, the steel will be in compression.
Failure will occur as a result of the crushing of the concrete on the compression side.

(d) A balanced loading condition—As we continue to increase the eccentricity, a condition
will be reached in which the reinforcing bars on the tension side will reach their yield
stress at the same time that the concrete on the opposite side reaches its maximum
compression, 0.85f ′

c . This situation is called the balanced loading condition.

(e) Large moment with small axial load—If the eccentricity is further increased, failure
will be initiated by the yielding of the bars on the tensile side of the column prior to
concrete crushing.

(f) Large moment with no appreciable axial load—For this condition, failure will occur as
it does in a beam.

281
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Mn

e
Pn

Pn

e

Pn

e

Pn

e

Pn

(a) Large axial load causes a crushing failure of
 the concrete with all bars reaching their yield
 points in compression.

(b) Large axial load and small moment but entire
 cross section in compression. Failure occurs
 by crushing of the concrete, all bars in
 compression.

(c) Large axial load, moment larger than in (b).
 Bars on far side in tension but have not yielded.
 Failure occurs by crushing of the concrete.

(d) Balanced loading condition—bars on tensile side
 yield at same time concrete on compression side
 crushes at 0.85 f '

(e) Large moment, relatively small axial load—failure
 initiated by yielding of tensile bars.

(f) Large bending moment—failure occurs as in a beam.

c.

FI GU RE 10.1 Column subject to load with larger and larger eccentricities.

10.2 The Plastic Centroid
The eccentricity of a column load is the distance from the load to the plastic centroid of the
column. The plastic centroid represents the location of the resultant force produced by the
steel and the concrete. It is the point in the column cross section through which the resultant
column load must pass to produce uniform strain at failure. For locating the plastic centroid, all
concrete is assumed to be stressed in compression to 0.85f ′

c and all steel to fy in compression.
For symmetrical sections, the plastic centroid coincides with the centroid of the column cross
section, while for nonsymmetrical sections, it can be located by taking moments.

Example 10.1 illustrates the calculations involved in locating the plastic centroid for a
nonsymmetrical cross section. The ultimate load, Pn, is determined by computing the total
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Pennsylvania Southern Expressway, Philadelphia, Pennsylvania.

compressive forces in the concrete and the steel and adding them together. Pn is then assumed
to act downward at the plastic centroid, at a distance x from one side of the column, and
moments are taken on that side of the column of the upward compression forces acting at their
centroids and the downward Pn.

Example 10.1

Determine the plastic centroid of the T-shaped column shown in Figure 10.2 if f ′
c = 4000 psi and

fy = 60,000 psi.

SOLUTION

The plastic centroid falls on the x-axis, as shown in Figure 10.2, because of symmetry. The
column is divided into two rectangles, the left one being 16 in. × 6 in. and the right one
8 in. × 8 in. C1 is assumed to be the total compression in the left concrete rectangle, C2 the total
compression in the right rectangle, and C′

s the total compression in the reinforcing bars.

C1 = (16 in.) (6 in.) (0.85) (4 ksi) = 326.4 k

C2 = (8 in.) (8 in.) (0.85) (4 ksi) = 217.6 k
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FI GU RE 10.2 Column cross section for
Example 10.1.

In computing C′
s, the concrete where the bars are located is subtracted; that is,

C′
s = (4.00 in.2) (60 ksi − 0.85 × 4 ksi) = 226.4 k

Total compression = Pn = 326.4 k + 217.6 k + 226.4 k = 770.4 k

Taking Moments about Left Edge of Column

−(326.4 k) (3 in.) − (217.6 k) (10 in.) − (226.4 k) (7 in.) + (770.4 k) (x) = 0

x = 6.15 in.

10.3 Development of Interaction Diagrams
Should an axial compressive load be applied to a short concrete member, it will be subjected
to a uniform strain or shortening, as is shown in Figure 10.3(a). If a moment with zero axial
load is applied to the same member, the result will be bending about the member’s neutral
axis such that strain is proportional to the distance from the neutral axis. This linear strain
variation is shown in Figure 10.3(b). Should axial load and moment be applied at the same
time, the resulting strain diagram will be a combination of two linear diagrams and will itself
be linear, as illustrated in Figure 10.3(c). As a result of this linearity, we can assume certain
numerical values of strain in one part of a column and determine strains at other locations by
straight-line interpolation.

As the axial load applied to a column is changed, the moment that the column can resist
will change. This section shows how an interaction curve of nominal axial load and moment
values can be developed for a particular column.

Assuming that the concrete on the compression edge of the column will fail at a strain
of 0.003, a strain can be assumed on the far edge of the column, and the values of Pn and
Mn can be computed by statics. Holding the compression strain at 0.003 on the far edge, we
can then assume a series of different strains on the other edge and calculate Pn and Mn for
each.1 Eventually a sufficient number of values will be obtained to plot an interaction curve

1 Leet, K., 1991, Reinforced Concrete Design, 2nd ed. (New York: McGraw-Hill), pp. 316–317.
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such as the one shown in Figure 10.8. Example 10.2 illustrates the calculation of Pn and Mn
for a column for one set of assumed strains.

loading
situation

strains

(a) Axial load (b) Moment

P

M
P

M

(c) Axial load and
 moment

FI GU RE 10.3 Column strains.

Example 10.2

It is assumed that the tied column of Figure 10.4 has a strain on its compression edge equal to
−0.003 and has a tensile strain of +0.002 on its other edge. Determine the values of Pn and Mn
that cause this strain distribution if fy = 60 ksi and f ′

c = 4 ksi.

SOLUTION

Determine the values of c and of the steel strains ε′
s and εs by proportions with reference to the

strain diagram shown in Figure 10.5.

c =
(

0.003
0.003 + 0.002

)
(24 in.) = 14.40 in.

ε′
s =

(
11.90 in.
14.40 in.

)
(0.003) = 0.00248 > 0.00207 ∴ yields

εs =
(

7.10 in.
9.60 in.

)
(0.002) = 0.00148 does not yield ∴ φ = 0.65 (Section 3.7)

2    in.1
2

FI GU RE 10.4 Column cross section for Example 10.2.
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7.10 in.

FI GU RE 10.5 Strain diagram for Example 10.2.

In the following calculations, Cc is the total compression in the concrete, C′
s is the total

compression in the compression steel, and Ts is the total tension in the tensile steel. Each of
these values is computed below.

The reader should note that C′
s is reduced by 0.85f ′

cA′
s to account for concrete displaced

by the steel in compression.

a = (0.85) (14.40 in.) = 12.24 in.

Cc = (0.85) (12.24 in.) (14 in.) (4.0 ksi) = −582.62 k

C′
s = (60 ksi) (3.0 in.2) − (0.85) (3.0 in.2) (4.0 ksi) = −169.8 k

Ts = (0.00148) (29,000 ksi) (3.0 in.2) = +128.76 k

By statics, Pn and Mn are determined with reference to Figure 10.6, where the values of
Cc, C′

s, and Ts are shown.

�V = 0
−Pn + 169.8 k + 582.62 k − 128.76 k = 0

Pn = 623.7 k

φPn = (0.65) (623.7 k) = 405.4 k

Ts = 128.76 k Cc = 582.62 k C's = 169.8 k

FI GU RE 10.6 Internal column forces for
Example 10.2.
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�M = 0 about Tensile Steel

(623.7 k) (9.50 in.) + Mn − (582.62 k) (15.38 in.) − (169.8 k) (19.00 in.) = 0

Mn = 6261.3 in-k = 521.8 ft-k

φMn = (0.65) (6261.3 in-k) = 4069.8 in-k = 339.2 ft-k

In this manner, a series of Pn and Mn values is determined to correspond with a strain
of −0.003 on the compression edge and varying strains on the far column edge. The resulting
values are plotted on a curve, as shown in Figure 10.8.

A few remarks are made here concerning the extreme points on this curve. One end of
the curve will correspond to the case where Pn is at its maximum value and Mn is zero. For
this case, Pn is determined as in Chapter 9 for the axially loaded column of Example 10.2.

Pn = 0.85f ′
c(Ag − As ) + As fy

= (0.85) (4.0 ksi) (14 in. × 24 in. − 6.00 in.2) + (6.00 in.2) (60 ksi)

= 1482 k

On the other end of the curve, Mn is determined for the case where Pn is zero. This is
the procedure used for a doubly reinforced member as previously described in Chapter 5. For
the column of Example 10.2, Mn is equal to 297 ft-k.

A column reaches its ultimate capacity when the concrete reaches a compressive strain
of 0.003. If the steel closest to the extreme tension side of the column reaches yield strain,
or even more when the concrete reaches a strain of 0.003, the column is said to be tension
controlled; otherwise, it is compression controlled. The transition point between these regions
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FI GU RE 10.7 Strain diagram for
balanced conditions.

is the balance point. In Chapter 3, the term balanced section was used in referring to a section
whose compression concrete strain reached 0.003 at the same time as the tensile steel reached
its yield strain at fy/Es. In a beam, this situation theoretically occurred when the steel percentage
equaled ρb. A column can undergo a balanced failure no matter how much steel it has if it has
the right combination of moment and axial load.

For columns, the definition of balanced loading is the same as it was for beams—that
is, a column that has a strain of 0.003 on its compression side at the same time that its tensile
steel on the other side has a strain of fy/Es. Although it is easily possible to prevent a balanced
condition in beams by requiring that tensile steel strains be kept well above fy/Es, such is
not the case for columns. Thus, for columns, it is not possible to prevent sudden compression
failures or balanced failures. For every column, there is a balanced loading situation where an
ultimate load, Pbn, placed at an eccentricity, eb, will produce a moment, Mbn, at which time
the balanced strains will be reached simulataneously.

At the balanced condition, we have a strain of −0.003 on the compression edge of the
column and a strain of fy/29 × 103 ksi = 60 ksi/29 × 103 ksi = 0.00207 in the tensile steel.
This information is shown in Figure 10.7. The same procedure used in Example 10.2 is used
to find Pn = 504.4 k and Mn = 559.7 ft-k.

The curve for Pn and Mn for a particular column may be extended into the range where
Pn becomes a tensile load. We can proceed in exactly the same fashion as we did when Pn was
compressive. A set of strains can be assumed, and the usual statics equations can be written
and solved for Pn and Mn. Several different sets of strains were assumed for the column of
Figure 10.4, and then the values of Pn and Mn were determined. The results were plotted at
the bottom of Figure 10.8 and were connected with the dashed line labeled “tensile loads.”

Pn = 1482 k, Mn = 0

Pn

compression failure zone

compressive
loads

tensile
loads

axial
tension

tension failure zone

Pn = 623.7 k, Mn = 521.8 ft-k

Pn = 0, Mn = 297 ft-k

Pn = 360 k, Mn = 0

Mn

Pbn = 504.4 k, Mbn = 559.7 ft-k

FI GU RE 10.8 Interaction curve for the column of Figure 10.4.
Notice these are nominal values.
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Because axial tension and bending are not very common for reinforced concrete columns,
the tensile load part of the curves is not shown in subsequent figures in this chapter. You will
note that the largest tensile value of Pn will occur when the moment is zero. For that situation,
all of the column steel has yielded, and all of the concrete has cracked. Thus, Pn will equal
the total steel area, As, times the yield stress. For the column of Figure 10.4

Pn = As fy = (6.0 in.2)(60 ksi) = 360 k

On some occasions, members subject to axial load and bending have unsymmetrical
arrangements of reinforcing. Should this be the case, you must remember that eccentricity is
correctly measured from the plastic centroid of the section.

In this chapter, Pn values were obtained only for rectangular tied columns. The same
theory could be used for round columns, but the mathematics would be somewhat complicated
because of the circular layout of the bars, and the calculations of distances would be rather
tedious. Several approximate methods have been developed that greatly simplify the mathe-
matics. Perhaps the best known of these is the one proposed by Charles Whitney, in which
equivalent rectangular columns are used to replace the circular ones.2 This method gives results
that correspond quite closely with test results.

In Whitney’s method, the area of the equivalent column is made equal to the area
of the actual circular column, and its depth in the direction of bending is 0.80 times the
outside diameter of the real column. One-half the steel is assumed to be placed on one side
of the equivalent column and one-half on the other. The distance between these two areas
of steel is assumed to equal two-thirds of the diameter (Ds) of a circle passing through the
center of the bars in the real column. These values are illustrated in Figure 10.9. Once the
equivalent column is established, the calculations for Pn and Mn are made as for rectangular
columns.

2 Whitney, Charles S., 1942, “Plastic Theory of Reinforced Concrete Design,” Transactions ASCE, 107, pp. 251–326.
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FI GU RE 10.9 Replacing a circular column with an equivalent
rectangular one.

10.4 Use of Interaction Diagrams
We have seen that by statics, the values of Pn and Mn for a given column with a certain set of
strains can easily be determined. Preparing an interaction curve with a hand calculator for just
one column, however, is quite tedious. Imagine the work involved in a design situation where
various sizes, concrete strengths, and steel percentages need to be considered. Consequently,
designers resort almost completely to computer programs, computer-generated interaction
diagrams, or tables for their column calculations. The remainder of this chapter is concerned
primarily with computer-generated interaction diagrams such as the one in Figure 10.10.
As we have seen, such a diagram is drawn for a column as the load changes from one of a
pure axial nature through varying combinations of axial loads and moments and on to a pure
bending situation.

Interaction diagrams are useful for studying the strengths of columns with varying pro-
portions of loads and moments. Any combination of loading that falls inside the curve is
satisfactory, whereas any combination falling outside the curve represents failure.

If a column is loaded to failure with an axial load only, the failure will occur at point A
on the diagram (Figure 10.10). Moving out from point A on the curve, the axial load capacity
decreases as the proportion of bending moment increases. At the very bottom of the curve,
point C represents the bending strength of the member if it is subjected to moment only with
no axial load present. In between the extreme points A and C, the column fails because of
a combination of axial load and bending. Point B is called the balanced point and represents
the balanced loading case, where theoretically a compression failure and tensile yielding occur
simultaneously.

Refer to point D on the curve. The horizontal and vertical dashed lines to this point
indicate a particular combination of axial load and moment at which the column will fail.
Should a radial line be drawn from point 0 to the interaction curve at any point (as to D in
this case), it will represent a constant eccentricity of load, that is, a constant ratio of moment
to axial load.

You may be somewhat puzzled by the shape of the lower part of the curve from B to
C, where bending predominates. From A to B on the curve, the moment capacity of a section
increases as the axial load decreases, but just the opposite occurs from B to C. A little thought
on this point, however, shows that the result is quite logical after all. The part of the curve
from B to C represents the range of tensile failures. Any axial compressive load in that range
tends to reduce the stresses in the tensile bars, with the result that a larger moment can be
resisted.
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F I GU RE 10.11 Interaction curves for a rectangular
column with different sets of reinforcing bars.

In Figure 10.11, an interaction curve is drawn for the 14-in. × 24-in. column with six #9
bars considered in Section 10.3. If eight #9 bars had been used in the same dimension column,
another curve could be generated as shown in the figure; if ten #9 bars were used, still another
curve would result. The shape of the new diagrams would be the same as for the six #9 curve,
but the values of Pn and Mn would be larger.

10.5 Code Modifications of Column
Interaction Diagrams

If interaction curves for Pn and Mn values were prepared, they would be of the types shown in
Figures 10.10 and 10.11. To use such curves to obtain design values, they would have to have
three modifications made to them as specified in the code. These modifications are as follows:

(a) ACI Code 9.3.2 specifies strength reduction or φ factors (0.65 for tied columns and
0.75 for spiral columns) that must be multiplied by Pn values. If a Pn curve for a
particular column were multiplied by φ, the result would be a curve something like the
ones shown in Figure 10.12.

(b) The second modification also refers to φ factors. The code specifies values of 0.65
and 0.75 for tied and spiral columns, respectively. Should a column have quite a large

F I GU RE 10.12 Curves for Pn and φPn for a
single column.
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moment and a very small axial load so that it falls on the lower part of the curve
between points B and C (see Figure 10.10), the use of these small φ values may be
a little unreasonable. For instance, for a member in pure bending (point C on the
same curve), the specified φ is 0.90, but if the same member has a very small axial
load added, φ would immediately fall to 0.65 or 0.75. Therefore, the code (9.3.2.2)
states that when members subject to axial load and bending have net tensile strains (εt)
between the limits for compression-controlled and tensile-controlled sections, they fall
in the transition zone for φ. In this zone, it is permissible to increase φ linearly from
0.65 or 0.75 to 0.90 as εt increases from the compression-controlled limit to 0.005. In
this regard, the reader is again referred to Figure 3.5 in Chapter 3 where the transition
zone and the variation of φ values are clearly shown. This topic is continued in Section
10.10.

(c) As described in Chapter 9, maximum permissible column loads were specified for
columns no matter how small their e values. As a result, the upper part of each design
interaction curve is shown as a horizontal line representing the appropriate value of

Pu = φPn max for tied columns = 0.80φ[0.85f ′
c(Ag − Ast) + fyAst ]

(ACI Equation 10-2)

Pu = φPn max for spiral columns = 0.85φ[0.85f ′
c(Ag − Ast ) + fyAst ]

(ACI Equation 10-1)

These formulas were developed to be approximately equivalent to loads applied with
eccentricities of 0.10h for tied columns and 0.05h for spiral columns.

Each of the three modifications described here is indicated on the design curve of
Figure 10.13. In Figure 10.13, the solid curved line represents Pu and Mu, whereas the dashed
curved line is Pn and Mn. The difference between the two curves is the φ factor. The two
curves would have the same shape if the φ factor did not vary. Above the radial line labeled

Pn versus Mn

Pmax

Pu versus Mu

applied forces Pu and Mu

balanced case

Above this radial line, φ = 0.65
(0.75 for spiral columns).

Below this radial line, φ = 0.90.

Between radial lines, φ varies from 0.90 to 0.65
(0.75 for spiral columns).

strain of 0.005

0

axial
load

moment

F I GU RE 10.13 A column interaction curve adjusted for the three modifications
described in this section (10.5).
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“balanced case,” φ = 0.65 (0.75 for spirals). Below the other radial line, labeled “strain of
0.005,” φ = 0.9. It varies between the two values in between, and the Pu versus Mu curve
assumes a different shape.

10.6 Design and Analysis of Eccentrically Loaded
Columns Using Interaction Diagrams

If individual column interaction diagrams were prepared as described in the preceding sections,
it would be necessary to have a diagram for each different column cross section, for each dif-
ferent set of concrete and steel grades, and for each different bar arrangement. The result would
be an astronomical number of diagrams. The number can be tremendously reduced, however,
if the diagrams are plotted with ordinates of Kn = Pn/f ′

cAg (instead of Pn) and with abscissas
of Rn = Pn e/f ′

cAg h (instead of Mn). The resulting normalized interaction diagrams can be
used for cross sections with widely varying dimensions. The ACI has prepared normalized
interaction curves in this manner for the different cross section and bar arrangement situations
shown in Figure 10.14 and for different grades of steel and concrete.3

Two of the ACI diagrams are given in Figures 10.15 and 10.16, while Appendix A
(Graphs 2 to 13) presents several other ones for the situations given in parts (a), (b), and (d) of
Figure 10.14. Notice that these ACI diagrams do not include the three modifications described
in the last section.

The ACI column interaction diagrams are used in Examples 10.3 to 10.7 to design or
analyze columns for different situations. In order to correctly use these diagrams, it is necessary
to compute the value of γ (gamma), which is equal to the distance from the center of the bars
on one side of the column to the center of the bars on the other side of the column divided by h,

(a) Tied column
 with bars on
 all four faces

(b) Tied column
 with bars on
 two end faces

(c) Tied column
 with bars on
 two lateral faces

(e) Square spiral
 column

(d) Round spiral
 column

F I GU RE 10.14 Column cross sections for normalized interaction
curves in Appendix A, Graphs 2–13.

3 American Concrete Institute, 1997, Design Handbook (Farmington Hills, MI: ACI). Publication SP-17 (97).
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This line of constant
e⎜h = 0.5 was plotted
by authors for use in

solving Example 10.7.

F I GU RE 10.15 ACI rectangular column interaction diagrams when bars are placed on two faces
only. (Permission of American Concrete Institute.)

the depth of the column (both values being taken in the direction of bending). Usually the
value of γ obtained falls in between a pair of curves, and interpolation of the curve readings
will have to be made.

Caution

Be sure that the column picture at the upper right of the interaction curve being used agrees
with the column being considered. In other words, are there bars on two faces of the column or
on all four faces? If the wrong curves are selected, the answers may be quite incorrect.

Although several methods are available for selecting column sizes, a trial-and-error
method is about as good as any. With this procedure, the designer estimates what he or she
thinks is a reasonable column size and then determines the steel percentage required for that
column size from the interaction diagram. If it is felt that the ρg determined is unreasonably
large or small, another column size can be selected and the new required ρg selected from the
diagrams, and so on. In this regard, the selection of columns for which ρg is greater than 4%
or 5% results in congestion of the steel, particularly at splices, and consequent difficulties in
getting the concrete down into the forms.
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F I GU RE 10.16 ACI rectangular column interaction diagram when bars are placed along all four
faces. (Permission of American Concrete Institute.)

A slightly different approach is used in Example 10.4, where the average compression
stress at ultimate load across the column cross section is assumed to equal some value—say,
0.5f ′

c to 0.6f ′
c . This value is divided into Pn to determine the column area required. Cross-

sectional dimensions are then selected, and the value of ρg is determined from the interaction
curves. Again, if the percentage obtained seems unreasonable, the column size can be revised
and a new steel percentage obtained.

In Examples 10.3 to 10.5, reinforcing bars are selected for three columns. The values of
Kn = Pn/f ′

cAg and Rn = Pn e/f ′
cAg h are computed. The position of those values is located on

the appropriate graph, and ρg is determined and multiplied by the gross area of the column in
question to determine the reinforcing area needed.

Example 10.3

The short 14-in. × 20-in. tied column of Figure 10.17 is to be used to support the following loads
and moments: PD = 125 k, PL = 140 k, MD = 75 ft-k, and ML = 90 ft-k. If f ′

c = 4000 psi and
fy = 60,000 psi, select reinforcing bars to be placed in its end faces only using appropriate ACI
column interaction diagrams.



McCormac c10.tex V2 - January 9, 2013 9:47 P.M. Page 297

10.6 Design and Analysis of Eccentrically Loaded Columns Using Interaction Diagrams 297

h = 20 in.

b = 14 in.

15 in.

2 1
2
 in.

2 1
2
 in. F I GU RE 10.17 Column cross section for Example 10.3.

SOLUTION

Pu = (1.2) (125 k) + (1.6) (140 k) = 374 k

Pn = 374 k
0.65

= 575.4 k

Mu = (1.2) (75 ft-k) + (1.6) (90 ft-k) = 234 ft-k

Mn = 234 ft-k
0.65

= 360 ft-k

e = (12 in/ft) (360 ft-k)
575.4 k

= 7.51 in.

γ = 15 in.
20 in.

= 0.75

Compute values of Kn and Rn

Kn = Pn

f ′
cAg

= 575.4 k
(4 ksi) (14 in. × 20 in.)

= 0.513

Rn = Pne
f ′
cAgh

= (575.4 k) (7.51 in.)
(4 ksi) (14 in. × 20 in.) (20 in.)

= 0.193

The value of γ falls between γ values for Graphs 3 and 4 of Appendix A. Therefore,
interpolating between the two as follows:

γ 0.70 0.75 0.80

ρg 0.0220 0.0202 0.0185

As = ρgbh = (0.0202) (14 in.) (20 in.) = 5.66 in.2

Use 6 #9 bars = 6.00 in.2

Notes
(a) Note that φ = 0.65 as initially assumed since the graphs used show fs/fy is < 1.0 and, thus,

εt < 0.002.
(b) Code requirements must be checked as in Example 9.1. (See Figure 10.25 to visualize this.)
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Example 10.4

Design a short square column for the following conditions: Pu = 600 k, Mu = 80 ft-k,
f ′
c = 4000 psi, and fy = 60,000 psi. Place the bars uniformly around all four faces of the column.

SOLUTION

Assume the column will have an average compression stress = about 0.6f ′
c = 2400 psi = 2.4 ksi.

Ag required = 600 k
2.4 ksi

= 250 in.2

Try a 16-in. × 16-in. column (Ag = 256 in.2) with the bar arrangement shown in Figure 10.18.

e = Mu

Pu
= (12 in/ft) (80 ft-k)

600 k
= 1.60 in.

Pn = Pu

φ
= 600 k

0.65
= 923.1 k

Kn = Pn

f ′
cAg

= 923.1 k
(4 ksi) (16 in. × 16 in.)

= 0.901

Rn = Pne
f ′
cAgh

= (923.1 k) (1.6 in.)
(4 ksi) (16 in. × 16 in.) (16 in.)

= 0.0901

γ = 11 in.
16 in.

= 0.6875

Interpolating between values given in Graphs 6 and 7 of Appendix A.

γ 0.600 0.6875 0.700

ρg 0.025 0.023 0.022

As = (0.023) (16 in.) (16 in.) = 5.89 in.2

Use 8 #8 bars = 6.28 in.2

16 in.

11 in.

16 in.11 in.

2 1
2
 in.

2 1
2
 in.

2 1
2
 in.2 1

2
 in.

F I GU RE 10.18 Column cross section for Example 10.4.
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Notes
(a) Note that φ = 0.65 as initially assumed since the graphs used show fs/fy < 1.0 and, thus,

εt < 0.002.
(b) Code requirements must be checked as in Example 9.1. (See Figure 10.25.)

Example 10.5

Using the ACI column interaction graphs, select reinforcing for the short round spiral column
shown in Figure 10.19 if f ′

c = 4000 psi, fy = 60,000 psi, Pu = 500 k, and Mu = 225 ft-k.

SOLUTION

e = (12 in/ft) (225 ft-k)
500 k

= 5.40 in.

Pn = Pu

φ
= 500 k

0.75
= 666.7 k

Kn = Pn

f ′
cAg

= 666.7 k

(4 ksi) (314 in.2)
= 0.531

Rn = Pne
f ′
cAgh

= (666.7 k) (5.40 in.)

(4 ksi) (314 in.2) (20 in.)
= 0.143

γ = 15 in.
20 in.

= 0.75

By interpolation between Graphs 11 and 12 of Appendix A, ρg is found to equal 0.0235
and fs/fy < 1.0.

ρAg = (0.0235) (314 in.2) = 7.38 in.2

Use 8 #9 bars = 8.00 in.2

The same notes apply here as for Examples 10.3 and 10.4.

20 in.

Ag = 314 in.2

15 in. 2 1
2
 in.2 1

2
 in.

F I GU RE 10.19 Column cross section for Example 10.5.

In Example 10.6, it is desired to select a 14-in. wide column with approximately 2%
steel. This is done by trying different column depths and then determining the steel percentage
required in each case.
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Example 10.6

Design a 14-in.-wide rectangular short tied column with bars only in the two end faces for
Pu = 500 k, Mu = 250 ft-k, f ′

c = 4000 psi, and fy = 60,000 psi. Select a column with
approximately 2% steel.

SOLUTION

e = Mu

Pu
= (12 in/ft) (250 ft-k)

500 k
= 6.00 in.

Pn = Pu

φ
= 500 k

0.65
= 769.2 k

Trying several column sizes and determining reinforcing.

Trial sizes (in.) 14 × 20 14 × 22 14 × 24

Kn = Pn

f ′
cAg

0.687 0.624 0.572

Rn = Pne
f ′
cAgh

0.206 0.170 0.143

γ = h − 2 × 2.50
h

0.750 0.773 0.792

ρg by interpolation 0.0315 0.020 0.011

Use 14-in. × 22-in. column

Ag = (0.020) (14 in. × 22 in.) = 6.16 in.2

Use 8 #8 bars = 6.28 in.2

Same notes as for Examples 10.3 and 10.4.

One more illustration of the use of the ACI interaction is presented with Example 10.7.
In this example, the nominal column load Pn at a given eccentricity that a column can support
is determined.

With reference to the ACI interaction curves, the reader should carefully note that the
value of Rn (which is Pn e/f ′

cAg h) for a particular column equals e/h times the value of
Kn (Pn/f ′

cAg ) for that column. This fact needs to be understood when the user desires to
determine the nominal load that a column can support at a given eccentricity.

In Example 10.7, the nominal load that the short column of Figure 10.20 can support at
an eccentricity of 10 in. with respect to the x-axis is determined. If we plot on the interaction
diagram the intersection point of Kn and Rn for a particular column and draw a straight line
from that point to the lower-left corner or origin of the figure, we will have a line with a
constant e/h. For the column of Example 10.6, e/h = 10 in./20 in. = 0.5. Therefore, a line
is plotted from the origin through a set of assumed values for Kn and Rn in the proportion
of 10/20 to each other. In this case, Kn was set equal to 0.8 and Rn = 0.5 × 0.8 = 0.4.
Next, a line was drawn from that intersection point to the origin of the diagram, as shown
in Figure 10.16. Finally, the intersection of this line with ρg (0.0316 in this example) was
determined, and the value of Kn or Rn was read. This latter value enables us to compute Pn.
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12 in.

3 #10 (3.79 in.2)

3 #10 (3.79 in.2)

20 in.14 in.

3 in.

3 in.
F I GU RE 10.20 Column cross section for
Example 10.6.

Example 10.7

Using the appropriate interaction curves, determine the value of Pn for the short tied column
shown in Figure 10.20 if ex = 10 in. Assume f ′

c = 4000 psi and fy = 60,000 psi.

SOLUTION

e
h

= 10 in.
20 in.

= 0.500

ρg = (2) (3.79 in.2)
(12 in.) (20 in.)

= 0.0316

γ = 14 in.
20 in.

= 0.700

Plotting a straight line through the origin and the intersection of assumed values of Kn and
Rn (say, 0.8 and 0.4, respectively).

For ρg of 0.0316, we read the value of Rn = 0.24:

Rn = Pne
f ′
cAgh

= 0.24

Pn = (0.24) (4 ksi) (12 in. × 20 in.) (20 in.)
10 in.

= 460.8 k

When the usual column is subjected to axial load and moment, it seems reasonable
to assume initially that φ = 0.65 for tied columns and 0.75 for spiral columns. It is to be
remembered, however, that under certain conditions, these φ values may be increased, as
discussed in detail in Section 10.10.

10.7 Shear in Columns
The shearing forces in interior columns in braced structures are usually quite small and normally
do not control the design. However, the shearing forces in exterior columns can be large, even
in a braced structure, particularly in columns bent in double curvature. Section 11.2.1.2 of
the ACI Code provides the following equations for determining the shearing force that can
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be carried by the concrete for a member subjected simultaneously to axial compression and
shearing forces.

Vc = 2

(
1 + Nu

2000Ag

)
λ
√

f ′
cbw d (ACI Equation 11-4)

In SI units this equation is:

Vc =
(

1 + Nu

14Ag

)(
λ
√

f ′
c

6

)
bw d

In these equations, Nu is the factored axial force acting simultaneously with the factored
shearing force, Vu, that is applied to the member. The value of Nu/Ag is the average factored
axial stress in the column and is expressed in units of psi. Should Vu be greater than φVc/2, it
will be necessary to calculate required tie spacing using the stirrup spacing procedures described
in Chapter 8. The results will be closer tie spacing than required by the usual column rules
discussed earlier in Section 9.5.

Sections 11.2.3 and 11.4.7.3 of the ACI Code specify the method for calculating the
contribution of the concrete to the total shear strength of circular columns and for calculating
the contribution of shear reinforcement for cases where circular hoops, ties, or spirals are
present. According to the commentary of the code in Section 11.2.3, the entire cross section
in circular columns is effective in resisting shearing forces. The shear area, bwd, in ACI
Equation 11-4 then would be equal to the gross area of the column. However, to provide for
compatibility with other calculations requiring an effective depth, the ACI requires that, when
applied to circular columns, the shear area in ACI Equation 11-4 be computed as an equivalent
rectangular area in which

bw = D

d = 0.8D

In these equations, D is the gross diameter of the column. If the constant modifying D in
the effective depth equation were equal to π/4, which is equal to 0.7854, the effective rect-
angular area would be equal to the gross area of the circular column. Thus, the area of the
column is overestimated by a little less than 2% when using the equivalent area prescribed by
the ACI.

10.8 Biaxial Bending
Many columns are subjected to biaxial bending, that is, bending about both axes. Corner
columns in buildings where beams and girders frame into the columns from both directions are
the most common cases, but there are others, such as where columns are cast monolithically
as part of frames in both directions or where columns are supporting heavy spandrel beams.
Bridge piers are almost always subject to biaxial bending.

Circular columns have polar symmetry and, thus, the same ultimate capacity in all direc-
tions. The design process is the same, therefore, regardless of the directions of the moments.
If there is bending about both the x- and y-axes, the biaxial moment can be computed by
combining the two moments or their eccentricities as follows:

Mu =
√

(Mux )
2 + (Muy )

2
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or
e =

√
(ex )2 + (ey )

2

For shapes other than circular ones, it is necessary to consider the three-dimensional
interaction effects. Whenever possible, it is desirable to make columns subject to biaxial bend-
ing circular in shape. Should it be necessary to use square or rectangular columns for such
cases, the reinforcing should be placed uniformly around the perimeters.

You might quite logically think that you could determine Pn for a biaxially loaded
column by using static equations, as was done in Example 10.2. Such a procedure will lead
to the correct answer, but the mathematics involved is so complicated because of the shape of
the compression side of the column that the method is not a practical one. Nevertheless, a few
comments are made about this type of solution, and reference is made to Figure 10.21.

An assumed location is selected for the neutral axis, and the appropriate strain triangles
are drawn, as shown in Figure 10.21. The usual equations are written with Cc = 0.85f ′

c times
the shaded area Ac and with each bar having a force equal to its cross-sectional area times its
stress. The solution of the equation yields the load that would establish that neutral axis—but
the designer usually starts with certain loads and eccentricities and does not know the neutral
axis location. Furthermore, the neutral axis is probably not even perpendicular to the resultant

e =
√

(ex )
2 + (ey )

2.
For column shapes other than circular ones, it is desirable to consider three-dimensional

interaction curves such as the one shown in Figure 10.22. In this figure, the curve labeled Mnxo
represents the interaction curve if bending occurs about the x-axis only, while the one labeled
Mnyo is the one if bending occurs about the y-axis only.

In this figure, for a constant Pn, the hatched plane shown represents the contour of Mn
for bending about any axis.

Today, the analysis of columns subject to biaxial bending is primarily done with com-
puters. One of the approximate methods that is useful in analysis and that can be handled

1 2

4 3

N.A.

c

²
s 4

²
s 3

a 
= 

β 1
c

0.85f'c

C
c  = 0.85f'c A

c
C's2  = A

c fsC's1  = A
1 fs

T
3  = A

3 fs
T

4  = A
4 fs

0.003
Pn

F I GU RE 10.21 Column cross section with skewed neutral axis from biaxial bending.
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Mnx

Mnxo

Mnyo

Mny

Pn

F I GU RE 10.22 Interaction surface for biaxially loaded column.

with pocket calculators includes the use of the so-called reciprocal interaction equation, which
was developed by Professor Boris Bresler of the University of California at Berkeley.4 This
equation, which is shown in Section R10.3.6 of the ACI Commentary, follows:

1

Pni
= 1

Pnx
+ 1

Pny
− 1

Po

where
Pni = the nominal axial load capacity of the section when the load is placed at a given

eccentricity along both axes.

Pnx = the nominal axial load capacity of the section when the load is placed at an
eccentricity ex.

Pny = the nominal axial load capacity of the section when the load is placed at an
eccentricity ey.

Po = the nominal axial load capacity of the section when the load is placed with a zero
eccentricity. It is usually taken as 0.85f ′

cAg + fy As .

4 Bresler, B., 1960, “Design Criteria for Reinforced Concrete Columns under Axial Load and Biaxial Bending,” Journal ACI,
57, p. 481.
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The Bresler equation works rather well as long as Pni is at least as large as 0.10Po.
Should Pni be less than 0.10Po, it is satisfactory to neglect the axial force completely and
design the section as a member subject to biaxial bending only. This procedure is a little on
the conservative side. For this lower part of the interaction curve, it will be remembered that
a little axial load increases the moment capacity of the section. The Bresler equation does not
apply to axial tension loads. Professor Bresler found that the ultimate loads predicted by his
equation for the conditions described do not vary from test results by more than 10%.

Example 10.8 illustrates the use of the reciprocal theorem for the analysis of a column
subjected to biaxial bending. The procedure for calculating Pnx and Pny is the same as the one
used for the prior examples of this chapter.

Example 10.8

Determine the design capacity, Pni, of the short tied column shown in Figure 10.23, which is
subjected to biaxial bending. f ′

c = 4000 psi, fy = 60,000 psi, ex = 16 in., and ey = 8 in.

SOLUTION

For Bending about x-Axis

γ = 20 in.
25 in.

= 0.80

ρg = 8.00 in.2

(15 in.) (25 in.)
= 0.0213

e
h

= 16 in.
25 in.

= 0.64

Drawing Line of Constant e/h = 0.64 in Graph 8 of Appendix A and Estimating Rn
Corresponding to ρg = 0.0213, Read Rn

∼= 0.185

Rn = Pnxe
f ′
cAgh

= 0.185

Pnx = (4 ksi) (15 in. × 25 in.) (25 in.) (0.185)
16 in.

= 434 k

F I GU RE 10.23 Column cross section for
Example 10.8.
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For Bending about y-Axis

γ = 10 in.
15 in.

= 0.667

ρg = 8.00 in.2

(15 in.) (25 in.)
= 0.0213

e
h

= 8 in.
15 in.

= 0.533

Drawing Radial Lines of Constant e/h (0.533) in Graphs 6 and 7 of Appendix A and
Interpolating between Them for γ = 0.667

Rn = Pnye

f ′
cAgh

= 0.163

Pny = (4 ksi) (15 in. × 25 in.) (15 in.) (0.163)
8 in.

= 458 k

Determining Axial Load Capacity of Section

Po = (0.85) (4.0 ksi) (15 in. × 25 in.) + (8.00 in.2) (60 ksi) = 1755 k

Using the Bresler Expression to Determine Pni

1
Pni

= 1
Pnx

+ 1
Pny

− 1
Po

1
Pni

= 1
434 k

+ 1
458 k

− 1
1755 k

Multiplying through by 1755 k

1755 k
Pni

= 4.044 + 3.832 − 1

Pni = 255.3 k

If the moments in the weak direction (y-axis here) are rather small compared to bending
in the strong direction (x-axis), it is common to neglect the smaller moment. This practice is
probably reasonable as long as ey is less than about 20% of ex, since the Bresler expression
will show little reduction for Pni. For the example just solved, an ey equal to 50% of ex caused
the axial load capacity to be reduced by approximately 40%.

Example 10.9 illustrates the design of a column subject to biaxial bending. The Bresler
expression, which is of little use in the proportioning of such members, is used to check
the capacities of the sections selected by some other procedure. Exact theoretical designs of
columns subject to biaxial bending are very complicated and, as a result, are seldom handled
with pocket calculators. They are proportioned either by approximate methods or with computer
programs.

10.9 Design of Biaxially Loaded Columns
During the past few decades, several approximate methods have been introduced for the design
of columns with biaxial moments. For instance, quite a few design charts are available with
which satisfactory designs may be made. The problems are reduced to very simple calculations
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in which coefficients are taken from the charts and used to magnify the moments about a single
axis. Designs are then made with the regular uniaxial design charts.5,6,7

Another approximate procedure that works fairly well for design office calculations is
used for Example 10.9. If this simple method is applied to square columns, the values of
both Mnx and Mny are assumed to act about both the x-axis and the y-axis (i.e., Mx = My =
Mnx + Mny). The steel is selected about one of the axes and is spread around the column, and
the Bresler expression is used to check the ultimate load capacity of the eccentrically loaded
column.

Should a rectangular section be used where the y-axis is the weaker direction, it would
seem logical to calculate My = Mnx + Mny and to use that moment to select the steel required
about the y-axis and spread the computed steel area over the whole column cross section.
Although such a procedure will produce safe designs, the resulting columns may be rather
uneconomical, because they will often be much too strong about the strong axis. A fairly

5 Parme, A. L., Nieves, J. M., and Gouwens, A., 1966, “Capacity of Reinforced Rectangular Columns Subject to Biaxial
Bending,” Journal ACI, 63 (11), pp. 911–923.
6 Weber, D. C., 1966, “Ultimate Strength Design Charts for Columns with Biaxial Bending,” Journal ACI, 63 (11), pp.
1205–1230.
7 Row, D. G., and Paulay, T., 1973, “Biaxial Flexure and Axial Load Interaction in Short Reinforced Concrete Columns,”
Bulletin of New Zealand Society for Earthquake Engineering, 6 (2), pp. 110–121.
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satisfactory approximation is to calculate My = Mnx + Mny and multiply it by b/h, and with
that moment design the column about the weaker axis.8

Example 10.9 illustrates the design of a short square column subject to biaxial bending.
The approximate method described in the last two paragraphs is used, and the Bresler expression
is used for checking the results. If this had been a long column, it would have been necessary
to magnify the design moments for slenderness effects, regardless of the design method used.

Example 10.9

Select the reinforcing needed for the short square tied column shown in Figure 10.24 for the
following: PD = 100 k, PL = 200 k, MDX = 50 ft-k, MLX = 110 ft-k, MDY = 40 ft-k, MLY = 90 ft-k,
f ′
c = 4000 psi, and fy = 60,000 psi.

SOLUTION

Computing Design Values

Pu = (1.2) (100 k) + (1.6) (200 k) = 440 k

Pu

f ′
cAg

= 440 k

(4 ksi) (484 in.2)
= 0.227

Assume φ = 0.65

Pn = 440 k
0.65

= 677 k

Mux = (1.2) (50 ft-k) + (1.6) (110 ft-k) = 236 ft-k

Mnx = 236 ft-k
0.65

= 363 ft-k

Muy = (1.2) (40 ft-k) + (1.6) (90 ft-k) = 192 ft-k

Mny = 192 ft-k
0.65

= 295 ft-k

As a result of biaxial bending, the design moment about the x- or y-axis is assumed to equal
Mnx + Mny = 363 ft-k + 295 ft-k = 658 ft-k.

F I GU RE 10.24 Column cross section for Example 10.9.

8 Fintel, M., ed., 1985, Handbook of Concrete Engineering, 2nd ed. (New York: Van Nostrand), pp. 37–39.
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Determining Steel Required

ex = ey = (12 in/ft) (658 ft-k)
677 k

= 11.66 in.

γ = 16 in.
22 in.

= 0.727

By interpolation from interaction diagrams with bars on all four faces,

ρg = 0.0235

As = (0.0235) (22 in.) (22 in.) = 11.37 in.2

Use 8 #11 = 12.50 in.2

A review of the column with the Bresler expression gives a Pni = 804 k > 677 k, which
is satisfactory. Should the reader go through the Bresler equation here, he or she must remember
to calculate the correct ex and ey values for use with the interaction diagrams. For instance,

ex = (12 in/ft) (363 ft-k)

677 k
= 6.43 in.

When a beam is subjected to biaxial bending, the following approximate interaction
equation may be used for design purposes:

Mx

Mux
+ My

Muy
≤ 1.0

In this expression, Mx and My are the design moments, Mux is the design moment capacity
of the section if bending occurs about the x-axis only, and Muy is the design moment capacity
if bending occurs about the y-axis only. This same expression may be satisfactorily used for
axially loaded members if the design axial load is about 15% or less of the axial load capacity
of the section. For a detailed discussion of this subject, the reader is referred to the Handbook
of Concrete Engineering.9

Numerous other methods are available for the design of biaxially loaded columns. One
method that is particularly useful to the design profession is the PCA Load Contour Method,
which is recommended in the ACI Design Handbook.10

10.10 Continued Discussion of Capacity
Reduction Factors, φ

As previously described, the value of φ can be larger than 0.65 for tied columns, or 0.75 for
spiral columns, if εt is larger than fy/Es. The lower φ values are applicable to compression-
controlled sections because of their smaller ductilities. Such sections are more sensitive to
varying concrete strengths than are tensilely controlled sections. The code (9.3.2.2) states that
φ for a particular column may be increased linearly from 0.65 or 0.75 to 0.90 as the net tensile
strain, εt, increases from the compression-controlled strain, fy/Es, to the tensilely controlled
one of 0.005.

For this discussion, Figure 3.5 from Chapter 3 is repeated with slight modification as
Figure 10.25. From this figure, you can see the range of εt values for which φ may be increased.

9 Fintel, M., Handbook of Concrete Engineering, p. 38.
10 American Concrete Institute, 2007, Design Handbook in Accordance with the Strength Design Method, Vol. 2, Columns,
(Farmington Hills, MI: ACI), Publication SP-17 (07).
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f

0.90

0.75

0.65

²t = 0.005

c⎜dt = 0.375

compression
controlled transition

tension
controlled

(0.005 − ²y)

(0.005 − ²y)

0.15
f = 0.75 + (²t − ²y)

²t = ²y

f = 0.65 + (²t − ²y)

spiral

other

0.25

0.003 + ²y

0.003=c
dt

F I GU RE 10.25 Variation of φ with net tensile εt and c/dt.

The hand calculation of εt for a particular column is a long and tedious trial-and-error
problem, and space is not taken here to present a numerical example. However, a description
of the procedure is presented in the next few paragraphs. The average designer will not want
to spend the time necessary to make these calculations and will either just use the smaller φ

values or make use of a computer program, such as the Excel spreadsheet provided for this
chapter. This program uses a routine for computing εt and φ for columns.

The procedure described here can be used to make a long-hand determination of εt. As
a beginning, we assume c/dt = 0.60 where εt = 0.002 (assumed yield strain for Grade 60
reinforcement), as shown in Figure 10.25. With this value, we can calculate c, a, εc, εt, fs,
and f ′

c for our column. Then, with reference to Figure 10.26, moments can be taken about the
centerline of the column and the result solved for Mn and e determined.

Mn = Ts

(
dt − d ′

2

)
+ Cs

(
dt − d ′

2

)
+ Cc

(
h

2
− a

2

)

As the next step, c/dt can be assumed equal to 0.375 (where εt = 0.005 as shown in
Figure 10.25) and another value of εt determined. If the εt of our column falls between the two
εt values we have just calculated, the column falls in the transition zone for φ. To determine its
value, we can try different c/dt values between 0.600 and 0.375 until the calculated εt equals
the actual εt of the column.

If you go through this process one time, you will probably have seen all you want to see
of it and will no doubt welcome the fact that the Excel spreadsheet provided for this textbook
can be used to determine the value of φ for a particular column.

When using the interaction diagrams in Appendix A, it is easy to see the region where
the variable φ factor applies. In Figure 10.15, note that there are lines labeled fs/fy. If the
coordinates of Kn and Rn are greater than the value of fs/fy = 1, the φ factor is 0.65 (0.75 for
spiral columns). If the coordinates are below the line labeled εt = 0.005, the φ factor is 0.90.
Between these lines, the φ factor is variable, and you would have to resort to approximate
methods or to the spreadsheet provided.
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b

dt – d' d'

dt 

Pn

Mn

Ts Cc Cs

h

F I GU RE 10.26 Notation used for column cross section.

10.11 Computer Example

Example 10.10

Using the Excel spreadsheet provided, plot the interaction diagram for the column obtained in
Example 10.5.

SOLUTION

Open the Excel spreadsheet called Chapter 9 and Chapter 10. Open the worksheet entitled
Circular Column. In the cells highlighted in yellow (only in the Excel spreadsheet, not in the
printed example), enter the values required. You do not have to input values for Pu and Mu, but
it is helpful to see how the applied loads compare with the interaction diagram. Next, open the
worksheet called Interaction Diagram—Circular. The diagram shows that the applied load (single
dot) is within the Pu versus Mu diagram (smaller curved line), hence the column cross section is
sufficient if it is a short column.

Circular Column Capacity

Pu = 500 k

Mu = 200 ft-k = 2400 in-k
h = 20 in.

0.75

f'c  = 4,000 psi
fy = 60,000 psi

Ast = 6.28 in.2

Ag = 314.2 in.2

ρt = 0.0200

γ =

0.85
²y = 0.00207

Es = 29,000 ksi
cbal = 10.36 in.

c0.005 = 6.5625 in.

β1 =

h
d5

d4

d3

d2
d1

γ h
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Circular Column Interaction Diagram
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P R O B L E M S

Location of Plastic Centroids

For Problems 10.1 and 10.2, locate the plastic centroids if f ′
c =

4000 psi and fy = 60,000 psi.

Problem 10.1 (Ans. 12.40 in. from left edge)

18 in.

24 in.

3 in.3 in.

14 in. 2 #9 2 #11

Problem 10.2

3 in.

3 in.

3 in.
6 in.

3 in.

3 in.

20 in.

15 in.

6 in.

Analysis of Column Subjected to
Axial Load and Moment

Problem 10.3 Using statics equations, determine the values of
Pn and Mn for the column shown, assuming it is strained to
−0.003 on its right-hand edge and to +0.002 on its left-hand
edge. f ′

c = 4000 psi and fy = 60,000 psi. (Ans. Pn = 608.9 k,
Mn = 399.1 ft-k)

#8 bars 14 in.

3 in.3 in.
18 in.

24 in.

Problem 10.4 Repeat Problem 10.3 if the strain on the left
edge is +0.001.

Problem 10.5 Repeat Problem 10.3 if the strain on the left
edge is 0.000. (Ans. Pn = 1077 k, Mn = 199.5 ft-k)

Problem 10.6 Repeat Problem 10.3 if the strain on the left
edge is −0.001.

Problem 10.7 Repeat Problem 10.3 if the steel on the left side
has a strain in tension of εy = fy/Es and the right edge is at
0.003. (Ans. Pn = 498 k, Mn = 418.8 ft-k)
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Design of Columns for Axial Load and Moment

For Problems 10.8 to 10.10, use the interaction curves in
Appendix A to select reinforcing for the short columns shown.
f ′

c = 4000 psi and fy = 60,000 psi.

Problem 10.8

12 in.

12 in. 18 in.

3 in.

3 in.

6 in.

Problem 10.9 (One ans. 6 #9 bars)

Problem 10.10

precast

For Problems 10.11 to 10.16, use the interaction diagrams in
Appendix A to determine Pn values for the short columns shown,
which have bending about one axis. fy = 60,000 psi and f ′

c =
4000 psi.

Problem 10.11 (Ans. 559 k)

21 in.15 in.

15 in.

3 in.

3 in.

3 in.3 in.

3 @ 3 in. = 9 in.

ex = 12 in.

4 #10

4 #10

x x

y

y

Problem 10.12 Repeat Problem 10.11 if ex = 9 in.

Problem 10.13 (Ans. 697 k)

3 in.

8 in.

8 in.

3 in.

22 in.

3 in.3 in.
12 in.

18 in.

y

y

x x
6 #9

ey = 7 in.

Problem 10.14

14 in.

9 in.

24 in.
2 #11    

2 #11

2 1
2  in.2 1

2  in.

x x

y

y

ey = 10 in.
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Problem 10.15 (Ans. 607 k)

8 #9

19 in.

24 in.

2 2 1
2

1
2
 in.  in.

ex = 10 in.

Problem 10.16

6 #11

15 in.

20 in.

22 1
2

1
2
 in.  in.

ex = 8 in.

For Problems 10.17 to 10.21, determine Pn values for the
short columns shown if fy = 60,000 psi and f ′

c = 4000 psi.

Problem 10.17 (Ans. 303 k)

Problem 10.18

Problem 10.19 (Ans. 306 k)

6 #10

17 in.

22 in.

2 1
2
 in. 2 1

2
 in.

ex = 9 in.
ey = 12 in.

Problem 10.20

7 #10

17 in.

22 in.

ex = 6 in.
ey = 8 in.

2 1
2
 in.2 1

2
 in.

Problem 10.21 Repeat Problem 10.20 if ex = 12 in. and
ey = 6 in. (Ans. 377 k)
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For Problems 10.22 and 10.23, select reinforcing for the short
columns shown if fy = 60,000 psi and f ′

c = 4000 psi. Check
results with the Bresler equation.

Problem 10.22

Bars on all four faces
Pu = 104 k
ex  = 9 in.

ey  = 5 in.

Problem 10.23 (One ans. 8 #9 bars, Pn = 432 k)

17 in. 22 in.

Bars on all four faces

11 in.

16 in.

Pn = 400 k
ex  = 8 in.

ey  = 6 in.

2 in.1
2

2 in.1
2

2 in.1
2

2 in.1
2

For Problems 10.24 to 10.27, use the Chapters 9 and 10 Excel
spreadsheet.

Problem 10.24 If the column of Problem 10.8 is supporting a
load Pu = 250 k and ex = 0, how large can Mux be if six #9
bars (three in each face) are used?

Problem 10.25 If the column of Problem 10.13 is supporting
a load Pu = 400 k and ex = 0, how large can Muy be if six #9
bars are used? (Ans. 264 ft-k)

Problem 10.26 If the column of Problem 10.15 is to support
an axial load Pu = 400 k and ex = 0, how many #10 bars
must be used to resist a design moment Mux = 300 ft-k?

Problem 10.27 If the column in Problem 10.11 has a moment
Mux = 375 ft-k, what are the limits on Pu? (Ans. 325 k ≥
Pu ≥ 30 k)

Problem 10.28 Prepare a flowchart for the preparation of an
interaction curve for axial compression loads and bending for a
short rectangular tied column.

Problems with SI Units

Column interaction curves are not provided in this text for
the usual SI concrete strengths (21 MPa, 24 MPa, 28 MPa,
etc.) or for the usual steel yield strength (420 MPa). There-
fore, the problems that follow are to be solved using the
column curves for f ′

c = 4000 psi and fy = 60,000 psi. These
diagrams may be applied for the corresponding SI units
(27.6 MPa and 413.7 MPa), just as they are for U.S. customary
units, but it is necessary to convert the results to SI values.

For Problems 10.29 to 10.31, use the column interaction dia-
grams in Appendix A to determine Pn values for the short
columns shown if f ′

c = 28 MPa and fy = 420 MPa.

Problem 10.29 (Ans. 1855 kN)
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Problem 10.30

Problem 10.31 (Ans. Pu = 1528 kN)

For Problems 10.32 to 10.34, select reinforcing for the short
columns shown if f ′

c = 27.6 MPa and fy = 413.7 MPa.
Remember to apply the conversion factor provided before Prob-
lem 10.28 when using the interaction curves.

Problem 10.32

Problem 10.33 (One ans. 6 #36)

Problem 10.34
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CHAPTER 11Slender Columns

11.1 Introduction
When a column bends or deflects laterally an amount �, its axial load will cause an increased
column moment equal to P�. This moment will be superimposed onto any moments already
in the column. Should this P� moment be of such magnitude as to reduce the axial load
capacity of the column significantly, the column will be referred to as a slender column.

Section 10.10.2 of the code states that the design of a compression member should,
desirably, be based on a theoretical analysis of the structure that takes into account the effects of
axial loads, moments, deflections, duration of loads, varying member sizes, end conditions, and
so on. If such a theoretical procedure is not used, the code (10.10.5) provides an approximate
method for determining slenderness effects. This method, which is based on the factors just
mentioned for an “exact” analysis, results in a moment magnifier, δ, which is to be multiplied
by the larger moment at the end of the column denoted as M2, and that value is used in design.
If bending occurs about both axes, δ is to be computed separately for each direction and the
values obtained multiplied by the respective moment values.

11.2 Nonsway and Sway Frames
For this discussion, it is necessary to distinguish between frames without sidesway and those
with sidesway. In the ACI Code, these are referred to respectively as nonsway frames and sway
frames.

For the building story in question, the columns in nonsway frames must be designed
according to Section 10.10.6 of the code, while the columns of sway frames must be designed
according to Section 10.10.7. As a result, it is first necessary to decide whether we have
a nonsway frame or a sway frame. You must realize that you will rarely find a frame that
is completely braced against swaying or one that is completely unbraced against swaying.
Therefore, you are going to have to decide which way to handle it.

The question may possibly be resolved by examining the lateral stiffness of the bracing
elements for the story in question. You may observe that a particular column is located in
a story where there is such substantial lateral stiffness provided by bracing members, shear
walls, shear trusses, and so on that any lateral deflections occurring will be too small to affect
the strength of the column appreciably. You should realize that, while examining a particular
structure, there may be some nonsway stories and some sway stories.

If we cannot tell by inspection whether we have a nonsway frame or a sway frame, the
code provides two ways of making a decision. First, in ACI Section 10.10.5.1, a story in a
frame is said to be a nonsway one if the increase in column end moments from second-order
effects is 5% or less of the first-order end moments.

The second method for determining whether a particular frame is braced or unbraced is
given in the code (10.10.5.2). If the value of the so-called stability index (which follows) is
≤ 0.05, the commentary states that the frame may be classified as a nonsway one. (Should Vu
be equal to zero, this method will not apply.)

317
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Q = �Pu�o

Vulc
(ACI Equation 10-10)

where
�Pu = total factored vertical load for all of the columns on the story in question
�o = the elastically determined first-order lateral deflection from Vu at the top of the

story in question with respect to the bottom of that story
Vu = the total factored horizontal shear for the story in question
lc = the height of a compression member in a frame measured from center to center

of the frame joints

Despite these suggestions from the ACI, the individual designer is going to have to
make decisions as to what is adequate bracing and what is not, depending on the presence
of structural walls and other bracing items. For the average-size reinforced concrete building,
load eccentricities and slenderness values will be small, and frames will be considered to be
braced. Certainly, however, it is wise in questionable cases to err on the side of the unbraced.

11.3 Slenderness Effects
The slenderness of columns is based on their geometry and on their lateral bracing. As their
slenderness increases, their bending stresses increase, and thus buckling may occur. Reinforced
concrete columns generally have small slenderness ratios. As a result, they can usually be
designed as short columns without strength reductions because of slenderness. If slenderness
effects are considered small, then columns can be considered “short” and can be designed
according to Chapter 10. However, if they are “slender,” the moment for which the column
must be designed is increased or magnified. Once the moment is magnified, the column is then
designed according to Chapter 10 using the increased moment.

Several items involved in the calculation of slenderness ratios are discussed in the next
several paragraphs. These include unsupported column lengths, effective length factors, radii
of gyration, and the ACI Code requirements. The ACI Code (10.10.2.1) limits second-order
effects to not more than 40% of first-order effects.

Unsupported Lengths

The length used for calculating the slenderness ratio of a column, lu , is its unsupported length.
This length is considered to be equal to the clear distance between slabs, beams, or other
members that provide lateral support to the column. If haunches or capitals (see Figure 16.1
in Chapter 16) are present, the clear distance is measured from the bottoms of the capitals or
haunches.

Effective Length Factors

To calculate the slenderness ratio of a particular column, it is necessary to estimate its effective
length. This is the distance between points of zero moment in the column. For this initial
discussion, it is assumed that no sidesway or joint translation is possible. Sidesway or joint
translation means that one or both ends of a column can move laterally with respect to each
other.

If there were such a thing as a perfectly pinned end column, its effective length would be
its unsupported length, as shown in Figure 11.1(a). The effective length factor, k, is the number
that must be multiplied by the column’s unsupported length to obtain its effective length. For
a perfectly pinned end column, k = 1.0.



McCormac c11.tex V2 - January 9, 2013 9:56 P.M. Page 319

11.3 Slenderness Effects 319

D
ig

it
al

 V
is

io
n/

G
et

ty
 Im

ag
es

, I
nc

.
Round columns.

k`u = `u k`u = 0.50`u

k`u = 0.70`u

k = 1.0 

(a) 

k = 0.50

points
of
inflection

(b)

k = 0.70 

point
of
inflection

(c)

`u `u

FI GU RE 11.1 Effective lengths for columns in braced frames (sidesway prevented).
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Columns with different end conditions have entirely different effective lengths. For
instance, if there were such a thing as a perfectly fixed end column, its points of inflec-
tion (or points of zero moment) would occur at its one-fourth points, and its effective length
would be lu/2, as shown in Figure 11.1(b). As a result, its k value would equal 0.5.

Obviously, the smaller the effective length of a particular column, the smaller its danger
of buckling and the greater its load-carrying capacity. Figure 11.1(c) shows a column with one
end fixed and one end pinned. The k factor for this column is approximately 0.70.

The concept of effective lengths is simply a mathematical method of taking a
column—whatever its end and bracing conditions—and replacing it with an equivalent
pinned end-braced column. A complex buckling analysis could be made for a frame to
determine the critical stress in a particular column. The k factor is determined by finding
the pinned end column with an equivalent length that provides the same critical stress. The
k factor procedure is a method of making simple solutions for complicated frame-buckling
problems.

Reinforced concrete columns serve as parts of frames, and these frames are sometimes
braced and sometimes unbraced. A braced frame is one for which sidesway or joint translation
is prevented by means of bracing, shear walls, or lateral support from adjoining structures. An
unbraced frame does not have any of these types of bracing supplied and must depend on
the stiffness of its own members to prevent lateral buckling. For braced frames, k values can
never be greater than 1.0, but for unbraced frames, the k values will always be greater than
1.0 because of sidesway.

An example of an unbraced column is shown in Figure 11.2(a). The base of this particular
column is assumed to be fixed, whereas its upper end is assumed to be completely free to both
rotate and translate. The elastic curve of such a column will take the shape of the elastic curve
of a pinned-end column of twice its length. Its effective length will therefore equal 2lu , as
shown in the figure. In Figure 11.2(b), another unbraced column case is illustrated. The bottom
of this column is connected to beams that provide resistance to rotation but not enough to be
considered a fixed end. In most buildings, partial rotational restraint is common, not pinned or
fixed ends. Section 11.4 shows how to evaluate such partial restraint. For the case shown in
Figure 11.2(b), if the beam at the bottom is flexible compared with the column, the k factor
approaches infinity. If it is very stiff, k approaches 2.

The code (10.10.6.3) states that the effective length factor is to be taken as 1.0 for
compression members in frames braced against sidesway unless a theoretical analysis shows

k`u = 2`u k`u > 2`u

`u

`u

(a) Upper end free to rotate and
 translate, lower end fixed

(b) Upper end free to rotate and
 translate, lower end partially
 restrained against rotation

FI GU RE 11.2 Columns for unbraced frames.
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that a lesser value can be used. Should the member be in a frame not braced against sidesway,
the value of k will be larger than 1.0 and must be determined with proper consideration given
to the effects of cracking and reinforcing on the column stiffness. ACI-ASCE Committee 441
suggests that it is not realistic to assume that k will be less than 1.2 for such columns; therefore,
it seems logical to make preliminary designs with k equal to or larger than that value.

11.4 Determining k Factors with Alignment Charts
The preliminary procedure used for estimating effective lengths involves the use of the align-
ment charts shown in Figure 11.3.1,2 Before computerized analysis, use of such alignment
charts was the traditional method for determining effective lengths of columns. The chart of
part (a) of the figure is applicable to braced frames, whereas the one of part (b) is applicable
to unbraced frames.

To use the alignment charts for a particular column, ψ factors are computed at each
end of the column. The ψ factor at one end of the column equals the sum of the stiffness
[�(EI/l)] of the columns meeting at that joint, including the column in question, divided by
the sum of all the stiffnesses of the beams meeting at the joint. Should one end of the column
be pinned, ψ is theoretically equal to ∞, and if fixed, ψ = 0. Since a perfectly fixed end is
practically impossible to have, ψ is usually taken as 1.0 instead of 0 for assumed fixed ends.
When column ends are supported by, but not rigidly connected to a footing, ψ is theoretically
infinity but usually is taken as about 10 for practical design.

One of the two ψ values is called ψA and the other is called ψB . After these values are
computed, the effective length factor, k, is obtained by placing a straightedge between ψA and
ψB . The point where the straightedge crosses the middle nomograph is k.

It can be seen that the ψ factors used to enter the alignment charts, and thus the resulting
effective length factors, are dependent on the relative stiffnesses of the compression and flexural
members. If we have a very light flexible column and large stiff girders, the rotation and lateral
movement of the column ends will be greatly minimized. The column ends will be close to
a fixed condition, and thus the ψ values and the resulting k values will be small. Obviously,
if the reverse happens—that is, large stiff columns framing into light flexible girders—the
column ends will rotate almost freely, approaching a pinned condition. Consequently, we will
have large ψ and k values.

To calculate the ψ values, it is necessary to use realistic moments of inertia. Usually the
girders will be appreciably cracked on their tensile sides, whereas the columns will probably
have only a few cracks. If the I values for the girders are underestimated a little, the column
k factors will be a little large and thus on the safe side.

Several approximate rules are in use for estimating beam and column rigidities. One
common practice of the past for slenderness ratios of up to about 60 or 70 was to use gross
moments of inertia for the columns and 50% of the gross moments of inertia for the beams.

In ACI Section 10.10.4.1, it is stated that for determining ψ values for use in evaluating
k factors, the rigidity of the beams may be calculated on the basis of 0.35Ig to account for
cracking and reinforcement, while 0.70Ig may be used for compression members. This practice
is followed for the examples in this chapter. Other values for the estimated rigidity of walls
and flat plates are provided in the same section.

1 Structural Stability Research Council, Guide to Stability Design Criteria for Metal Structures, 4th ed., T. V. Galambos, ed.
(New York: John Wiley & Sons, 1988).
2 Julian, O. G. and Lawrence, L. S., 1959, “Notes on J and L Nomograms for Determination of Effective Lengths,” unpublished.
These are also called the Jackson and Moreland Alignment Charts, after the firm with which Julian and Lawrence were
associated.
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FI GU RE 11.3 Effective length factors. ψ = ratio of �(EI /l) of compression members to �(EI /l)

of flexural members in a plane at one end of a compression member. k = effective length factor.

11.5 Determining k Factors with Equations
Instead of using the alignment charts for determining k values, an alternate method involves
the use of relatively simple equations. These equations, which were in the ACI 318-05 Code
Commentary (R10.12.1) and taken from the British Standard Code of Practice,3 are particularly
useful with computer programs.

For braced compression members, an upper bound to the effective length factor may
be taken as the smaller value determined from the two equations to follow in which ψA and
ψB are the values just described for the alignment charts (commonly called the Jackson and
Moreland alignment charts as described in footnote 2 of this chapter). ψmin is the smaller of
ψA and ψB .

k = 0.7 + 0.05(ψA + ψB ) ≤ 1.0

k = 0.85 + 0.05ψmin ≤ 1.0

The value of k for unbraced compression members restrained at both ends may be
determined from the appropriate one of the following two equations, in which ψm is the

3 British Standards Institution, 1972, Code of Practice for the Structural Use of Concrete (CP110: Part 1), London, 154 pages.
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The value of the effective length factor of unbraced compression members that are hinged
at one end may be determined from the following expression, in which ψ is the value at the
restrained end:

k = 2.0 + 0.3ψ

As mentioned in Section 11.3 of this chapter, the ACI Code in Section 10.10.6.3 states
that k should be taken to be 1.0 for compression members in frames braced against sidesway
unless a theoretical analysis shows that a lesser value can be used. In the last paragraph
of Section R10.10.6.3 of the commentary, use of the alignment charts or the equations just
presented is said to be satisfactory for justifying k values less than 1.0 for braced frames.

11.6 First-Order Analyses Using Special Member Properties
After this section, the remainder of this chapter is devoted to an approximate design procedure
wherein the effect of slenderness is accounted for by computing moment magnifiers that are
multiplied by the column moments. A magnifier for a particular column is a function of its
factored axial load, Pu , and its critical buckling load, Pc .

Before moment magnifiers can be computed for a particular structure, it is necessary to
make a first-order analysis of the structure. The member section properties used for such an
analysis should take into account the influence of axial loads, the presence of cracked regions
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in the members, and the effect of the duration of the loads. Instead of making such an analysis,
ACI Code 10.10.4.1 permits use of the following properties for the members of the structure.
These properties may be used for both nonsway and sway frames.

(a) Modulus of elasticity determined from the following expression given in Section 8.5.1
of the code: Ec = w1.5

c 33
√

f ′
c for values of wc from 90 lb/ft3 to 155 lb/ft3 or 57,000

√
f ′

c
for normal-weight concrete.

(b) Moments of inertia where Ig = moment of inertia of gross concrete section about cen-
troidal axis neglecting reinforcing (ACI Section 10.10.4.1):

Beams 0.35Ig

Columns 0.70Ig

Walls—Uncracked 0.70Ig

—Cracked 0.35Ig

Flat plates and flat slabs 0.25Ig

(c) Area 1.0Ag

As an alternative to the above approximate equations for columns and walls, the code
permits the following more complex value for moment of inertia:

I =
(

0.80 + 25
Ast

Ag

)(
1 − Mu

Pu h
− 0.5

Pu

P0

)
Ig ≤ 0.875Ig (ACI Equation 10-8)

Pu and Mu are to be from the load combination under consideration, or they can conservatively
be taken as the values of Pu and Mu that result in the lowest value of I. In no case is the
value of I for compression members required to be taken less than 0.35Ig. P0 is the theoretical
concentric axial load strength (see Chapter 9 of this textbook).

For flexural members (beams and flat plates and flat slabs), the following approximate
equation is permitted:

I = (0.10 + 25ρ)

(
1.2 − 0.2

bw

d

)
Ig ≤ 0.5Ig (ACI Equation 10-9)

For continuous flexural members, it is permitted to use the average value of I from the positive
and negative moment sections. In no case is the value of I for flexural members required to
be taken less than 0.25Ig.

Often during the design process, the designer does not know the final values of member
section dimensions or steel areas when making calculations such as those in ACI Equation
10-8. This leads to an iterative process where the last cycle of iteration assumes the same
member properties as the final design. The code (10.10.4.1) allows these values to be only
within 10% of the final values in the final iteration.

11.7 Slender Columns in Nonsway and Sway Frames
There is a major difference in the behavior of columns in nonsway or braced frames and those
in sway or unbraced frames. In effect, each column in a braced frame acts by itself. In other
words, its individual strength can be determined and compared to its computed factored loads
and moments. In an unbraced or sway frame, a column will probably not buckle individually
but will probably buckle simultaneously with all of the other columns on the same level. As a
result, it is necessary in a sway frame to consider the buckling strength of all the columns on
the level in question as a unit.
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For a compression member in a nonsway frame, the effective slenderness ratio, klu/r ,
is used to determine whether the member is short or slender. For this calculation, lu is the
unbraced length of the member. The effective length factor, k, can be taken as 1.0 unless an
analysis provides a lesser value. The radius of gyration, r, is equal to 0.25 times the diameter
of a round column and 0.289 times the dimension of a rectangular column in the direction that
stability is being considered. The ACI Code (10.10.1.2) permits the approximate value of 0.30
to be used in place of 0.289, and this is done herein. For other sections, the value of r will
have to be computed from the properties of the gross sections.

For nonsway frames, slenderness effects may be ignored if the following expression is
satisfied:

klu

r
≤ 34 − 12

(
M1

M2

)
(ACI Equation 10-7)

In this expression, M1 is the smaller factored end moment in a compression member. It
has a plus sign if the member is bent in single curvature (C shaped) and a negative sign if the
member is bent in double curvature (S shaped). M2 is the larger factored end moment in a com-
pression member, and it always has a plus sign. In this equation, the term

[
34 − 12

(
M1/M2

)]
shall not be taken larger than 40, according to ACI Code 10.10.1

For sway frames, slenderness effects may be ignored if

klu

r
< 22 (ACI Equation 10-6)

Should klu/r for a particular column be larger than the applicable ratio, we will have a
slender column. For such a column, the effect of slenderness must be considered. This may be
done by using approximate methods or by using a theoretical second-order analysis that takes
into account the effect of deflections. Second-order effects cannot exceed 40% of first-order
effects (ACI 10.10.2.1).

A second-order analysis is one that takes into account the effect of deflections and also
makes use of a reduced tangent modulus. The equations necessary for designing a column in
this range are extremely complicated, and, practically, it is necessary to use column design
charts or computer programs.

Avoiding Slender Columns

The design of slender columns is appreciably more complicated than the design of short
columns. As a result, it may be wise to give some consideration to the use of certain minimum
dimensions so that none of the columns will be slender. In this way, they can be almost
completely avoided in the average-size building.

If k is assumed equal to 1.0, slenderness can usually be neglected in braced frame
columns, if lu/h is kept to 10 or less on the first floor and 14 or less for the floors above the
first one. To determine these values, it was assumed that little moment resistance was provided
at the footing–column connection and the first-floor columns were assumed to be bent in single
curvature. Should the footing–column connection be designed to have appreciable moment
resistance, the maximum lu/h value given above as 10 should be raised to about 14 or equal
to the value used for the upper floors.4

Should we have an unbraced frame and assume k = 1.2, it is probably necessary to keep
lu/h to 6 or less. So for a 10-ft clear floor height, it is necessary to use a minimum h of about
10 ft/6 = 1.67 ft = 20 in. in the direction of bending to avoid slender columns.

4 Neville, G. B., ed., 1984, Simplified Design Reinforced Concrete Buildings of Moderate Size and Height (Skokie, IL: Portland
Cement Association), pp. 5-10 to 5-12.
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Example 11.1 illustrates the selection of the k factor and the determination of the slen-
derness ratio for a column in an unbraced frame. For calculating I/L values, the authors used
0.70 times the gross moments of inertia for the columns, 0.35 times the gross moments of
inertia for the girders, and the full lengths of members center to center of supports.

Example 11.1

(a) Using the alignment charts of Figure 11.3, calculate the effective length factor for column AB
of the braced frame of Figure 11.4. Consider only bending in the plane of the frame.

(b) Compute the slenderness ratio of column AB. Is it a short or a slender column? The maximum
permissible slenderness ratio for a short unbraced column is 22, as will be described in Section
11.9 of this chapter. End moments on the column are M1 = 45 ft-k and M2 = 75 ft-k, resulting
in single curvature.

SOLUTION

(a) Effective Length Factor for Column AB

Using the Reduced Moments of Inertia from 11.6(b) and applying the method described in
Section 11.4

ψA =
0.7 × 8000 in.4

12 × 10 ft(
0.35 × 5832 in.4

12 × 20 ft
+ 0.35 × 5832 in.4

12 × 24 ft

) = 2.99

ψB =
0.7 × 8000 in.4

12 × 10 ft
+ 0.7 × 8000 in.4

12 × 12 ft(
0.35 × 13,824 in.4

12 × 20 ft
+ 0.35 × 13,824 in.4

12 × 24 ft

) = 2.31

18 in.

20 in.

24 in. 20 in.

20 ft

C

B

A

24 ft

12 ft

10 ft

girder 12 in. × 18 in.
(Ig = 5832 in.4) 

girder 12 in. × 24 in.
(Ig = 13,824 in.4) 

column 12 in. × 20 in.
(Ig = 8000 in.4) 

column 12 in. × 20 in.
(Ig = 8000 in.4) 

FI GU RE 11.4 Frame for Example 11.1.
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From Figure 11.3(a)

2.31

0.875

K

2.99

ψA ψB

(b) Is It a Slender Column?

lu = 10 ft − 9 in. + 12 in.
12 in/ft

= 8.25 ft

klu

r
= (0.875) × (12 in/ft × 8.25 ft)

0.3 × 20 in.
= 14.44 < Maximum

klu

r
for a short column in a braced

frame by ACI Equation 10-7 = 34 − 12
(+45 ft-k

+75 ft-k

)
= 26.8

∴ It’s not a slender column

An experienced designer would first simply assume k = 1 and quickly see that klu/r =
lu/r = 16.5 < 26.5. There would then be no need to determine k.

If this column were in the same frame but the frame were unbraced, then k would be 1.78
and klu/r = 29.37 > 22. It would be a slender column. The only difference in determining k
is the use of Figure 11.3(b) for sway columns instead of Figure 11.3(a) for nonsway columns.
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11.8 ACI Code Treatments of Slenderness Effects
The ACI Code permits the determination of second-order effects by one of three methods. The
first is by a nonlinear second-order analysis (ACI 10.10.3). Such an analysis must consider
nonlinearity of materials, member curvature and lateral drift, load duration, volume changes
in concrete because of creep and shrinkage, and foundation or support interaction. The anal-
ysis technique should predict the ultimate loads to within 15% or test results on statically
indeterminate reinforced concrete structures. This technique would require sophisticated com-
puter software that has been demonstrated to satisfy the 15% accuracy requirement mentioned
previously.

The second method is by an elastic second-order analysis (ACI 10.10.4). This tech-
nique is simpler than the nonlinear method because it uses member stiffnesses immediately
prior to failure. Values of Ec and moments of inertia and cross-sectional area for columns,
beams, walls, flat plates, and flat slabs that are permitted to be used in the elastic second-order
analysis are listed in Section 11.6. This method would also most likely require a computer
analysis.

The third method is the moment magnifier procedure (ACI 10.10.5). Different procedures
for this method are given for sway and nonsway structures. The next two sections describe the
moment magnifier method for these two cases.

11.9 Magnification of Column Moments in
Nonsway Frames

When a column is subjected to moment along its unbraced length, it will be displaced laterally
in the plane of bending. The result will be an increased or secondary moment equal to the
axial load times the lateral displacement or eccentricity. In Figure 11.5, the load P causes the
column moment to be increased by an amount P�. This moment will cause δ to increase a
little more, with the result that the P� moment will increase, which in turn will cause a further
increase in � and so on until equilibrium is reached.

We could take the column moments, compute the lateral deflection, increase the moment
by P�, recalculate the lateral deflection and the increased moment, and so on. Although about
two cycles would be sufficient, this would still be a tedious and impractical procedure.

FI GU RE 11.5 Moment magnification in a nonsway column.
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It can be shown5 that the increased moment can be estimated very well by multiplying
the primary moment by 1/(1 − P/Pc), where P is the axial load and Pc is the Euler buckling
load π2EI /(klu)

2.
In Example 11.2, this expression is used to estimate the magnified moment in a laterally

loaded column. It will be noted that in this problem, the primary moment of 75 ft-k is estimated
to increase by 7.4 ft-k. If we computed the deflection from the lateral load, we would get
0.445 in. For this value, P� = (150) (0.445) = 66.75 in-k = 5.6 ft-k. This moment causes
more deflection, which causes more moment, and so on.

Example 11.2

(a) Compute the primary moment in the column shown in Figure 11.6 from the lateral 20-k load.
(b) Determine the estimated total moment, including the secondary moment from lateral deflec-

tion, using the appropriate magnification factor just presented. E = 3.16 × 103 ksi. Assume
k = 1.0 and lu = 15 ft.

SOLUTION

(a) Primary moment resulting from lateral load:

Mu = (20 k) (15 ft)
4

= 75 ft-k

(b) Total moment, including secondary moment:

Pc = Euler buckling load = π2EI
(klu)2

(ACI Equation 10-13)

=
(π2) (3160 ksi)

(
1
12 × 12 in. × 12 in.3

)
(1.0 × 12 in/ft × 15 ft)2

= 1663.4 k

12-in. × 12-in. column 

7.5 ft

7.5 ft

FI GU RE 11.6 Column for Example 11.2.

5 Timoshenko, S. P., and Gere, J. M., 1961, Theory of Elastic Stability, 2nd ed. (New York: McGraw-Hill), pp. 319–356.
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Magnified moment = 1

1 − P
Pc

M2

= 1

1 − 150 k
1663.4 k

75 ft-k = 82.4 ft-k

As you have seen, it is possible to calculate approximately the increased moment result-
ing from lateral deflection by using the (1 − P/Pc) expression. In ACI Code 10.10.16, the
factored design moment for slender columns with no sway is increased by using the following
expression, in which Mc is the magnified or increased moment and M2 is the larger factored
end moment on a compression member:

Mc = δM2 (ACI Equation 10-11)

Should our calculations provide very small moments at both column ends, the code
provides an absolutely minimum value of M2 to be used in design. In effect, it requires the
computation of a moment based on a minimum eccentricity of 0.6 + 0.03h , where h is the
overall thickness of the member perpendicular to the axis of bending.

M2 min = Pu (0.6 + 0.03h) (ACI Equation 10-17)

Or in SI units

M2 min = Pu (15 + 0.03h), where h is in mm, as is the number 15

A moment magnifier, δ, is used to estimate the effect of member curvature between the
ends of compression members. It involves a term Cm , which is defined later in this section.

δ = Cm

1 − Pu

0.75Pc

≥ 1.0 (ACI Equation 10-12)

The determination of the moment magnifier, δns , involves the following calculations:

1. Ec = 57,000
√

f ′
c for normal-weight concrete (see Section 1.11 for other densities).

2. Ig = gross inertia of the column cross section about the centroidal axis being considered.

3. Es = 29 × 106 psi.

4. Ise = moment of inertia of the reinforcing about the centroidal axis of the section. (This
value equals the sum of each bar area times the square of its distance from the centroidal
axis of the compression member.)

5. The term βdns accounts for the reduction in stiffness caused by sustained axial loads
and applies only to nonsway frames. It is defined as the ratio of the maximum factored
sustained axial load divided by the total factored axial load associated with the same
load combination. It is always assumed to have a plus sign and is never permitted to
exceed 1.0.
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6. Next, it is necessary to compute EI. The two expressions given for EI in the code were
developed so as to account for creep, cracks, and so on. If the column and bar sizes have
already been selected or estimated, EI can be computed with the following expression,
which is particularly satisfactory for columns with high steel percentages.

EI = (0.2Ec Ig + Es Ise)

1 + βdns
(ACI Equation 10-14)

The alternate expression for EI that follows is probably the better expression to use
when steel percentages are low. Notice also that this expression will be the one used if
the reinforcing has not been previously selected.

EI = 0.4EcIg

1 + βdns
(ACI Equation 10-15)

7. The Euler buckling load is computed:

Pc = π2EI

(klu )2
(ACI Equation 10-13)

8. For some moment situations in columns, the amplification or moment magnifier expres-
sion provides moments that are too large. One such situation occurs when the moment
at one end of the member is zero. For this situation, the lateral deflection is actually
about half of the deflection in effect provided by the amplification factor. Should we
have approximately equal end moments that are causing reverse curvature bending, the
deflection at middepth and the moment there are close to zero. As a result of these and
other situations, the code provides a modification factor (Cm ) to be used in the moment
expression that will result in more realistic moment magnification.

For braced frames without transverse loads between supports, Cm can vary from 0.4 to
1.0 and is determined with the expression at the end of this paragraph. For all other cases, it
is to be taken as 1.0. (Remember the sign convention: M1 is positive for single curvature and
is negative for reverse curvature, and M2 is always positive.)

Cm = 0.6 + 0.4
M1

M2
(ACI Equation 10-16)

Should M2 min as computed with ACI Equation 10-17 be larger than M2, the value of Cm
in this equation shall either be taken as equal to 1.0 or be based on the ratio of the computed
end moments M1/M2 (ACI Section 10.10.6.4).

Example 11.3 illustrates the design of a column in a nonsway frame.

Example 11.3

The tied column of Figure 11.7 has been approximately sized to the dimensions 12 in. × 15 in.
It is to be used in a frame braced against sidesway. The column is bent in single curvature
about its y-axis and has an lu of 16 ft. If k = 0.83, fy = 60,000 psi, and f ′

c = 4000 psi, determine
the reinforcing required. Consider only bending in the plane of the frame. Note also that the
unfactored dead axial load PD is 30 k, and concrete is normal weight.
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15 in.

12 in.

10 in.in.2M2b = 86 ft-k

M1b = 86 ft-k

1
2

in.2 1
2

FI GU RE 11.7 Column profile and cross section for Example 11.3.

SOLUTION

1. Is it a slender column?

Max
klu

r
for short columns = 34 − 12

M1

M2
= 34 − 12

(+82 ft-k
+86 ft-k

)
= 22.56

Actual
klu

r
= (0.83) (12 in/ft × 16 ft)

0.3 × 15 in.
= 35.41 > 22.56

∴ It’s a slender column

2. Ec = 57,000
√

f ′
c = 57,000

√
4000 psi = 3,605,000 psi = 3.605 × 103 ksi

3. Ig =
(

1
12

)
(12 in.) (15 in.)3 = 3375 in.4

4. βd = factored axial dead load
factored axial total load

= (1.2) (30 k)
110 k

= 0.327

5. Because reinforcing has not been selected, we must use ACI Equation 10-15 for EI.

EI = 0.4EcIg
1 + βd

= (0.4) (3605 ksi) (3375 in.4)
1 + 0.327

= 3.67 × 106 k-in.2 (ACI Equation 10-15)

6. Pc = π2EI
(klu )2

= (π2) (3.67 × 106 k • in.2)
(0.83 × 12 in/ft × 16 ft)2

= 1426 k (ACI Equation 10-13)

7. Cm = 0.6 + 0.4
M1

M2
= 0.6 + 0.4

(+82 ft-k
+86 ft-k

)
= 0.981 (ACI Equation 10-16)

8. δ = Cm

1 − Pu

0.75Pc

= 0.981

1 − 110 k
(0.75) (1426 k)

= 1.09 (ACI Equation 10-12)
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9. M2 min = Pu (0.6 + 0.03h) = 110 k(0.6 + 0.03 × 15 in.)
= 115.5 in-k = 9.6 ft-k (ACI Equation 10-17)

10. Mc = δM2 = (1.09) (86 ft-k) = 93.7 ft-k (ACI Equation 10-11)

11. Magnified e = δe = (12) (93.7 ft-k)
110 k

= 10.22 in.

12. γ = 10 in./15 in. = 0.667
∴ ρg is determined by interpolation between values presented in Appendix A,
Graphs 2 and 3.

Pn = Pu

φ
= 110 k

0.65
= 169.23 k

Kn = Pn

f ′
cAg

= 169.23 k
(4 ksi) (12 in. × 15 in.)

= 0.235

Rn = Pn

f ′
cAg

δe
h

= (0.235)
(

10.22 in.
15 in.

)
= 0.160

ρg = 0.0160

Ag = (0.0160) (12 in.) (15 in.) = 2.88 in.2

Use 4 #8 bars (3.14 in.2)

Since Kn and Rn are between the radial lines labeled fs/fy = 1.0 and εt = 0.005 on the
interaction diagrams, the φ factor is permitted to be increased from the 0.65 value used. If the
spreadsheet for rectangular columns given in Chapters 9 and 10 is used, an area of reinforcing
of only 1.80 in.2 is found to be sufficient. This significant reduction occurs because of the
increased φ factor in this region.

Most columns are designed for multiple load combinations, and the designer must be
certain that the column is able to resist all of them. Often there are some columns with high
axial load and low moment, such as 1.2D + 1.6L, and others with low axial load and high
moment, such as 0.9D + 1.6E. The first of these is likely to have a φ factor of 0.65. The
second, however, is more likely to be eligible for the increase in the φ factor.

In this example, the authors assumed that the frame was braced, and yet we have said
that frames are often in that gray area between being fully braced and fully unbraced. Assuming
a frame is fully braced clearly may be quite unconservative.

11.10 Magnification of Column Moments in Sway Frames
Tests have shown that even though the lateral deflections in unbraced frames are rather small,
their buckling loads are far less than they would be if the frames had been braced. As a
result, the buckling strengths of the columns of an unbraced frame can be decidedly increased
(perhaps by as much as two or three times) by providing bracing.

If a frame is unbraced against sidesway, it is first necessary to compute its slenderness
ratio. If klu/r is less than 22, slenderness may be neglected (ACI 10.10.1). For this discussion,
it is assumed that values greater than 22 are obtained.

When sway frames are involved, it is necessary to decide for each load combination
which of the loads cause appreciable sidesway (probably the lateral loads) and which do not.
The factored end moments that cause sidesway are referred to as M1s and M2s , and they must
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be magnified because of the P� effect. The other end moments, resulting from loads that do
not cause appreciable sidesway, are M1ns and M2ns . They are determined by first-order analysis
and will not have to be magnified.

The code (10.10.7) states that the moment magnifier, δs , can be determined by one of
the following two methods.

1. The moment magnifier may be calculated with the equation given at the end of this
paragraph in which Q is the stability index previously presented in Section 11.2 of this
chapter. Should the computed value of δs be greater than 1.5, it will be necessary to
compute δs by ACI Section 10.10.7.4 or by a second-order analysis.

δs = 1

1 − Q
≥ 1 (ACI Equation 10-20)

2. With the second method and the one used in this chapter, the magnified sway moments
may be computed with the following expression:

δs = 1

1 − �Pu

0.75�Pc

≥ 1 (ACI Equation 10-21)

In this last equation, �Pu is the summation of all the vertical loads in the story in
question, and �Pc is the sum of all the Euler buckling loads, Pc = π2EI /(klu )2, for all of
the sway-resisting columns in the story with k values determined as described in ACI Section
10.10.7.2. This formula reflects the fact that the lateral deflections of all the columns in a
particular story are equal, and thus the columns are interactive.

Whichever of the preceding methods is used to determine the δs values, the design
moments to be used must be calculated with the expressions that follow.

M1 = M1ns + δsM1s (ACI Equation 10-18)

M2 = M2ns + δsM2s (ACI Equation 10-19)
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Reinforced concrete columns and shearwalls supporting structural steel roof.
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Sometimes the point of maximum moment in a slender column will fall between its
ends. The ACI Commentary (R10.10.2.2) says the moment magnification for this case may be
evaluated using the procedure described for nonsway frames (ACI Section 10.10.6).

Example 11.4 illustrates the design of a slender column subject to sway.

Example 11.4

Select reinforcing bars using the moment magnification method for the 18 in. × 18 in. unbraced
column shown in Figure 11.8 if lu = 17.5 ft, k = 1.3, fy = 60 ksi, and f ′

c = 4 ksi. A first-order
analysis has resulted in the following axial loads and moments:

PD = 300 k MD = 48 ft-k

PL = 150 k ML = 25 ft-k

PW = 272 k MW = 32 ft-k

The loading combination assumed to control for the case with no sidesway is ACI Equation 9.2
(Section 4.1 of this text).

PU = 1.2PD + 1.6PL = 1.2(300 k) + 1.6(150 k) = 600 k

MU = 1.2MD + 1.6ML = 1.2(48 ft-k) + 1.6(25 ft-k) = 97.6 ft-k = M2ns

The loading combination assumed to control with sidesway is ACI Equation 9.6.

PU = 0.9PD + 1.0PW = 0.9(300 k) + 1.0(272 k) = 542 k

MU = 0.9MD + 1.0MW = 0.9(48 ft-k) + 1.0(32 ft-k) = 75.2 ft-k

M2s = 1.0MW = (1.0) (32 ft-k) = 32 ft-k

Note that ACI Equation 9.3 or 9.4 may also control for sidesway, but in this case it is unlikely.

�Pu = 12,000 for all columns on floor

�Pc = 60,000 for all columns on floor

SOLUTION

Is it a slender column? (ACI Section 10.13.2)

klu

r
= (1.3) (12 in/ft) (17.5 ft)

(0.3) (18 in.)
= 50.55 > 22 Yes

18 in.

18 in.
13 in.

2 in.1
2

2 in.1
2

FI GU RE 11.8 Column cross section for
Example 11.4.
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Calculating the Magnified Moment δs

δs = 1

1 − �Pu

0.75�Pc (ACI Equation 10-18)

= 1

1 − 12,000 k
(0.75) (60,000 k)

= 1.364

Computing Magnified Moment M2

M2 = M2ns + δsM2s (ACI Equation 10-19)

= 97.6 ft-k + (1.364) (32 ft-k) = 141.2 ft-k

Is M2ns ≥ minimum value permitted in ACI Section 10.10.6.5?

M2 min = Pu(0.6 + 0.03h) (ACI Equation 10-17)

= (542 k) (0.6 + 0.03 × 18 in.) = 617.9 in-k

= 51.5 ft-k < 97.6 ft-k Yes

Selecting Reinforcing

γ = 13 in.
18 in.

= 0.722 with reference to Figure 11.8

Pn = Pu

φ
= 542 k

0.65
= 833.8 k

e = (12 in/ft) (141.2 ft-k)
542 k

= 3.13 in.

Kn = Pn

f ′
cAg

= 833.8 k
(4 ksi) (18 in. × 18 in.)

= 0.643

Rn = Pn

f ′
cAg

e
h

= (0.643)
(

3.13 in.
18 in.

)
= 0.112

By interpolation between Appendix A, Graphs 3 and 4, we find ρz is less than 0.01, so use 0.01.

As = ρzAg = (0.01) (18 in. × 18 in.) = 3.24 in.2

Use 6 #7 bars (3.61 in.2)

11.11 Analysis of Sway Frames
The frame of Figure 11.9 is assumed to be unbraced in the plane of the frame. It supports
a uniform gravity load, wu , and a short-term concentrated lateral load, Pw . As a result, it is
necessary to consider both the moments resulting from the loads that do not cause appreciable
sidesway and the loads that do. It will, therefore, be necessary to compute both δ and δs values,
if the column proves to be slender.

The Ms values are obviously caused by the lateral load in this case. The reader should
realize, however, that if the gravity loads and/or the frame are unsymmetrical, additional Ms
or sidesway moments will occur.

If we have an unbraced frame subjected to short-term lateral wind or earthquake loads,
the columns will not have appreciable creep (which would increase lateral deflections and,
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columns 12 in. × 12 in.

beam 12 in. × 18 in.

wD = 1 k/ft, wL = 2 k/ft

30 ft

12 ft

FI GU RE 11.9 Sway frame for Example 11.5.

thus, the P� moments). The effect of creep is accounted for in design by reducing the stiffness
EI used to calculate Pc and thus δs by dividing EI by 1 + βdns , as specified in ACI Section
10.10.6.1. Both the concrete and steel terms in ACI Equation 10-14 are divided by this value. In
the case of sustained lateral load, such as soil backfill or water pressure, ACI Section 10.10.4.2
requires that the moments of inertia for compression members in Section 11.6 be divided by
(1 + βds ). The term βds is the ratio of the maximum factored sustained shear within a story to
the maximum factored shear in that story for the same load combination.

To illustrate the computation of the magnified moments needed for the design of a slender
column in a sway frame, the authors have chosen the simple frame of Figure 11.9. We hope
thereby that the student will not become lost in a forest of numbers, as he or she might if a
large frame were considered.

The beam and columns of the frame have been tentatively sized, as shown in the figure.
In Example 11.5, the frame is analyzed for each of the conditions specified in ACI Section 9.2
using 1.0W.

In the example, the magnification factors δ and δs are computed for each of the loading
conditions and used to compute the magnified moments. Notice in the solution that different
k values are used for determining δ and δs . The k for the δ calculation is determined from the
alignment chart of Figure 11.3(a) for braced frames, whereas the k for the δs calculation is
determined from the alignment chart of Figure 11.3(b) for unbraced frames.

Example 11.5

Determine the moments and axial forces that must be used for the design of column CD of the
unbraced frame of Figure 11.9. Consider only bending in the plane of the frame. The assumed
member sizes shown in the figure are used for the analyses given in the problem. fy = 60,000 psi
and f ′

c = 4000 psi. For this example, the authors considered the load factor cases of ACI
Equations 9-2, 9-4, and 9-6. For other situations, other appropriate ACI load factor equations
will have to be considered.

SOLUTION

1. Determine the effective length factor for the sway case using 0.35Ig for the girder and 0.70Ig
for the columns.

Icolumn = (0.70)
(

1
12

)
(12 in.) (12 in.)3 = 1210 in.4
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Note that if the lateral load were sustained, Icolumn would be divided by (1 + βds ).

Igirder = (0.35)
(

1
12

)
(12 in.) (18 in.)3 = 2041 in.4

ψB =
1210 in.4

12 ft
2041 in.4

30 ft

= 1.48

ψA = ∞ for pinned ends (For practical purposes, use 10.)

k = 1.95 from Figure 11.3(b)

2. Is it a slender column?

lu = 12 ft − 9 in.
12 in/ft

= 11.25 ft

Max
klu

r
to be a short column = 22 for sway frames

klu

r
= (1.95) (12 in/ft × 11.25 ft)

0.3 × 12 in.
= 73.12 > 22

∴ It is a slender column

3. Consider the loading case U = 1.2D + 1.6L (see Figure 11.10).

(a) Are column moments ≥ ACI minimum?

emin = 0.6 + 0.03 × 12 in. = 0.96 in.

M2 min = (66 k) (0.96 in.) = 63.36 in-k = 5.28 ft-k < 173.5 ft-k (see Figure 11.10) OK

wu = (1.2)(1 k/ft) + (1.6)(2 k/ft) = 4.4 k/ft

M2b = 173.5 ft-k (from
indeterminate structural
analysis not shown)

F I GU RE 11.10 Loading 1.2D + 1.6L.
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(b) Compute the magnification factor δ:

Ec = 57,000
√

4000 psi = 3,605,000 psi = 3605 ksi

βd = (1.2) (1 klf)
(1.2) (1 klf) + (1.6) (2 klf)

= 0.273

EI = (0.4) (3605 ksi) (1728 in.4)
1 + 0.273

= 1.96 × 106 k-in.2

Assuming conservatively that k = 1.0 for computing Pc

Pc = (π2) (1.96 × 106 k-in.2)
(1.0 × 12 in/ft × 11.25 ft)2

= 1061 k

Cm = 0.6 + (0.4)
( −0 ft-k

+173.5 ft-k

)
= 0.6

δns = 0.6

1 − 66 k
(0.75) (1061 k)

= 0.65 < 1.0 Use 1.0

(c) Compute the magnification factor δs:

Using k = 1.95 as given for determining Pc

Pc = (π2) (1.96 × 106 k-in.2)
(1.95 × 12 in/ft × 11.25 ft)2

= 279.1 k

δs = 1

1 − �Pu

0.75�Pc

= 1

1 − (2) (66 k)
(0.75) (2 × 279.1 k)

= 1.46

(d) Compute the magnified moment:

Mc = (1.0) (173.5 ft-k) + (1.47) (0 ft-k) = 173.9 ft-k

4. Consider the loading case U = (1.2D + 1.0L + 1.0W) as specified in ACI Code Section 9.2.1(b).
Analysis results are shown in Figure 11.11.

(a) Are column moments ≥ ACI minimum?

emin = 0.6 in. + 0.03 × 12 in. = 0.96 in.

M2 min = (48 k) (0.96 in.) = 46.08 in-k = 3.84 ft-k < 126.2 ft-k OK

(b) Computing δ:
βns, EI, and Pc are the same as before

Cm = 0.6 + 0.4
( −0 ft-k

126.2 ft-k

)
= 0.6

δ = 0.6

1 − 48 k + 5.12 k
0.75 × 1061 k

= 0.64 Use 1.0
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(a) Loading 1.2D + 1.0L (b) Loading 1.0W

5.12 k48 k48 k 5.12 k

126.2 ft-k

(1.2)(1) + (1.0)(2) = 3.2 k/ft

(1.0)(12.8) = 12.8 k 76.8 ft-k

F I GU RE 11.11 Nonsway and sway load cases for U = 1.2D + 1.0L + 1.0W.

(c) Computing δs:

βdns = 1.2D
1.2D + 1.0L + 1.0W

= 18 k
18 k + 30 k + 5.12 k

= 0.339

EI = (0.4) (3605 ksi) (1728 in.4)
1 + 0.339

= 1.86 × 106 k-in.2

Pc = (π2) (1.86 × 106 k-in.2)
(1.95 × 12 in/ft × 11.25 ft)2

= 264.9 k

δs = 1

1 + �Pu

0.75�Pc

= 1

1 − (2) (48 k) + 5.12 k − 5.12 k
0.75 × 2 × 264.9 k

= 1.32

(d) Compute the magnified moment:

Mc = (1.0) (126.2 ft-k) + (1.32) (76.8 ft-k) = 227.6 ft-k

5. Consider the loading case 0.9D + 1.0W. Analysis results are shown in Figure 11.12.

(a) Are column moments ≥ ACI minimum?

emin = 0.6 in. + 0.03 × 12 in. = 0.96 in.

M2 min = (13.5 k) (0.96 in.) = 12.96 in-k = 1.08 ft-k < 35.5 ft-k OK

(b) Computing δ:

βdns = 0.9D
0.9D + 1.0W

= 13.5 k
13.5 k + 5.12 k

= 0.725

EI = (0.4) (3605 ksi) (1728 in.4)
1 + 0.725

= 1.44 × 106 k-in.2

Pc = (π2) (1.44 × 106 k-in.2)
(1.00 × 12 in/ft × 11.25 ft)2

= 780 k
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(0.9)(1) = 0.9 k/ft

(1.0)(12.8 k) = 12.8 k/ft 76.8 ft-k

35.5 ft-k

13.5 k 13.5 k 5.12 k 5.12 k

(b) Loading 1.0W(a) Loading 0.9D

F I GU RE 11.12 Nonsway and sway load cases for U = 0.9D + 1.0W.

Cm = 0.6 + 0.4
( −0 ft-k

35.5 ft-k

)
= 0.6

δ = 0.6

1 − 13.5 k + 13.5 k
0.75 × 2 × 780 k

= 0.61 < 1.0 Use 1.0

(c) Computing δs:

βd = 0.725 (from previous step)

EI = 1.44 × 106 k-in.2

Pc = 780 k

1.952
= 205 k

δs = 1

1 − (2) (13.5 k) + 5.12 k − 5.12 k
0.75 × 2 × 205 k

= 1.096

(d) Calculate moment:

Mc = (1.0) (35.5 ft-k) + (1.096) (76.8 ft-k) = 119.7 ft-k

6. Summary of axial loads and moments to be used in design:

Loading I: Pu = 66 k, Mc = 173.5 ft-k

Loading II: Pu = 48 k + 5.12 k = 53.12 k, Mc = 227.6 ft-k

Loading III: Pu = 13.5 k + 5.12 k = 18.62 k, Mc = 119.7 ft-k

Note: Should the reader now wish to determine the reinforcing needed for the above loads and
moments, he or she will find that the steel percentage is much too high. As a result, a larger
column will have to be used.
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11.12 Computer Examples
The Excel spreadsheet provided for Chapter 11 computes the effective length factor, k, for both
braced and unbraced frames. It uses the same method as Example 11.1, with the exception that
it uses the equations from Section 11.5 instead of the Jackson-Moreland Alignment Chart to
determine k.

Example 11.6

Repeat Example 11.1, using the Excel spreadsheet for Chapter 11.

SOLUTION

Open the Chapter 11 spreadsheet and select the k factor tab. Enter the values of the cells
highlighted in yellow (only in the Excel spreadsheets, not in the printed example). Note that a
value of b = 0 is entered for member AB, since it does not exist. The software determines a
value of �A = 2.99 and �B = 2.31. These values are the same as those calculated by hand in
Example 11.1. The value of k from the spreadsheet is 1.72 if the frame is unbraced compared
with 1.74 from the Jackson-Moreland Alignment Chart. If the frame were braced, the software
would give a value of k = 0.96. The Jackson-Moreland Alignment Chart gives a value of 0.87.
The equations in Section 11.5 do not agree well with the chart in the case of braced frames.

f ' = psi4000 f ' = 4000

in.12bBeam EBin.0bCol AB
in.18hin.12h

20spanft15col ht.
0.70Ig 0 in.4 0.35Ig 2041 in.4

12bCol BC in.2 12bBeam BF
18h20h

in.24spanft10col ht.
0.70Ig 5600 0.35Ig 2041 in.4

in.12bBeam CGin.12bCol CD
20h in.4 24h

ft20spanft12col ht.
0.70Ig 5600 0.35Ig 4838 in.4

k12bBeam CH
k24h

24span
0.35Ig 4838 in.4

GirdersColumns A

B

C

D

E F

G H

Ec × 0.70Ig⎢lAB + Ec × 0.70Ig⎢lBC Braced

Ec × 0.35Ig⎢lBE + Ec × 0.35Ig⎢lBF
k = 0.7 + 0.05(ΨA + ΨB) < 1.0 = 0.965
k = 0.85 + 0.05Ψmin < 1.0 

Ec × 0.70Ig⎢lBC + Ec × 0.70Ig⎢lCD

Ec × 0.35Ig⎢lCG + Ec × 0.35Ig⎢lCH
k = 1.72

Ψmin = 2.315

Ψm = 2.654

2.993

2.315

ΨB =

ΨC =

k = 0.965

Unbraced

Braced

= 0.966

This spreadsheet calculates the k factor for column BC.
Enter the values of cells in yellow highlight.
If you do not have all the members shown, enter b = 0 for the missing member.

cc
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Example 11.7

Repeat Example 11.3, using the Excel spreadsheet for Chapter 11.

SOLUTION

Open the Chapter 11 spreadsheet and select the ‘‘slender column braced rect.’’ tab. Enter the
values in the cells highlighted in yellow. The value of As entered is zero since the column is not
yet designed. The software automatically uses ACI Equation 10-15 in this case. If a value for
As is entered, the software compares the value of EI from ACI Equations 10-15 and 10-16 and
uses the larger. The final value of δ is 1.093, which is in agreement with the solution obtained in
Example 11.3. The final magnified moment, δM2, equals 93.97 ft-k. To complete the design, the
Column Design spreadsheets for Chapters 9 and 10 can be used.

f ' 4000

γ 145
in.

psi

pcf
12bColumn

in.15h

u ft.16

Ast 0 in.2

ρg 0

Col loads PD k30

PL k46.25

M2D ft-k10

M2L ft-k46.25

PU k110

M2 ft-k86

M1D ft-k10

M1L ft-k43.75

M1 ft-k82

Cm 0.9814

0.83k
k`u⎢r 35.41

34-12M1⎢M2 22.56

Is k`u⎢r < 34-12M1⎢M2 consider slenderness

Ec psi3644

7.96n
Ig 3375 in.4

γ 0.67
βdns 0.327

n 0.500
0.4EcIgn 4920 k-in.2

EI = 0.4EIn⎢1 + βd 3707 k-in.2

Pc k1440

M2 min ft-k9.625

—
δ 1.093

δM2 ft-k93.97

PU k110
δM2 ft-k93.97

Slender Column Braced - Rectangular

Use the Chapter 10 spreadsheet to design this column for

c
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P R O B L E M S

Problem 11.1 Using the alignment charts of Figure 11.3,
determine the effective length factors for columns CD and DE
for the braced frame shown. Assume that the beams are
12 in. × 20 in. and the columns are 12 in. × 16 in. Use 0.70
gross moments of inertia of columns and 0.35 gross moments of
inertia of beams. Assume ψA and ψC = 10. (Ans. 0.93, 0.88)

24 ft 24 ft

12 ft

CA

B
D

E

12 ft

Problem 11.2 Repeat Problem 11.1 if the column
bases are fixed.

Problem 11.3 Using the alignment charts of Figure 11.3, determine the effective length factors for columns AB and BC of the
braced frame shown. Assume that all beams are 12 in. × 20 in. and all columns are 12 in. × 16 in. Use 0.70 gross moments of
inertia of columns and 0.35 gross moments of inertia of beams. Assume far ends of beams are pinned, and use ψA = 10.
(Ans. 0.93, 0.88)

28 ft

A

B

C

28 ft 28 ft

14 ft

14 ft

Problem 11.4 Repeat Problem 11.3 if the frame is unbraced.
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Problem 11.5 The tied column shown is to be used in a
braced frame. It is bent about its y-axis with the factored
moments shown and lu is 16 ft. If k = 1.0, fy = 60,000 psi,
and f ′

c = 4000 psi, select the reinforcing required. Assume
PD = 50 k. (One ans. δ = 1.18, 6 #7)

14 in.

14 in.

9 in.

in.2 1
2

in.2 1
2

Problem 11.6 Repeat Problem 11.5 with EI based on the bar
sizes given as the answer for that problem.

Problem 11.7 Repeat Problem 11.5 if the column is bent in
reverse curvature, and its length is 20 ft. Use ACI Equation
10-15 for El. (One ans. δ = 1.0, 6 #6)

For Problems 11.8 to 11.12 and the braced tied columns given, select reinforcing bars (placed in two faces) if the distance from the
column edge to the c.g. of the bars is 2.5 in., fy = 60 ksi, and f ′

c = 4 ksi. Rectangular columns are bent about their strong axis. Use
ACI Equation 10-15 for EI.

Not
Column size factored Factored Factored

Problem No. b × h (in.) lu (ft) k Pu (k) PD (k) M1b (ft-k) M2b (ft-k) Curvature

11.8 14 × 14 12 1.0 400 100 75 85 Single

11.9 16 × 16 16 1.0 500 120 100 120 Double (One ans. δ = 1.0, 6 #9)

11.10 16 × 18 15 0.85 250 40 100 120 Single

11.11 12 × 20 16 0.80 500 120 80 100 Single (One ans. δ = 1.12, 4 #9)

11.12 14 × 18 18 0.90 600 150 100 130 Double

Problem 11.13 Repeat Problem 11.9 using single curvature and ACI Equation 10-14 for EI. Assume six #9 bars to calculate EI.
(One ans. δ = 1.44, 8 #10)

For Problems 11.14 to 11.17 and the unbraced tied columns given, select reinforcing bars (placed in two faces) if the distance from
the column edge to the c.g. of the bars is 2.5 in., fy = 60 ksi, and f ′

c = 4 ksi. Rectangular columns are bent about their strong axis.
None of the wind load is considered sustained. Use ACI Equation 10-15 for EI.

Mu

∑
Pu (k)

∑
Pc (k)

Pu (k) for Pu (k) (ft-k) for all for all
Column size loads not due to M1ns M2ns due to columns columns

Problem No. b × h (in.) lu (ft) k considered sway wind (ft-k) (ft-k) wind on floor on floor

11.14 16 × 20 15 1.3 500 110 80 90 100 12,000 34,000

11.15 14 × 18 12 1.4 300 80 70 75 80 10,000 30,000 (One ans. 6 #11)

11.16 16 × 20 16 1.65 500 140 110 140 120 16,500 80,000

11.17 15 × 20 12 1.5 480 140 90 120 110 14,000 36,200 (One ans. 10 #11)
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SI Problems
For Problems 11.18 to 11.20 and the braced tied columns given, select reinforcing bars (placed in two faces) if the distances from
column edges to c.g. of bars are 75 mm each. To be able to use Appendix A graphs, use fy = 413.7 MPa and f ′

c = 27.6 MPa.
Also remember to apply the conversion factor. Use ACI Equation 10-15 for EI.

M1b M2b
Column size PD not factored factored

Problem No. b × d (mm) lu (m) k Pu (kN) factored (kN) (kN •m) (kN •m) Curvature

11.18 450 × 450 4 1.0 1800 400 80 100 Single

11.19 300 × 400 5 0.92 2200 500 110 125 Double (One ans.
6 #32)

11.20 300 × 500 6 0.88 2400 550 120 140 Single

For Problems 11.21 to 11.23 and the unbraced tied columns given, select reinforcing bars (placed on two faces) if the distance
from the column edge to the c.g. of the bars is 75 mm. fy = 420 MPa and f ′

c = 28 MPa. Remember to apply the conversion
factor. Use ACI Equation 10-15 for EI.

Pu (kN) Mu

∑
Pu (kN)

∑
Pc (kN)

not Pu (kN) (kN •m) for all for all
Column size considered due to M1ns M2ns due to columns columns

Problem No. b × d (in.) lu (m) k sway wind (kN •m) (kN •m) wind on floor on floor

11.21 300 × 400 5 1.2 400 1200 40 50 60 40 000 110 000 (One ans.
6 #32)

11.22 300 × 500 4 1.3 500 1800 50 60 70 44 000 125 000

11.23 350 × 600 6 1.35 600 2500 65 90 110 50 000 156 000 (One ans.
6 #32)
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CHAPTER 12Footings

12.1 Introduction
Footings are structural members used to support columns and walls and transmit their loads
to the underlying soils. Reinforced concrete is a material admirably suited for footings and is
used as such for both reinforced concrete and structural steel buildings, bridges, towers, and
other structures.

The permissible pressure on a soil beneath a footing is normally a few tons per square
foot. The compressive stresses in the walls and columns of an ordinary structure may run as
high as a few hundred tons per square foot. It is, therefore, necessary to spread these loads
over sufficient soil areas to permit the soil to support the loads safely.

Not only is it desired to transfer the superstructure loads to the soil beneath in a manner
that will prevent excessive or uneven settlements and rotations, but it is also necessary to
provide sufficient resistance to sliding and overturning.

To accomplish these objectives, it is necessary to transmit the supported loads to a soil
of sufficient strength and then to spread them out over an area such that the unit pressure is
within a reasonable range. If it is not possible to dig a short distance and find a satisfactory
soil, it will be necessary to use piles or caissons to do the job. These latter subjects are not
considered within the scope of this text.

The closer a foundation is to the ground surface, the more economical it will be to
construct. There are two reasons, however, that may keep the designer from using very shallow
foundations. First, it is necessary to locate the bottom of a footing below the ground freezing
level to avoid vertical movement or heaving of the footing as the soil freezes and expands in
volume. This depth varies from about 3 ft to 6 ft in the northern states and less in the southern
states. Second, it is necessary to excavate a sufficient distance so that a satisfactory bearing
material is reached, and this distance may on occasion be quite a few feet.

12.2 Types of Footings
Among the several types of reinforced concrete footings in common use are the wall, isolated,
combined, raft, and pile-cap types. These are briefly introduced in this section; the remainder
of the chapter is used to provide more detailed information about the simpler types of this
group.

1. A wall footing, as shown in Figure 12.1(a), is simply an enlargement of the bottom of
a wall that will sufficiently distribute the load to the foundation soil. Wall footings are
normally used around the perimeter of a building and perhaps for some of the interior
walls.

2. An isolated or single-column footing, as shown in Figure 12.1(b), is used to support the
load of a single column. These are the most commonly used footings, particularly where
the loads are relatively light and the columns are not closely spaced.

347
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(a) Wall footing

wall

(d) Mat or raft or floating foundation

(e) Pile cap

(c) Combined footing

(b) Isolated or single-
 column footing

FI GU RE 12.1 Types of footings.
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Pouring concrete, Big Dig, Boston, Massachusetts.

3. Combined footings are used to support two or more column loads, Figure 12.1(c). A
combined footing might be economical where two or more heavily loaded columns are
so spaced that normally designed single-column footings would run into each other.
Single-column footings are usually square or rectangular and, when used for columns
located right at property lines, extend across those lines. A footing for such a column
combined with one for an interior column can be designed to fit within the property
lines.

4. A mat or raft or floating foundation, Figure 12.1(d), is a continuous reinforced concrete
slab over a large area used to support many columns and walls. This kind of foundation
is used where soil strength is low or where column loads are large but where piles
or caissons are not used. For such cases, isolated footings would be so large that it
is more economical to use a continuous raft or mat under the entire area. The cost of
the formwork for a mat footing is far less than is the cost of the forms for a large
number of isolated footings. If individual footings are designed for each column and
if their combined area is greater than half of the area contained within the perimeter
of the building, it is usually more economical to use one large footing or mat. The
raft or mat foundation is particularly useful in reducing differential settlements between
columns—the reduction being 50% or more. For these types of footings, the excavations
are often rather deep. The goal is to remove an amount of earth approximately equal to
the building weight. If this is done, the net soil pressure after the building is constructed
will theoretically equal what it was before the excavation was made. Thus, the building
will float on the raft foundation.

5. Pile caps, Figure 12.1(e), are slabs of reinforced concrete used to distribute column loads
to groups of piles.
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12.3 Actual Soil Pressures
The soil pressure at the surface of contact between a footing and the soil is assumed to be
uniformly distributed as long as the load above is applied at the center of gravity of the footing,
Figure 12.2(a). This assumption is made even though many tests have shown that soil pressures
are unevenly distributed due to variations in soil properties, footing rigidity, and other factors.

As an example of the variation of soil pressures, footings on sand and clay soils are
considered. When footings are supported by sandy soils, the pressures are larger under the
center of the footing and smaller near the edge, Figure 12.2(b). The sand at the edges of the
footing does not have a great deal of lateral support and tends to move from underneath the
footing edges, with the result that more of the load is carried near the center of the footing.
Should the bottom of a footing be located at some distance from the ground surface, a sandy
soil will provide fairly uniform support because it is restrained from lateral movement.

assumed condition
(uniform pressure)

sandy soil

clayey soil

(c)

(b)

(a)

FI GU RE 12.2 Soil conditions.
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Just the opposite situation is true for footings supported by clayey soils. The clay under
the edges of the footing sticks to or has cohesion with the surrounding clay soil. As a result,
more of the load is carried at the edge of the footing than near the middle [see Figure 12.2(c)].

The designer should clearly understand that the assumption of uniform soil pressure
underneath footings is made for reasons of simplifying calculations and may very well have
to be revised for some soil conditions.

Should the load be eccentrically applied to a footing with respect to the center of gravity
of the footing, the soil pressure is assumed to vary uniformly in proportion to the moment, as
illustrated in Section 12.12 and Figure 12.23.

12.4 Allowable Soil Pressures
The allowable soil pressures to be used for designing the footings for a particular structure are
preferably obtained by using the services of a geotechnical engineer. He or she will determine
safe values from the principles of soil mechanics on the basis of test borings, load tests,
and other experimental investigations. Other issues may enter into the determination of the
allowable soil pressures, such as the sensitivity of the building frame to deflection of the
footings. Also, cracking of the superstructure resulting from settlement of the footings would
be much more important in a performing arts center than a warehouse.

Because such investigations often may not be feasible, most building codes provide
certain approximate allowable bearing pressures that can be used for the types of soils and
soil conditions occurring in that locality. Table 12.1 shows a set of allowable values that are
typical of such building codes. It is thought that these values usually provide factors of safety
of approximately three against severe settlements.

Section 15.2.2 of the ACI Code states that the required area of a footing is to be deter-
mined by dividing the anticipated total load, including the footing weight, by a permissible soil
pressure or permissible pile capacity determined using the principles of soil mechanics. It will
be noted that this total load is the unfactored load, and yet the design of footings described in
this chapter is based on strength design, where the loads are multiplied by the appropriate load

TABLE 12.1 Maximum Allowable Soil Pressure

Maximum Allowable Soil Pressure

U.S. Customary Units SI Units
Class of Material (kips/ft2) (kN/m2)

20% of ultimate 20% of ultimate
Rock crushing strength crushing strength

Compact coarse sand, compact fine
sand, hard clay, or sand clay 8 385

Medium stiff clay or sandy clay 6 290

Compact inorganic sand and
silt mixtures 4 190

Loose sand 3 145

Soft sand clay or clay 2 95

Loose inorganic sand–silt mixtures 1 50

Loose organic sand–silt mixtures,
muck, or bay mud 0 0
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factors. It is obvious that an ultimate load cannot be divided by an allowable soil pressure to
determine the bearing area required.

The designer can handle this problem in two ways. He or she can determine the bearing
area required by summing up the actual or unfactored dead and live loads and dividing them
by the allowable soil pressure. Once this area is determined and the dimensions are selected,
an ultimate soil pressure can be computed by dividing the factored or ultimate load by the area
provided. The remainder of the footing can then be designed by the strength method using this
ultimate soil pressure. This simple procedure is used for the footing examples here.

The 1971 ACI Commentary (15.2) provided an alternative method for determining the
footing area required that will give exactly the same answers as the procedure just described. By
this latter method, the allowable soil pressure is increased to an ultimate value by multiplying
it by a ratio equal to that used for increasing the magnitude of the service loads. For instance,
the ratio for D and L loads would be

Ratio = 1.2D + 1.6L

D + L

Or for D + L + W , and so on

Ratio = 1.2D + 1.6W + 1.0L + 0.5(Lr or S or R)

D + L + W + (Lr or S or R)

The resulting ultimate soil pressure can be divided into the ultimate column load to determine
the area required.

12.5 Design of Wall Footings
The theory used for designing beams is applicable to the design of footings with only a few
modifications. The upward soil pressure under the wall footing of Figure 12.3 tends to bend
the footing into the deformed shape shown. The footings will be designed as shallow beams
for the moments and shears involved. In beams where loads are usually only a few hundred
pounds per foot and spans are fairly large, sizes are almost always proportioned for moment.
In footings, loads from the supporting soils may run several thousand pounds per foot and
spans are relatively short. As a result, shears will almost always control depths.

It appears that the maximum moment in this footing occurs under the middle of the
wall, but tests have shown that this is not correct because of the rigidity of such walls. If the
walls are of reinforced concrete with their considerable rigidity, it is considered satisfactory
to compute the moments at the faces of the walls (ACI Code 15.4.2). Should a footing be
supporting a masonry wall with its greater flexibility, the code states that the moment should
be taken at a section halfway from the face of the wall to its center. (For a column with a
steel base plate, the critical section for moment is to be located halfway from the face of the
column to the edge of the plate.)

To compute the bending moments and shears in a footing, it is necessary to compute
only the net upward pressure, qu , caused by the factored wall loads above. In other words, the
weight of the footing and soil on top of the footing can be neglected. These items cause an
upward pressure equal to their downward weights, and they cancel each other for purposes of
computing shears and moments. In a similar manner, it is obvious that there are no moments
or shears existing in a book lying flat on a table.

Should a wall footing be loaded until it fails in shear, the failure will not occur on a
vertical plane at the wall face but rather at an angle of approximately 45◦ with the wall, as
shown in Figure 12.4. Apparently the diagonal tension, which one would expect to cause cracks
in between the two diagonal lines, is opposed by the squeezing or compression caused by the
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FI GU RE 12.3 Shear and moment diagram for wall footing with
uniform soil pressure.

downward wall load and the upward soil pressure. Outside this zone, the compression effect is
negligible in its effect on diagonal tension. Therefore, for nonprestressed sections, shear may
be calculated at a distance d from the face of the wall (ACI Code 11.1.3.1) because of the
loads located outside the section.

The use of stirrups in footings is usually considered impractical and uneconomical. For
this reason, the effective depth of wall footings is selected so that Vu is limited to the design
shear strength, φVc , that the concrete can carry without web reinforcing, that is, φ2λ

√
f ′

cbw d
(from ACI Section 11.3.1.1 and ACI Equation 11-3). Although the equation for Vc contains
the term λ, it would be unusual to use lightweight concrete to construct a footing. The primary
advantage for using lightweight concrete and its associated additional cost is to reduce the
weight of the concrete superstructure. It would not be economical to use it in a footing.

FI GU RE 12.4 Critical section for shear in a
wall footing.
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For this reason, the term λ will not be included in the example problems for this chapter. The
following expression is used to select the depths of wall footings:

d = Vu

(φ)
(
2λ
√

f ′
c

)
(bw )

or for SI units

d = 3Vu

φλ
√

f ′
cbw

The design of wall footings is conveniently handled by using 12-in. widths of the
wall, as shown in Figure 12.5. Such a practice is followed for the design of a wall footing
in Example 12.1. It should be noted that Section 15.7 of the code states that the depth of
a footing above the bottom reinforcing bars may be no less than 6 in. for footings on soils
and 12 in. for those on piles. Thus, total minimum practical depths are at least 10 in. for
regular spread footings and 16 in. for pile caps.

In SI units, it is convenient to design wall footings for 1-m-wide sections of the walls.
The depth of such footings above the bottom reinforcing may not be less than 150 mm
for footings on soils or 300 mm for those on piles. As a result, minimum footing depths
are at least 250 mm for regular spread footings and 400 mm for pile caps.

The design of a wall footing is illustrated in Example 12.1. Although the example prob-
lems and homework problems of this chapter use various f ′

c values, 3000 psi and 4000 psi
concretes are commonly used for footings and are generally quite economical. Occasionally,
when it is very important to minimize footing depths and weights, stronger concretes may
be used. For most cases, however, the extra cost of higher-strength concrete will apprecia-
bly exceed the money saved with the smaller concrete volume. The exposure category of the
footing may control the concrete strength. ACI Section 4.2 requires that concrete exposed to
sulfate have minimum f ′

c values of 4000 psi or 4500 psi, depending on the sulfur concentration
in the soil.

The determination of a footing depth is a trial-and-error problem. The designer assumes
an effective depth, d, computes the d required for shear, tries another d, computes the d required
for shear, and so on, until the assumed value and the calculated value are within about 1 in.
of each other.

FI GU RE 12.5 One-foot design strip width for wall footing.
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You probably get upset when a footing size is assumed here. You say, “Where in the
world did you get that value?” We think of what seems like a reasonable footing size and start
there. We compute the d required for shear and probably find we’ve missed the assumed value
quite a bit. We then try another value roughly two-thirds to three-fourths of the way from the
trial value to the computed value (for wall footings) and compute d. (For column footings, we
probably go about halfway from the trial value to the computed value.) Two trials are usually
sufficient. We have the advantage over you in that often in preparing the sample problems for
this textbook, we made some scratch-paper trials before arriving at the assumed values used.

Example 12.1

Design a wall footing to support a 12-in.-wide reinforced concrete wall with a dead load
D = 20 k/ft and a live load L = 15 k/ft. The bottom of the footing is to be 4 ft below the final
grade, the soil weighs 100 lb/ft3, the allowable soil pressure, qa, is 4 ksf, and there is no
appreciable sulfur content in the soil. fy = 60 ksi and f ′

c = 3 ksi, normal-weight concrete.

SOLUTION

Assume a 12-in.-thick footing (d = 8.5 in.). The cover is determined by referring to the code (7.7.1),
which says that for concrete cast against and permanently exposed to the earth, a minimum of
3 in. clear distance outside any reinforcing is required. In severe exposure conditions, such as high
sulfate concentration in the soil, the cover must be suitably increased (ACI Code Section 7.7.6).

The footing weight is (12 in./12 in/ft) (150 pcf) = 150 psf, and the soil fill on top of the
footing is (36 in./12 in/ft) (100 pcf) = 300 psf. So 450 psf of the allowable soil pressure qa is used
to support the footing itself and the soil fill on top. The remaining soil pressure is available to
support the wall loads. It is called qe, the effective soil pressure

qe = 4000 psf −
(

12 in.
12 in/ft

)
(150 pcf) −

(
36 in.

12 in/ft

)
(100 pcf) = 3550 psf

Width of footing required = 20 k + 15 k
3.55 ksf

= 9.86 ft Say 10 ft 0 in.

Bearing Pressure for Strength Design for a 12 in. width

qu = (1.2) (20 k) + (1.6) (15 k)

10.00 ft2
= 4.80 ksf

Depth Required for Shear at a Distance d from Face of Wall (Figure 12.6)

Vu =
(

10.00 ft
2

− 6 in.
12 in/ft

− 8.5 in.
12 in/ft

)
(4.80 ksf) = 18.20 k

d = 18,200 lb

(0.75) (2
√

3000 psi) (12 in.)
= 18.46 in.

h = 18.46 in. + 3.5 in. = 21.96 in. > 12 in. Try again

Assume 20-in. Footing (d = 16.5 in.)

qe = 4000 psf −
(

20 in.
12 in/ft

)
(150 pcf) −

(
28 in.

12 in/ft

)
(100 pcf) = 3517 psf

Width required = 20 k + 15 k
3.517 ksf

= 9.95 ft Say 10 ft 0 in.
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10 ft 0 in.

FI GU RE 12.6 Critical flexure and shear locations for Example 12.1.

Bearing Pressure for Strength Design

qu = (1.2) (20 k) + (1.6) (15 k)

10.00 ft2
= 4.80 ksf

Depth Required for Shear

Vu =
(

10.00 ft
2

− 6 in.
12 in/ft

− 16.50 in.
12 in/ft

)
(4.80) = 15.0 k

d = 15,000 lb

(0.75) (2
√

3000 psi) (12 in.)
= 15.21 in.

h = 15.21 in. + 3.5 in. = 18.71 in. Use 20-in. total depth

(A subsequent check of a 19-in. footing shows it will not quite work.)

Determine Steel Area (Using d = 16.5 in.)

Taking moments at face of wall (Figure 12.6),

Cantilever length = 10.00 ft
2

− 6 in.
12 in/ft

= 4.50 ft

Mu = (4.50 ft) (4.80 klf) (2.25 ft) = 48.6 ft-k

Mu

φbd2 = (12 in/ft) (48,600 ft-lb)
(0.9) (12 in.) (16.5 in.)2

= 198.3 psi

From Appendix A, Table A.12, ρ = 0.00345 (by interpolation). Since this value of ρ is less than
0.0136 (from Table A.7), the section is tension controlled and φ = 0.9 as assumed.

As = (0.00345) (12 in.) (16.5 in.) = 0.68 in.2 Use #7 @ 10 in. (0.72 in.2 from Table A.6)

Development Length

From Table 7.1 in Chapter 7

ψt = ψe = ψs = λ = 1.0

cb = side cover = 3.50 in. ←
cb = one-half of center-to-center spacing of bars = 1

2
× 10 = 5 in.
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Letting Ktr = 0
cb + Ktr

db
= 3.5 in. + 0 in.

0.875 in.
= 4.0 > 2.5 ∴ Use 2.5

ld

db
= 3

40

fy
λ
√

f ′
c

ψtψeψs
c + Ktr

db

=
(

3
40

)(
60,000 psi

(1)
√

3000 psi

)
(1.0) (1.0) (1.0)

2.5
= 32.86 diameters

ld

db

As reqd

As furn
= (32.86)

(
0.68 in.2

0.72 in.2

)
= 31.03 diameters

ld = (31.03) (0.875 in.) = 27.15 in. Say 28 in.

⎛
⎜⎝Available development length

assuming bars are cut off
3 in. from edge of footing

⎞
⎟⎠ = 10 ft

2
− 6 in. − 3 in.

=

⎛
⎜⎝4 ft 3 in. from face of

wall at section of
maximum moment

⎞
⎟⎠ > 28 in. OK

(The bars should be extended to a point not less than 3 in. or more than 6 in. from the edge of
the footing.)

Longitudinal Temperature and Shrinkage Steel (Perpendicular to the #7 Bars)

As = (0.0018) (12 in.) (20 in.) = 0.432 in.2 (from Appendix A, Table A.6) Use #5 @ 8 in.

12.6 Design of Square Isolated Footings
Single-column footings usually provide the most economical column foundations. Such footings
are generally square in plan, but they can just as well be rectangular or even circular or
octagonal. Rectangular footings are used where such shapes are dictated by the available space
or where the cross sections of the columns are very pronounced rectangles.

Most footings consist of slabs of constant thickness, such as the one shown in
Figure 12.7(a), but if calculated thicknesses are greater than 3 ft or 4 ft, it may be economical
to use stepped footings, as illustrated in Figure 12.7(b). The shears and moments in a footing
are obviously larger near the column, with the result that greater depths are required in that
area as compared to the outer parts of the footing. For very large footings, such as those used
for bridge piers, stepped footings can give appreciable savings in concrete quantities.

Occasionally, sloped footings, shown in Figure 12.7(c), are used instead of stepped ones,
but labor costs can be a problem. Whether stepped or sloped, it is considered necessary to place
the concrete for the entire footing in a single pour to ensure the construction of a monolithic
structure, thus avoiding horizontal shearing weakness. If this procedure is not followed, it is
desirable to use keys or shear friction reinforcing between the parts to ensure monolithic action.
In addition, when sloped or stepped footings are used, it is necessary to check stresses at more
than one section in the footing. For example, steel area and development length requirements
should be checked at steps as well as at the faces of walls or columns.
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Single column footing prior to placement of column reinforcing.

(a) Single-slab footing (b) Stepped footing

(c) Sloped footing

FI GU RE 12.7 Shapes of isolated footings.
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Before a column footing can be designed, it is necessary to make a few comments
regarding shears and moments. This is done in the paragraphs to follow, while a related
subject, load transfer from columns to footings, is discussed in Section 12.8.

Shears

Two shear conditions must be considered in column footings, regardless of their shapes. The
first of these is one-way or beam shear, which is the same as that considered in wall footings
in the preceding section. For this discussion, reference is made to the footing of Figure 12.8.
The total shear (Vu1) to be taken along section 1–1 equals the net soil pressure, qu , times the
hatched area outside the section. In the expression to follow, bw is the whole width of the
footing. The maximum value of Vu1 if stirrups are not used equals φVc , which is φ2

√
f ′

cbw d ,
and the maximum depth required is as follows:

d = Vu1

φ2
√

f ′
cbw

`

`

2
a

d

bw

a
d

d

d

CL

2

`

2
a
2

FI GU RE 12.8 One-way or beam shear.
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The second shear condition is two-way or punching shear (see Figure 12.9). The com-
pression load from the column tends to spread out into the footing, opposing diagonal tension
in that area, with the result that a square column tends to punch out a piece of the slab, which
has the shape of a truncated pyramid. The ACI Code (11.11.1.2) states that the critical section
for two-way shear is located at a distance d/2 from the face of the column.

The shear force, Vu2, consists of all the net upward pressure, qu , on the hatched area
shown, that is, on the area outside the part tending to punch out. In the expressions to follow,
bo is the perimeter around the punching area, equal to 4(a + d) in Figure 12.9. The nominal
two-way shear strength of the concrete, Vc , is specified as the smallest value obtained by
substituting into the applicable equations that follow.

The first expression is the usual punching shear strength

Vc = 4λ
√

f ′
cbod (ACI Equation 11-35)

Tests have shown that when rectangular footing slabs are subjected to bending in two directions
and when the long side of the loaded area is more than two times the length of the short side,
the shear strength Vc = 4λ

√
f ′

cbod may be much too high. In the expression to follow, βc is
the ratio of the long side of the column to the short side of the column, concentrated load, or
reaction area.

Vc =
(

2 + 4

βc

)
λ
√

f ′
cbod (ACI Equation 11-33)

`

`
2

a
2

d
2

`
2

a
a + d

2
d
2

d
2

d

d

part that tends to punch out

a 2

FI GU RE 12.9 Two-way or punching shear.
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The shear stress in a footing increases as the ratio bo/d decreases. To account for this
fact, ACI Equation 11-34 was developed. The equation includes a term αs that is used to
account for variations in the ratio. In applying the equation, αs is to be used as 40 for interior
columns (where the perimeter is four-sided), 30 for edge columns (where the perimeter is
three-sided), and 20 for corner columns (where the perimeter is two-sided).

Vc =
(

αsd

bo
+ 2

)
λ
√

f ′
cbod (ACI Equation 11-34)

The d required for two-way shear is the largest value obtained from the following
expressions:

d = Vu2

φ4λ
√

f ′
cbo

d = Vu2

φ

(
2 + 4

βc

)
λ
√

f ′
cbo

(not applicable unless βc is > 2)

d = Vu2

φ

(
αsd

bo
+ 2

)
λ
√

f ′
cbo

Or in SI units, with f ′
c in MPa and bo and d in mm,

d = 6Vu2

φλ
√

f ′
cbo

d = 6Vu2

φ

(
1 + 8

βc

)
λ
√

f ′
cbo

d = 12Vu2

φ

(
αsd

bo
+ 2

)
λ
√

f ′
cbo

Moments

The bending moment in a square reinforced concrete footing with a square column is the same
about both axes because of symmetry. If the column is not square, the moment will be larger in
the direction of the shorter column dimension. It should be noted, however, that the effective
depth of the footing cannot be the same in the two directions because the bars in one direction
rest on top of the bars in the other direction. The effective depth used for calculations might
be the average for the two directions or, more conservatively, the value for the bars on top.
This lesser value is used for the examples in this text. Although the result is some excess of
steel in one direction, it is felt that the steel in either direction must be sufficient to resist the
moment in that direction. It should be clearly understood that having an excess of steel in one
direction will not make up for a shortage in the other direction at a 90◦ angle.

The critical section for bending is taken at the face of a reinforced concrete column or
halfway between the middle and edge of a masonry wall or at a distance halfway from the edge
of the base plate and the face of the column if structural steel columns are used (Code 15.4.2).

The determination of footing depths by the procedure described here will often require
several cycles of a trial-and-error procedure. There are, however, many tables and handbooks
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available with which footing depths can be accurately estimated. One of these is the previously
mentioned CRSI Design Handbook. In addition, there are many rules of thumb used by designers
for making initial thickness estimates, such as 20% of the footing width or the column diameter
plus 3 in. Computer programs, such as the spreadsheet provided for this chapter, easily handle
this problem.

The reinforcing steel area calculated for footings will often be appreciably less than
the minimum values (200bw d/fy) and

(
3
√

f ′
cbw d/fy

)
specified for flexural members in ACI

Section 10.5.1. In Section 10.5.4, however, the code states that in slabs of uniform thickness,
the minimum area and maximum spacing of reinforcing bars in the direction of bending need
only be equal to those required for shrinkage and temperature reinforcement. The maximum
spacing of this reinforcement may not exceed the lesser of three times the footing thickness,
or 18 in. Many designers feel that the combination of high shears and low ρ values that often
occurs in footings is not a good situation. Because of this, they specify steel areas at least
as large as the flexural minimums of ACI Section 10.5.1. This is the practice we also follow
herein.

Example 12.2 illustrates the design of an isolated column footing.

Example 12.2

Design a square column footing for a 16-in. square tied interior column that supports a dead load
PD = 200 k and a live load PL = 160 k. The column is reinforced with eight #8 bars, the base of
the footing is 5 ft below grade, the soil weight is 100 lb/ft3, fy = 60,000 psi, f ′

c = 3000 psi, and
qa = 5000 psf.

SOLUTION

After Two Previous Trials Assume 24-in. Footing (d = 19.5 in. Estimated to c.g. of Top Layer
of Flexural Steel)

qe = 5000 psf −
(

24 in.
12 in/ft

)
(150 pcf) −

(
36 in.

12 in/ft

)
(100 psf) = 4400 psf

Area required = 200 k + 160 k
4.400 ksf

= 81.82 ft2

Use 9-ft-0-in. × 9-ft-0-in. footing = 81.0 ft2

Bearing Pressure for Strength Design

qu = (1.2) (200 k) + (1.6) (160 k)

81.0 ft2
= 6.12 ksf

Depth Required for Two-Way or Punching Shear (Figure 12.10)

bo = (4) (35.5 in.) = 142 in.

Vu2 = (81.0 ft2 − 2.96 ft2) (6.12 ksf) = 442.09 k

d = 442,090 lb

(0.75) (4
√

3000 psi) (142 in.)
= 18.95 in. < 19.5 in. OK

d = 442,090 lb

0.75
(

40 in. × 19.5 in.
142 in.

+ 2
)√

3000 psi (142 in.)
= 10.12 in. < 19.5 in. OK

Since both values of d are less than the assumed value of 19.5 in., punching shear is OK.
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16 in. + 19.5 in. = 35.5 in. = 2.96 ft

F I GU RE 12.10 Two-way shear for
Example 12.2.

19.5 in. = d

3 ft 10 in. = 3.83 ft

= 2.208 ft2 ft 2 in.1
2

F I GU RE 12.11 One-way shear for
Example 12.2.

Depth Required for One-Way Shear (Figure 12.11)

Vu1 = (9.00 ft) (2.208 ft) (6.12 ksf) = 121.62 k

d = 121,620 lb

(0.75) (2
√

3000 psi) (108 in.)
= 13.71 in. < 19.5 in. OK

Use 24-in. total depth

Mu = (3.83 ft) (9.00 ft) (6.12 ksf)
(

3.83 ft
2

)
= 404 ft-k

Mu

φbd2
= (12 in/ft) (404,000 ft-lb)

(0.9) (108 in.) (19.5 in.)2
= 131.2 psi ∴ ρ = 0.00225 < ρmin for flexure

Use ρ = larger of
200

60,000 psi
= 0.0033 ←

or
3
√

3000 psi
60,000 psi

= 0.00274

As = (0.0033) (108 in.) (19.5 in.) = 6.95 in.2 over the entire 108 in. width.

Use 9 #8 bars in both directions (7.07 in.2)

Development Length

From Table 6.1 in Chapter 6

ψt = ψe = ψs = λ = 1.0

Assuming bars spaced 12 in. on center

leaving 6 in. on each side

cb = bottom cover = 3.5 in.

cb = one-half of center-to-center spacing of bars =
(

1
2

)
(12 in.) = 6 in.
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Letting Ktr = 0
cb + Ktr

db
= 3.5 in. + 0 in.

1.0 in.
= 3.5 > 2.5 ∴ Use 2.5

ld

db
= 3

40

fy
λ
√

f ′
c

ψtψeψs
c + Ktr

db

= 3
40

60,000 psi

(1.0)
√

3000 psi

(1.0) (1.0) (1.0)
2.5

= 32.86 diameters

ld

db

As reqd

As furn
= (32.86)

(
6.95 in.2

7.07 in.2

)
= 32.30 diameters

ld = (32.30) (1.00 in.) = 32.30 in. Say 33 in.

< available ld = 4 ft 6 in. − 16 in.
2

− 3 in.

= 43 in. OK

12.7 Footings Supporting Round or Regular
Polygon-Shaped Columns

Sometimes footings are designed to support round columns or regular polygon-shaped columns.
If such is the case, Section 15.3 of the code states that the column may be replaced with a
square member that has the same area as the round or polygonal one. The equivalent square
is then used for locating the critical sections for moment, shear, and development length.

12.8 Load Transfer from Columns to Footings
All forces acting at the base of a column must be satisfactorily transferred into the footing.
Compressive forces can be transmitted directly by bearing, whereas uplift or tensile forces
must be transferred to the supporting footing or pedestal by means of developed reinforcing
bars or by mechanical connectors (which are often used in precast concrete).

A column transfers its load directly to the supporting footing over an area equal to the
cross-sectional area of the column. The footing surrounding this contact area, however, supplies
appreciable lateral support to the directly loaded part, with the result that the loaded concrete
in the footing can support more load. Thus, for the same grade of concrete, the footing can
carry a larger bearing load than can the base of the column.

In checking the strength of the lower part of the column, only the concrete is counted.
The column-reinforcing bars at that point cannot be counted because they are not developed
unless dowels are provided or unless the bars themselves are extended into the footing.

At the base of the column, the permitted bearing strength is φ(0.85f ′
cA1) (where φ is

0.65), but it may be multiplied by
√

A2/A1 ≤ 2 for bearing on the footing (ACI Code 10.14.1).
In these expressions, A1 is the column area, and A2 is the area of the portion of the supporting
footing that is geometrically similar and concentric with the columns. (See Figure 12.12.)
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Pier bases for bridge from Prince Edward Island to mainland New
Brunswick and Nova Scotia, Canada.

If the computed bearing force is higher than the smaller of the two allowable values in
the column or the footing, it will be necessary to carry the excess with dowels or with column
bars extended into the footing. Instead of using dowels, it is also possible to increase the size
of the column or increase f ′

c . Should the computed bearing force be less than the allowable
value, no dowels or extended reinforcing are theoretically needed, but the code (15.8.2.1) states
that there must be a minimum area of dowels furnished equal to no less than 0.005 times the
gross cross-sectional area of the column or pedestal.

F I GU RE 12.12 Bearing strength area modification.
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141
2
 in.

141
2
 in.

F I GU RE 12.13 Dowel configuration.

The development length of the bars must be sufficient to transfer the compression to
the supporting member, as per the ACI Code (12.3). In no case may the area of the designed
reinforcement or dowels be less than the area specified for the case where the allowable
bearing force was not exceeded. As a practical matter in placing dowels, it should be noted
that regardless of how small a distance they theoretically need to be extended down into the
footing, they are usually bent at their ends and set on the main footing reinforcing, as shown in
Figure 12.13. There the dowels can be tied firmly in place and not be in danger of being pushed
through the footing during construction, as might easily happen otherwise. The bent part of
the bar does not count as part of the compression development length (ACI Code 12.5.5). The
reader should again note that the bar details shown in this figure are not satisfactory for seismic
areas as the bars should be bent inward and not outward.

An alternative to the procedure described in the preceding paragraph is to place the
footing concrete without dowels and then to push straight dowels down into the concrete
while it is still in a plastic state. This practice is permitted by the code in its Section 16.7.1
and is especially useful for plain concrete footings (to be discussed in Section 12.14 of this
chapter). It is essential that the dowels be maintained in their correct position as long as the
concrete is plastic. Before the licensed design professional approves the use of straight dowels
as described here, he or she must be satisfied that the dowels will be properly placed and the
concrete satisfactorily compacted around them.

The code normally does not permit the use of lapped splices for #14 and #18 compression
bars because tests have shown that welded splices or other types of connections are necessary.
Nevertheless, based on years of successful use, the code (15.8.2.3) states that #14 and #18
bars may be lap spliced with dowels (no larger than #11) to provide for force transfer at the
base of columns or walls or pedestals. These dowels must extend into the supported member
a distance of not less than ldc of #14 or #18 bars or the compression lap splice length of the
dowels, whichever is greater, and into the footing a distance not less than ldc of the dowels.

If the computed development length of dowels is greater than the distance available from
the top of the footing down to the top of the tensile steel, three possible solutions are available.
One or more of the following alternatives may be selected:

1. A larger number of smaller dowels may be used. The smaller diameters will result in
smaller development lengths.

2. A deeper footing may be used.

3. A cap or pedestal may be constructed on top of the footing to provide the extra devel-
opment length needed.

Should bending moments or uplift forces have to be transferred to a footing such that the
dowels would be in tension, the development lengths must satisfy the requirements for tension
bars. For tension development length into the footing, a hook at the bottom of the dowel may
be considered effective.

If there is moment or uplift, it will be necessary for the designer to conform to the splice
requirements of Section 12.17 of the code in determining the distance the dowels must be
extended up into the wall or column.
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Examples 12.3 and 12.4 provide brief examples of column-to-footing load transfer calcu-
lations for vertical forces only. Consideration is given to lateral forces and moments in Sections
12.12 and 12.13 of this chapter.

Example 12.3

Design for load transfer from a 16-in. × 16-in. column to a 9-ft-0-in. × 9-ft-0-in. footing if PD =
200 k, PL = 160 k, f ′

c = 3000 psi for the footing and 4000 psi for the column, and fy = 60,000 psi.
The footing concrete is normal weight, but the column is constructed with sand–lightweight
concrete.

SOLUTION

Bearing force at base of column = (1.2) (200 k) + (1.6) (160 k) = 496 k
Allowable bearing force in concrete at base of column

= φ(0.85f ′
cA1) = (0.65) (0.85) (4.0 ksi) (16 in. × 16 in.)

= 566 k > 496 k ∴ column bearing is OK

Allowable bearing force in footing concrete = φ(0.85f ′
cA1)

√
A2/A1

√
A2

A1
=
√

9 ft × 9 ft
1.33 ft × 1.33 ft

= 6.75 > 2.0

= (0.65) (0.85) (3.0) (16 in. × 16 in.) (Use 2)[1] = 848.6 k > 496 k ∴ Footing bearing is OK

Minimum As for dowels = (0.005) (16 in. × 16 in.) = 1.28 in.2 Use 4 #6 bars (1.77 in.2)

Development Lengths of Dowels (ACI 12.3)

For the column, using λ = 0.85 for sand–lightweight concrete and f ′
c = 4000 psi,

ld = 0.02dbfy
λ
√

f ′
c

= 0.02(0.75 in.) (60,000 psi)

0.85
√

4000 psi
= 16.74 in.

For the footing, λ = 1.0 and f ′
c = 3000 psi,

ld = 0.02dbfy
λ
√

f ′
c

= 0.02(0.75 in.) (60,000 psi)

1.0
√

3000 psi
= 16.43 in.

In addition, the development must not be less than either

ld = 0.0003dbfy = 0.0003(0.75 in.) (60,000 psi) = 13.50 in.

ld = 8.00 in.

In summary, the dowels must extend upward into the column at least 16.74 in. and down
into the footing at least 16.43 in. Use four #6 dowels extending 17 in. up into the column and
17 in. down into the footing and set on top of the reinforcing mat, as shown in Figure 12.13.

1
√

A2/A1 < 2.0. (ACI Code Section 10.14.1)
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Example 12.4

Design for load transfer from a 14-in. × 14-in. column to a 13-ft-0-in. × 13-ft-0-in. footing with a
Pu of 800 k, f ′

c = 3000 psi in the footing and 5000 psi in the column, both normal weight, and
fy = 60,000 psi. The column has eight #8 bars.

SOLUTION

Bearing force at base of column = Pu = 800 k

= φ(allowable bearing force in concrete) + φ( strength of dowels)

Design bearing strength in concrete at base of column

= (0.65) (0.85) (5.0 ksi) (14 in. × 14 in.) = 541.5 k < 800 k No good

Design bearing strength on footing concrete√
A2

A1
=
√

(13 ft) (13 ft)
(1.17 ft) (1.17 ft)

= 11.1 > 2

= (0.65) (0.85) (3.0 ksi) (14 in. × 14 in.) (Use 2)[2] = 649.7 k < 800 k No good

Therefore, the dowels must be designed for excess load.

Excess load = 800 k − 541.5 k = 258.5 k

As of dowels = 258.5 k
(0.9) (60 ksi)

= 4.79 in.2 or (0.005) (14 in.) (14 in.) = 0.98 in.2

Use 8 #7 bars (4.80 in.2)

Development Length of #7 Dowels into Column

ld = (0.02) (0.875 in.) (60,000 psi)

(1.0)
√

5000 psi
= 14.85 in.

ld = (0.0003) (60,000 psi) (0.875 in.) = 15.75 in. ←

ld = 8 in.

Development Length of #7 Dowels into Footing (Different from Column Values because f ′
c

Values Are Different)

ld = (0.02) (0.875 in.) (60,000 psi)

(1.0)
√

3000 psi
= 19.42 in. ←

ld = (0.0003) (0.875 in.) (60,000 psi) = 15.75 in.

Use eight #7 dowels extending 16 in. up into the column and 20 in. down into the footing.

2
√

A2/A1 < 2.0. (See Section 12.8 and ACI Code Section 10.14.1.)
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12.9 Rectangular Isolated Footings
As previously mentioned, isolated footings may be rectangular in plan if the column has a very
pronounced rectangular shape or if the space available for the footing forces the designer into
using a rectangular shape. Should a square footing be feasible, it is normally more desirable
than a rectangular one because it will require less material and will be simpler to construct.

The design procedure is almost identical with the one used for square footings. After
the required area is calculated and the lateral dimensions are selected, the depths required for
one-way and two-way shear are determined by the usual methods. One-way shear will very
often control the depths for rectangular footings, whereas two-way shear normally controls the
depths of square footings.

The next step is to select the reinforcing in the long direction. These longitudinal bars
are spaced uniformly across the footing, but such is not the case for the short-span reinforcing.
In Figure 12.14, it can be seen that the support provided by the footing to the column will be
concentrated near the middle of the footing, and thus the moment in the short direction will
be concentrated somewhat in the same area near the column.

As a result of this concentration effect, it seems only logical to concentrate a large
proportion of the short-span reinforcing in this area. The code (15.4.4.2) states that a certain
minimum percentage of the total short-span reinforcing should be placed in a band width equal
to the length of the shorter direction of the footing. The amount of reinforcing in this band is
to be determined with the following expression, in which β is the ratio of the length of the
long side to the width of the short side of the footing:

Reinforcing in band width

Total reinforcing in short direction
= 2

β + 1
= γs (ACI Equation 15-1)

The remaining reinforcing in the short direction should be uniformly spaced over the
ends of the footing, but the authors feel it should at least meet the shrinkage and temperature
requirements of the ACI Code (7.12).

Example 12.5 presents the partial design of a rectangular footing in which the depths for
one- and two-way shears are determined and the reinforcement selected.

F I GU RE 12.14 Band width for steel in the short direction for
rectangular isolated footings.
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Example 12.5

Design a rectangular footing for an 18-in. square interior column with a dead load of 185 k and
a live load of 150 k. Make the length of the long side equal to twice the width of the short
side, fy = 60,000 psi, f ′

c = 4000 psi, normal weight, and qa = 4000 psf. Assume the base of the
footing is 5 ft 0 in. below grade.

SOLUTION

Assume 24-in. Footing (d = 19.5 in.)

qe = 4000 psf −
(

24 in.
12 in/ft

)
(150 pcf) −

(
36 in.

12 in/ft

)
(100 pcf) = 3400 psf

Area required = 185 k + 150 k
3.4 ksf

= 98.5 ft2 Use 7 ft 0 in. × 14 ft 0 in. = 98.0 ft2

qu = (1.2) (185 k) + (1.6) (150 k)

98.0 ft2
= 4.71 ksf

Checking Depth for One-Way Shear (Figure 12.15)

b = 7 ft

Vu1 = (7.0 ft) (4.625 ft) (4.71 ksf) = 152.49 k

d = 152,490 lb

(0.75) (1.0) (2
√

4000 psi) (84 in.)
= 19.14 in., h = d + 4.5 in. = 23.64 in. Use 24 in.

Checking Depth for Two-Way Shear (Figure 12.16)

bo = (4) (37.5 in.) = 150 in.

Vu2 = [98.0 ft2 − (3.125 ft)2] (4.71 ksf) = 415.58 k

d = 415,580 lb

(0.75) (1.0) (4
√

4000 psi) (150 in.)
= 14.60 in. < 19.5 in. OK

d = 415,580 lb

0.75
(

40 in. × 19.5 in.
150 in.

+ 2
)

(
√

4000 psi)(150 in.)
= 8.11 in. < 19.5 in. OK

If either value of d in the last two equations had exceeded the assumed value of 19.5 in., it would
have been necessary to increase the trial value of d and start over.
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19 1
2
 in.

55 1
2
 in. = 4.625 ft

7 ft 0 in.

7 ft 0 in.

9 in.

F I GU RE 12.15 One-way shear area for Example 12.5.

18 in. + 19 1
2
 in. = 37 1

2
 in. = 3.125 ft 

F I GU RE 12.16 Two-way shear area for
Example 12.5.

Design of Longitudinal Steel

Lever arm = 14 ft
2

− 9 in.
12 in/ft

= 6.25 ft

Mu = (6.25 ft) (7.0 ft) (4.71 ksf)
(

6.25 ft
2

)
= 643.9 ft-k

Mu

φbd2
= (12 in/ft) (643,900 ft-lb)

(0.90) (84 in.) (19.5 in.)2
= 268.8 psi

ρ = 0.00467 (from Appendix A, Table A.13)

As = (0.00467) (84 in.) (19.5 in.) = 7.65 in.2 Use 10 #8 bars (7.85 in.2)

Design of Steel in Short Direction (Figure 12.17)

Lever arm = 7 ft
2

− 9 in.
12 in/ft

= 2.75 ft

Mu = (2.75 ft) (14.0 ft) (4.71 ksf)
(

2.75 ft
2

)
= 249.3 ft-k

Mu

φbd2
= (12 in/ft) (249,300 ft-lb)

(0.90) (168 in.) (19.5 in.)2
= 52 psi

Use ρ = larger of
200

60,000 psi
= 0.0033 ←

or
3
√

4000 psi
60,000 psi

= 0.00316

As = (0.0033) (168 in.) (19.5 in.) = 10.81 in.2 Use 18 #7 bars (10.82 in.2)

Reinforcing in band width
Total reinforcing in short direction

= 2
2 + 1

= 2
3

Use 2
3 × 18 = 12 bars in band width

Subsequent check of required development lengths is OK.
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6 in.

6 in.

4 in.

7 ft 0 in.

9 @ 8 =
6 ft 0 in.

3 @ 12 in. = 3 ft 0 in.
14 ft 0 in.

4 in.

3 @ 12 in. = 3 ft 0 in.

11 @ 8 in. = 7 ft 4 in.

F I GU RE 12.17 Two-way footing bar spacing diagram.

12.10 Combined Footings
Combined footings support more than one column. One situation in which they may be used
is when the columns are so close together that isolated individual footings would run into
each other [see Figure 12.18(a)]. Another frequent use of combined footings occurs where one
column is very close to a property line, causing the usual isolated footing to extend across the
line. For this situation, the footing for the exterior column may be combined with the one for
an interior column, as shown in Figure 12.18(b).

On some occasions, where a column is close to a property line and where it is desired
to combine its footing with that of an interior column, the interior column will be so far away
as to make the idea impractical economically. For such a case, counterweights, or “deadmen,”
may be provided for the outside column to take care of the eccentric loading.

F I GU RE 12.18 Use of combined footings.
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Combined footing (two column) after footing concrete is placed showing column reinforcing ready
for splicing.

Because it is desirable to make bearing pressures uniform throughout the footing, the cen-
troid of the footing should be made to coincide with the centroid of the column loads to attempt
to prevent uneven settlements. This can be accomplished with combined footings that are rect-
angular in plan. Should the interior column load be greater than that of the exterior column,
the footing may be so proportioned that its centroid will be in the correct position by extending
the inward projection of the footing, as shown in the rectangular footing of Figure 12.18(b).

Other combined footing shapes that will enable the designer to make the centroids coin-
cide are the trapezoid and strap or T footings shown in Figure 12.19. Footings with these
shapes are usually economical when there are large differences between the magnitudes of
the column loads or where the spaces available do not lend themselves to long rectangular
footings. When trapezoidal footings are used, the longitudinal bars are usually arranged in a
fan shape with alternate bars cut off some distance from the narrow end.

You probably realize that a problem arises in establishing the centroids of loads and
footings when deciding whether to use service or factored loads. The required centroid of the
footing will be slightly different for the two cases. The authors determine the footing areas and
centroids with the service loads (ACI Code 15.2.2), but the factored loads could be used with
reasonable results, too. The important point is to be consistent throughout the entire problem.

The design of combined footings has not been standardized as have the procedures
used for the previous problems worked in this chapter. For this reason, practicing reinforced
concrete designers use slightly varying approaches. One of these methods is described in the
paragraphs to follow.

First, the required area of the footing is determined for the service loads, and the footing
dimensions are selected so that the centroids coincide. The various loads are then multiplied by
the appropriate load factors, and the shear and moment diagrams are drawn along the long side
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F I GU RE 12.19 Trapezoidal and strap or T footings.

of the footing for these loads. After the shear and moment diagrams are prepared, the depth
for one- and two-way shear is determined, and the reinforcing in the long direction is selected.

In the short direction, it is assumed that each column load is spread over a width in
the long direction equal to the column width plus d/2 on each side if that much footing is
available. Then the steel is designed, and a minimum amount of steel for temperature and
shrinkage is provided in the remaining part of the footing.

The ACI Code does not specify an exact width for these transverse strips, and designers
may make their own assumptions as to reasonable values. The width selected will probably
have very little influence on the transverse bending capacity of the footing, but it can affect
appreciably its punching or two-way shear resistance. If the flexural reinforcing is placed within
the area considered for two-way shear, this lightly stressed reinforcing will reduce the width
of the diagonal shear cracks and will also increase the aggregate interlock along the shear
surfaces.

Space is not taken here to design completely a combined footing, but Example 12.6 is
presented to show those parts of the design that are different from the previous examples of this
chapter. A comment should be made about the moment diagram. If the length of the footing
is not selected so that its centroid is located exactly at the centroid of the column loads, the
moment diagrams will not close well at all since the numbers are very sensitive. Nevertheless,
it is considered good practice to round off the footing lateral dimensions to the nearest 3 in.
Another factor that keeps the moment diagram from closing is the fact that the average load
factors of the various columns will be different if the column loads are different. We could
improve the situation a little by taking the total column factored loads and dividing the result
by the total working loads to get an average load factor. This value (which works out to be
1.375 in Example 12.6) could then be multiplied by the total working load at each column and
used for drawing the shear and moment diagrams.
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Example 12.6

Design a rectangular combined footing for the two columns shown in Figure 12.20. qa = 5 ksf,
f ′
c = 3000 psi, normal weight, and fy = 60 ksi. The bottom of the footing is to be 6 ft below grade.

SOLUTION

Assume 27-in. Footing (d = 22.5 in.)

qe = 5000 psf −
(

27 in.
12 in/ft

)
(150 pcf) −

(
45 in.

12 in/ft

)
(100 pcf) = 4287 psf

Area required = (120 k + 100 k) + (200 k + 150 k)
4.287 ksf

= 132.96 ft2

Locate Center of Gravity of Column Service Loads

x from c.g. of left column = (200 k + 150 k) (12 ft)
(120 k + 100 k) + (200 k + 150 k)

= 7.37 ft

Distance from property line to c.g. = 0.75 ft + 7.37 ft = 8.12 ft

Length of footing = (2 × 8.12 ft) = 16.24 ft, say 16 ft 3 in.

Required footing width = Area required
length

= 132.96 ft2

16.25 ft
= 8.182 ft

Use 16-ft-3-in. × 8-ft-3-in. footing (A = 134 ft2).

qu = (1.2) (320 k) + (1.6) (250 k)

134 ft2
= 5.85 ksf

12 ft 0 in.

property line

18-in. × 18-in. column
(PD = 120 k, PL = 100 k)

20-in. × 20-in. column
(PD = 200 k, PL = 150 k)

F I GU RE 12.20 Plan view of combined footing in
Example 12.6.
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Depth Required for One-Way Shear

From the shear diagram in Figure 12.21, the largest shear force is 271.1 k at the left face of the
right column. At a distance d to the left of this location, the value of shear is

Vu1 = 271.1 k − 48.26 klf
(

22.5 in.
12 in/ft

)
= 180.61 k

d = Vu1

φ2λ
√

f ′
cb

= 180,610 lb

0.75(2) (1)
√

3000 psi (8.25 ft) (12 in/ft)
= 22.2 in. < 22.5 in. OK

Depth Required for Two-Way Shear (ACI Equations 11.31 and 11.32 Not Shown as They Do
Not Control)

Vu2 at right column = 480 k −
(

42.5 in.
12 in/ft

)2

(5.85 ksf) = 406.6 k

d = 406,600 lb

(0.75) [(4) (1.0)
√

3000 psi] (4 × 42.5 in.)

= 14.56 in. < 22.5 in. OK

moment

shear

10 ft 5 in.

16 ft 3 in.
1 ft 8 in. 2 ft 8 in.

0.54 ft5.62 ft4.80 ft
1.13 ft

1 ft 6 in.

5.85 ksf × 8.25 ft
= 48.26 k/ft

F I GU RE 12.21 Shear and moment diagrams for combined footing in Example 12.6.
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Vu2 at left column = 304 k −
(

29.25 in. × 40.5 in.

144 in2/ft2

)
(5.85 ksf) = 255.9 k

d = 255,900 lb

(0.75) [(4) (1.0)
√

3000 psi] (2 × 29.25 in. + 40.5 in.)

= 15.73 in. < 22.5 in. OK

For this footing, one-way shear is more critical than two-way shear. This is not unusual for
combined footings.

Design of Longitudinal Steel

Mu = −729.5 ft-k

Mu

φbd2
= (12 in/ft) (729,500 ft-lb)

(0.90) (99 in.) (22.5 in.)2
= 194.1 psi

ρ = 0.00337 (from Appendix A, Table A.12 by interpolation)

−As = (0.00337) (99 in.) (22.5 in.) = 7.51 in.2 Say 10 #8 (7.85 in.2)

+Mu = +171.3 ft-k (computed from right end of shear diagram, Figure 12.21)

Mu

φbd2
= (12 in/ft) (171,300 ft-lb)

(0.90) (99 in.) (22.5 in.)2
= 45.6 psi

use ρ = ρmin

Use larger of
200
fy

= 0.00333 or
3
√

3000 psi
60,000 psi

= 0.00274

+As = (0.00333) (99 in.) (22.5 in.) = 7.42 in.2 Use 8 #9 (8.00 in.2)

Design of Short-Span Steel Under Interior Column (Figure 12.22)

Assuming steel spread over width = column width + (2)
(

d
2

)

= 20 in. + (2)
(

22.5 in.
2

)
= 42.5 in.

Referring to Figure 12.22 and calculating Mu:

qu = 480 k
8.25 ft

= 58.18 k/ft

Mu = (3.29 ft) (58.18 k/ft)
(

3.29 ft
2

)
= 314.9 ft-k

Mu

φbd2
= (12 in/ft) (314,900 ft-lb)

(0.90) (42.5 in.) (22.5 in.)2
= 195.1 psi

p = 0.00339 (from Appendix A, Table A.12)

As = (0.00339) (4.25 in.) (22.5 in.) = 3.24 in.2 Use 6 #7 (3.61 in.2)

Development lengths (not shown) check out OK.



McCormac c12.tex V2 - January 9, 2013 10:16 P.M. Page 378

378 CHA P T E R 12 Footings

8 ft 3 in.

1 ft 8 in.

480 k

3 ft 3  in.1
2

3 ft 3  in. = 3.29 ft1
2

 = 58.18 k/ft480 k
8.25 ft

F I GU RE 12.22 Soil stress used in
determining short span steel.

A similar procedure is used under the exterior column where the steel is spread over
a width equal to 18 in. plus d/2, and not 18 in. plus 2(d/2), because sufficient room is not
available on the property-line side of the column.

12.11 Footing Design for Equal Settlements
If three men are walking along a road carrying a log on their shoulders (a statically indeter-
minate situation) and one of them decides to lower his shoulder by 1 in., the result will be a
drastic effect on the load supported by the other men. In the same way, if the footings of a
building should settle by different amounts, the shears and moments throughout the structure
will be greatly changed. In addition, there will be detrimental effects on the fitting of doors,
windows, and partitions. Should all the footings settle by the same amount, however, these
adverse effects will not occur. Thus, equal settlement is the goal of the designer.

The footings considered in preceding sections have had their areas selected by taking the
total dead plus live loads and dividing the sum by the allowable soil pressure. It would seem
that if such a procedure were followed for all the footings of an entire structure, the result
would be uniform settlements throughout—but geotechnical engineers have clearly shown that
this assumption may be very much in error.

A better way to handle the problem is to attempt to design the footings so that the usual
loads on each footing will cause approximately the same pressures. The usual loads consist of
the dead loads plus the average percentage of live loads normally present. The usual percentage
of live loads present varies from building to building. For a church, it might be almost zero,
perhaps 25% to 30% for an office building, and maybe 75% or more for some warehouses or
libraries. Furthermore, the percentage in one part of a building may be entirely different from
that in some other part (offices, storage, etc.).

One way to handle the problem is to design the footing that has the highest ratio of
live to dead load, compute the usual soil pressure under that footing using dead load plus
the estimated average percentage of live load, and then determine the areas required for the
other footings so their usual soil pressures are all the same. It should be remembered that the
dead load plus 100% of the live load must not cause a pressure greater than the allowable soil
pressure under any of the footings.

A student of soil mechanics will realize that this method of determining usual pressures,
though not a bad design procedure, will not ensure equal settlements. This approach at best
will only lessen the amounts of differential settlements. The student will remember first that
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large footings tend to settle more than small footings, even though their soil pressures are the
same, because the large footings exert compression on a larger and deeper mass of soil. There
are other items that can cause differential settlements. Different types of soils may be present
at different parts of the building; part of the area may be in fill and part in cut: there may be
mutual influence of one footing on another; and so forth.

Example 12.7 illustrates the usual load procedure for a group of five isolated footings.

Example 12.7

Determine the footing areas required for the loads given in Table 12.2 so that the usual soil
pressures will be equal. Assume that the usual live load percentage is 30% for all the footings,
qe = 4 ksf.

SOLUTION

The largest percentage of live load to dead load occurs for footing D.

Area required for footing D = 100 k + 150 k
4 ksf

= 62.5 ft2

Usual soil pressure under footing D = 100 k + (0.30) (150 k)

62.5 ft2
= 2.32 ksf

Computing the areas required for the other footings and determining their soil pressures under
total service loads, we show the results in Table 12.3. Note from the last column in Table 12.3
that footing D is the only footing that will be stressed to its allowable bearing stress.

TABLE 12.2 Footings

Footing Dead Load (k) Live Load (k)

A 150 200

B 120 100

C 140 150

D 100 150

E 160 200

TABLE 12.3 Areas and Soil Pressures

Usual Load = Area Required = Total Soil
D + 0.30L Usual Load ÷ 2.32 ksf Pressure

Footing (k) (ft2) (ksf)

A 210 90.5 3.87

B 150 64.7 3.40

C 185 79.7 3.64

D 145 62.5 4.00

E 220 94.8 3.80
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12.12 Footings Subjected to Axial Loads and Moments
Walls or columns often transfer moments as well as vertical loads to their footings. These
moments may be the result of gravity loads or lateral loads. Such a situation is represented by
the vertical load P and the bending moment M shown in Figure 12.23.

Moment transfer from columns to footings depends on how the column–footing con-
nection is constructed. Many designers treat the connection between columns and footings as
a pinned connection. Others treat it as fixed, and still others treat it as somewhere in between.
If it is truly pinned, no moment is transferred to the footing, and this section of the text is not
applicable. If, however, it is treated as fixed or partially fixed, this section is applicable.

If a column–footing joint is to behave as a pin or hinge, it would have to be constructed
accordingly. The reinforcing in the column might be terminated at the column base instead of
continuing into the footing. Dowels would be provided, but these would not be adequate to
provide a moment connection.

To provide continuity at the column–footing interface, the reinforcing steel would have
to be continued into the footing. This is normally accomplished by embedding hooked bars
into the footing and having them extend into the air where the columns will be located. The
length they extend into the air must be at least the lap splice length; sometimes this can be
a significant length. These bars are then lap spliced or mechanically spliced with the column
bars, providing continuity of tension force in the reinforcing steel.

If there is a moment transfer from the column to the footing, the resultant force will not
coincide with the centroid of the footing. Of course, if the moment is constant in magnitude
and direction, it will be possible to place the center of the footing under the resultant load
and avoid the eccentricity, but lateral forces such as wind and earthquake can come from any
direction, and symmetrical footings will be needed.

The effect of the moment is to produce a linearly varying soil pressure, which can be
determined at any point with the expression

q = −P

A
± Mc

I

In this discussion, the term kern is used. If the resultant force strikes the footing base within
the kern, the value of −P/A is larger than + Mc/I at every point, and the entire footing base
is in compression, as shown in Figure 12.23(a). If the resultant force strikes the footing base
outside the kern, the value of + Mc/I will at some points be larger than −P/A, and there will
be uplift or tension. The soil–footing interface cannot resist tension, and the pressure variation
will be as shown in Figure 12.23(b). The location of the kern can be determined by replacing
Mc/I with Pec/I, equating it to P/A, and solving for e.

(a) Resultant load in kern

(b) Resultant load outside of kern

F I GU RE 12.23 Soil stress distributions under footings with overturning moments.
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`

`

F I GU RE 12.24 Soil stress distribution for eccentricity
exceeding the kern eccentricity.

Should the eccentricity be larger than this value, the method described for calculating soil
pressures [(−P/A) ± (Mc/I )] is not correct. To compute the pressure for such a situation, it is
necessary to realize that the centroid of the upward pressure must for equilibrium coincide with
the centroid of the vertical component of the downward load. In Figure 12.24, it is assumed
that the distance to this point from the right edge of the footing is a. Since the centroid of a
triangle is located at one-third of its base, the soil pressure will be spread over the distance 3a
as shown. For a rectangular footing with dimensions l × b , the total upward soil pressure is
equated to the downward load, and the resulting expression is solved for qmax as follows:(

1

2

)
(3ab) (qmax) = P

qmax = 2P

3ab

Example 12.8 shows that the required area of a footing subjected to a vertical load and
a lateral moment can be determined by trial and error. The procedure is to assume a size,
calculate the maximum soil pressure, compare it with the allowable pressure, assume another
size, and so on.

Once the area has been established, the remaining design will be handled as it was for
other footings. Although the shears and moments are not uniform, the theory of design is
unchanged. The factored loads are computed, the bearing pressures are determined, and the
shears and moments are calculated. For strength design, the footing must be proportioned for
the effects of these loads as required in ACI Section 9.2.

Example 12.8

Determine the width needed for a wall footing to support loads: D = 18 k/ft and L = 12 k/ft. In
addition, a moment of 39 ft-k must be transferred from the column to the footing. Assume the
footing is 18 in. thick, its base is 4 ft below the final grade, and qa = 4 ksf.

SOLUTION

First Trial

Neglecting moment qe = 4000 pcf −
(

18 in.
12 in/ft

)
(150 pcf) −

(
30 in.

12 in/ft

)
(100 pcf) = 3525 psf

Width required = 18 k + 12 k
3.525 ksf

= 8.51 ft Try 9 ft 0 in.
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A = (9 ft) (1 ft) = 9 ft2

I =
(

1
12

)
(1 ft) (9 ft)3 = 60.75 ft4

qmax = −P
A

− Mc
I

= −30 k

9 ft2
− (39 ft-k) (4.5 ft)

60.75 ft4
(where minus = compression)

= −6.22 ksf > 3.525 ksf No good

qmin = −P
A

+ Mc
I

= −30 k

9 ft2
+ (39 ft-k) (4.5 ft)

60.75 ft4
= −0.44 ksf

Second Trial

Assume 14-ft-wide footing (after a check of a 13-ft-wide footing proves it to be insufficient)

A = (14 ft) (1 ft) = 14 ft2

I =
(

1
12

)
(1 ft) (14 ft)3 = 228.7 ft4

qmax = − 30 k

14 ft2
− (39 ft-k) (7 ft)

228.7 ft4
= −3.34 ksf < 3.525 ksf OK

qmin = − 30 k

14 ft2
+ (39 ft-k) (7 ft)

228.7 ft4
= −0.95 ksf OK Use 14 ft 0 in. footing

Note that in both trials, the sign for qmin is negative, meaning that the soil–footing interface is
in compression. Had the value been positive, the equations used to calculate stress would not
have been valid. Instead, the designer would have to use the equation

qmax = 2P
3ab

Footings must be designed to resist all applicable load combinations from ACI Section 9.2. The
experienced designer can often guess which will be most critical, design the footing accordingly,
and check the others to see that the footing can resist them. Experience and computer programs
help immensely in this process.

12.13 Transfer of Horizontal Forces
When it is necessary to transfer horizontal forces from walls or columns to footings, the shear
friction method discussed in Section 8.12 of this text or other appropriate means should be
used (ACI Section 15.8.1.4). Sometimes shear keys (see Figure 13.1 in Chapter 13) are used
between walls or columns and footings. This practice is of rather questionable value, however,
because appreciable slipping has to occur to develop a shear key. A shear key may be thought
of as providing an additional mechanical safety factor, but none of the lateral design force
should be assigned to it.

The following example illustrates the consideration of lateral force transfer by the shear
friction concept.
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Example 12.9

A 14-in. × 14-in. column is supported by a 13-ft-0-in. × 13-ft-0-in. footing [f ′
c = 3000 psi (normal

weight) and fy = 60,000 psi for both]. For vertical compression force transfer, six #6 dowels
(2.65 in.2) were selected extending 18 in. up into the column and 18 in. down into the footing.
Design for a horizontal factored force Vu of 65 k acting at the base of the column. Assume that
the footing concrete has not been intentionally roughened before the column concrete is placed.
Thus, μ = 0.6λ = (0.6) (1.0) for normal-weight concrete = 0.6. (See ACI Code 11.6.4.)

SOLUTION

Determine Minimum Shear Friction Reinforcement Required by ACI Section 11.6.4

Vn = Vu

φ
= 65 k

0.75
= 86.7 k

Vn = Avf fyμ (ACI Equation 11-25)

Avf = 86.7 k
(60 ksi) (0.6)

= 2.41 in.2 < 2.65 in.2 OK

The six #6 dowels (2.65 in.2) present may also be used as shear friction reinforcing. If their area
had not been sufficient, it could have been increased and/or the value of μ could be increased
significantly by intentionally roughening the concrete, as permitted in Section 11.6.4.3 of the
code.

Check Tensile Development Lengths of These Dowels

Shear friction reinforcing acts in tension and thus must have tensile anchorage on both sides of
the shear plane. It must also engage the main reinforcing in the footing to prevent cracks from
occurring between the shear reinforcing and the body of the concrete.

Assuming
c + Ktr

db
= 2.5

ld

db
=
(

3
40

)[
60,000 psi

(1.0)
√

3000 psi

]
(1.0) (1.0) (0.8)

2.5

(
2.41 in.2

2.65 in.2

)
= 23.91 diameters

ld = (23.91) (0.75 in.) = 17.93 in. Say 18 in.

Compute Maximum Shear Transfer Strength Permitted by the Code (11.6.5)

Vu ≤ φ0.2f ′
cAc, but not > φ(800Ac)

≤ (0.75) (0.2) (3 ksi) (14 in. × 14 in.) = 88.2 k > 65 k

but not > (0.75) (800 lb/in.2) (14 in. × 14 in.) = 117,600 lb = 117.6 k OK

12.14 Plain Concrete Footings
Occasionally, plain concrete footings are used to support light loads if the supporting soil is of
good quality. Very often the widths and thicknesses of such footings are determined by rules
of thumb, such as the depth of a plain footing must be equal to no less than the projection
beyond the edges of the wall. In this section, however, a plain concrete footing is designed in
accordance with the requirements of the ACI.
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Chapter 22 of the ACI Code is devoted to the design of structural plain concrete. Struc-
tural plain concrete is defined as concrete that is completely unreinforced or that contains less
than the minimum required amounts of reinforcing previously specified here for reinforced con-
crete members. The minimum compressive strength permitted for such concrete is 2500 psi,3

as given in ACI Sections 22.2.3 and 1.1.1.
Structural plain concrete may be used only for (1) members continuously supported by

soil or by other structural members that are capable of providing continuous support, (2) walls
and pedestals, and (3) structural members with arch action where compression occurs for all
loading cases (ACI Section 22.2.1).

The code (22.7.3 and 22.7.4) states that when plain concrete footings are supported by
soil, they cannot have an edge thickness less than 8 in. and they cannot be used on piles. The
critical sections for shear and moment for plain concrete footings are the same as for reinforced
concrete footings.

In ACI Code Section 22.5, nominal bending and shear strengths are specified for structural
plain concrete. The proportions of plain concrete members will nearly always be controlled by
tensile strengths rather than shear strengths.

In the equations that follow, φ = 0.60 (ACI 9.3.5) for all cases, S is the elastic section
modulus of uncracked members, and βc is the ratio of the long side to the short side of the
column or loaded area. In computing the strengths, whether flexural or shear, for concrete cast
against soil, the overall thickness, h, is to be taken as 2 in. less than the actual thickness (ACI
Section 22.4.7). This concrete is neglected to account for uneven excavation for the footing
and for some loss of mixing water to the soil and other contamination.

Bending Strength:

Mn = 5λ
√

f ′
cS (ACI Equation 22-2)

φMn ≥ Mu (ACI Equation 22-1)

Shear Strength for One-Way or Beam Action:

Vn = 4

3
λ
√

f ′
cbh (ACI Equation 22-9)

φVn ≥ Vu (ACI Equation 22-8)

Shear Strength for Two-Way or Punching Action:

Vn =
(

4

3
+ 8

3βc

)
λ
√

f ′
cboh (ACI Equation 22-10)

≤ 2.66λ
√

f ′
cboh

In SI units

Mn = 5

12
λ
√

f ′
cS (ACI M Equation 22-2)

Vn = 1

9
λ
√

f ′
cbh (ACI M Equation 22-9)

Vn = 1

9

(
1 + 2

βc

)
λ
√

f ′
cboh ≤ 2

9
λ
√

f ′
cboh (ACI M Equation 22-10)

3 In SI units, it is 17 MPa.
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On one hand, a plain concrete footing will obviously require considerably more concrete
than will a reinforced one. On the other hand, the cost of purchasing reinforcing and placing
it will be eliminated. Furthermore, the use of plain concrete footings will enable us to save
construction time in that we don’t have to order the reinforcing and place it before the concrete
can be poured. Therefore, plain concrete footings may be economical on more occasions than
one might realize.

Even though plain footings are designed in accordance with the ACI requirements, they
should, at the very least, be reinforced in the longitudinal direction to keep temperature and
shrinkage cracks within reason and to enable the footing to bridge over soft spots in the
underlying soil. Example 12.10 presents the design of a plain concrete footing in accordance
with the ACI Code.

Example 12.10

Design a plain concrete footing for a 12-in. reinforced concrete wall that supports a dead load
of 12 k/ft, including the wall weight, and a 6-k/ft live load. The base of the footing is to be 5 ft
below the final grade, f ′

c = 3000 psi, and qa = 4000 psf.

SOLUTION

Assume 24-in. Footing (see Figure 12.25)

qe = 4000 psf −
(

24 in.
12 in/ft

)
(145 pcf) −

(
36 in.

12 in/ft

)
(100 pcf) = 3410 psf

Width required = 18 k
3.41 k/ft

= 5.28 ft Say 5 ft 6 in.

Bearing Pressure for Strength Design

qu = (1.2) (12 k/ft) + (1.6) (6 k/ft)
5.5 ft

= 4.36 ksf

Checking Bending Strength, Neglecting Bottom 2 in. of Footing (Figure 12.25)

Mu for 12 in. width of footing = (4.36 klf) (2.25 ft)
(

2.25 ft
2

)
= 11.04 ft-k

S = bd2

6
= (12 in.) (22 in.)2

6
= 968 in.3

φMn = φ5
√

f ′
cS = (0.60) (5) (

√
3000 psi) (968 in.3)

= 159,058 in-lb = 13.25 ft-k

> 11.04 ft-k OK

2 ft 3 in.
1 ft 0 in.

5 ft 6 in.

2 ft 3 in.

12-in. wall

qu = 4.36 ksf

F I GU RE 12.25 Plain concrete footing for
Example 12.10.
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Checking Shearing Strength at a Distance 22 in. from Face of Wall

Vu for 12 in. width of footing =
(

2.25 ft − 22 in.
12 in/ft

)
(4.36 klf) = 1.82 k

Vu = φ

(
4
3

)
λ
√

f ′
cbh = (0.60)

(
4
3

)
(1.0) (

√
3000 psi) (12 in.) (22 in.)

= 11,568 lb = 11.57 k > 1.82 k OK

Use 24-in. footing

Note: A 23-in.-deep footing will work in this case, and a 22-in.-deep footing will almost work
(within 1% moment capacity). The authors prefer to use the 24-in. depth for simplicity in this
case.

12.15 SI Example

Example 12.11

Design a reinforced concrete wall footing to support a 300-mm-wide reinforced concrete
wall with a dead load D = 300 kN/m and a live load L = 200 kN/m. The bottom of the
footing is to be 1 m below the final grade, the soil weight is 16 kN/m3, the concrete weight
is 24 kN/m3, the allowable soil pressure, qu, is 190 MPa/m2, fy = 420 MPa, and f ′

c =
28 MPa.

SOLUTION

Assume 450-mm-Deep Footing (d = 360 mm)

qe = 190 MPa/m2 −
(

450 mm
1000

)
(24 kN/m3) −

(
550 mm

1000

)
(16 kN/m3)

= 170.4 kN/m2

Width required = 300 kN/m + 200 kN/m
170.4 kN/m2

= 2.93 m Say 3.00 m

Bearing Pressure for Strength Design

qu = (1.2) (300 kN/m) + (1.6) (200 kN/m)
3.00 m

= 226.7 kN/m2
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Depth Required for Shear at a Distance d from Face of Wall for a One Meter Width
(See Figure 12.26)

Vu =
(

3.00 m
2

− 150 mm
1000

− 360 mm
1000

)
(226.7 kN/m) = 224.4 kN

d = 6Vu

(0.75)λ (
√

f ′
c) (bw)

= (6) (224.4 kN) (10)3

(0.75) (1.0) (
√

28 MPa) (1000 mm)

= 339 mm < 360 mm OK

Steel Area (d = 360 mm) Taking Moments at Face of Wall

Cantilever length = 3.00 m
2

− 150 mm
1000

= 1.35 m

Mu = (1.35 m) (226.7 kN/m)
(

1.35 m
2

)
= 206.58 kN/m

Mu

φbd2
= 206.58 kN-m × 106

(0.9) (1000 mm) (360 mm)2
= 1.771

ρ = 0.00439 (from Appendix B, Table B.9)

As = (0.00439) (1000 mm) (360 mm) = 1580 mm2/m

Use #22 bars @ 225 mm o.c. (1720 mm2/m)

Development Length

From Table 7.1 in Chapter 7

ψt = ψe = ψs = λ = 1.0

Assume cb = cover = 90 mm ←
c = one-half c. to c. of bars = 112.5 mm

1.350 m
0.300 m

3.00 m

1.350 m

300-mm  wall

qu = 226.7 kN/m2

F I GU RE 12.26 Wall footing for Example 12.11.
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Letting Ktr = 0

cb + Ktr

db
= 90 mm + 0

22.2 mm
= 4.05 > 2.50 ∴ Use 2.5

ld

db
= 9fyψ1ψ2ψ3

10λ
√

f ′
c

(
cb + Ktr

db

)

= (9) (420 MPa) (1.0) (1.0) (1.0)

[10(1.0)
√

28 MPa] (2.5)
= 28.57 diameters

ld

db

As reqd

As furn
= (28.57)

(
1580 mm2

1720 mm2

)
= 26.24 diameters

ld = (26.24) (22.2 mm) = 583 mm < 1350 mm − 100 mm

= 1250 mm available OK

Use 450-mm footing 3 m wide with #22 bars @ 225 mm.

12.16 Computer Examples

Example 12.12

Repeat Example 12.1, using the Excel spreadsheets provided for Chapter 12.

SOLUTION

Open the Chapter 12 spreadsheet and the Wall Footing worksheet. Enter values only for the
cells highlighted in yellow (only in Excel spreadsheets, not the printed example), beginning on
the left side of the worksheet. When entering ‘‘trial h,’’ estimate a reasonable value. In this case,
h = 12 in. is the first try. Based on this assumption, d, qe, and lmin are calculated. Look at the
footing width lmin (9.86 ft), and enter a value that is more practical and slightly larger for the
actual width in the next cell for l (10.0 ft). Now observe the values of dshear and hshear a few
cells below. The correct theoretical answer for hshear lies between the trial h and hshear. So it
is somewhere between 12 in. and 21.96 in. Split the difference, and go back to trial h with a
value of trial h = 16 in. The footing width can remain 10 ft, and hshear is now 20.34 in. Split the
difference again, and enter trial h = 19 in. Now hshear = 19.12 in. Trial and error can be avoided
by using the Goal Seek feature. In the first cycle, after trying h = 12 in., go to the cell called trial
h − hshear. Theoretically, this should be zero. Highlight this cell, go to Tools on the menu bar, and
select Goal Seek from the drop-down menu. In ‘‘To value,’’ enter 0, and in ‘‘By changing cell,’’
enter C14. Click OK, and the status window says there is a solution. Select OK, and observe that
cells C14 and C22 are now both 19.09 in. This may be faster than the trial-and-error method, but
there is no need for the precision of the answer provided. Either method leads to the thickness
of the footing of 20 in.
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Now go to the right side of the worksheet, and enter ‘‘select h = 20 in.’’ The required area
of reinforcing steel is calculated, and a list of possible choices of bar size and theoretical spacing
is displayed. Pick the one you prefer, being sure to round the spacing down to a practical value.
If #7 bars are selected, the theoretical spacing of 10.55 in. is rounded down to 10 in. (the same
answer as Example 12.1).

A screenshot of the software for the first cycle with trial h = 12 in. is shown here.

PD = 20 k/ft
PL = 15 k/ft select h = 20 in.

Pu = 48 k/ft d = 16.50 in.

t = 12 in. Mu = 48.6 ft-k

cover = 3 in. Rn = 198.3471 psi

f′c = 3000 psi 0.00345

145 pcf As flexure = 0.682 in2 /ft

100 pcf As t&s = 0.432 in2 /ft

fy = 60,000 psi As min = 0.660 in.

1.00 As = 0.682 in2 /ft

qa = 4.00 ksf

dgrade = 4.00 ft stheor

trial h = 12.00 in. #3 1.93 in.
d = 8.50 in. #4 3.52 in.

qe = 3.55 ksf #5 5.45 in.

9.86 ft #6 7.74 in.
10 ft #7 10.55 in.

qu =

`̀min =
`̀ =

4.8 ksf #8 13.90 in.

Vu = 18.20 k/ft #9 17.59 in.

dshear = 18.46 in.

hshear = 21.96 in.

trial h – hshear = 9.96 in.

Select a bar size and
spacing from the table

above.

Wall Footing Design

Example 12.13

Repeat Example 12.2, using the Excel spreadsheets provided for Chapter 12.

SOLUTION

Open the Chapter 12 spreadsheet and the Square Footing worksheet. Enter values only for the
cells highlighted in yellow, beginning on the left side of the worksheet. When entering ‘‘trial h,’’
estimate a reasonable value. In Example 12.2, an initial value of h = 24 was used. This turned
out to be the correct answer, which is not usually the case. Let’s pick a value of h = 18 in. to
illustrate the use of the spreadsheet’s ability to converge on the correct answer. Note that lmin is
9.02 ft, and a value of l = 9.00 ft was selected. This slightly nonconservative choice is consistent
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with what was done in Example 12.2. Now look at the upper right side of the worksheet under
Two-way shear. A value of h2 = 28.17 in. means the trial h of 18 in. isn’t enough. A quick look
at the One-way shear results shows h1 = 21.32 in. Since h2 is larger, two-way shear is more
critical. The correct value of h is somewhere between 18 in. and 28.17 in. Go back to trial h, and
split the difference by entering 23 in. A quick look at the required h2 and h1 shows this choice is
acceptable for one-way shear, but not two-way, which needs h2 = 24.14 in. Now enter a trial h
of 24 in., and both h1 and h2 are exceeded, indicating h = 24 in. is enough for shear. You can
also do this by using Goal seek as described in Example 12.12.

Go to the lower part of the worksheet, and enter 24 in. under select h. The required As in
both directions is computed, and a table of possible choices is displayed. One of the choices is
nine #8 bars, the same as was selected in Example 12.2.

A screenshot of the software for the last cycle with trial h = 24 in. is shown here.

PD = 200 k

PL = 160 k Vu2 = 442.4 k

Pu = 496 k bo = 142 in.

a = 16 in. 40.00

b = 16 in. 1

cover = 3 in. d2 shear = 18.96 in.

f 'c = 3000 psi d2 shear = 12.6405 in.

145 pcf d2 shear = 10.12 in.

100 pcf d2 = 18.96 in.

fy = 60,000 psi h2 = 23.46 in.

1.00 trial h – h2 shear = 0.54

q
a
 = 5.00 ksf

dgrade = 5.00 ft

trial h = 24.00 in. Vu1 = 121.70 in.2

d = 19.50 in. d 1 shear = 13.72 in.

qe = 4.40 ksf h1 shear = 18.22 in.

9.05 ksf trial h – h1 shear = 5.78 in.
9 ft

qu = 6.12 ksf

select h = 24 in. Theoretical No. of Bars Spacing, in.

d = 19.50 in. #4 35.10 36 3.03
#5 22.65 23 4.67
#6 15.95 16 6.56

Mu = 404.914 ft-k #7 11.70 12 8.85

Rn = 131.464 psi #8 8.89 9 11.51

0.00225 #9 7.02 8 14.36

As flexure  = 4.74 #10 5.53 6 17.92

As t&s = 4.67

As min = 7.02

As = 7.02 in.2
iin.2
in.2
in.2

One-Way Shear

Two-Way Shear

Select a bar size and number of
bars from the table above,

rounding  up to the next integer.

Square Single-Column Footing Design
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P R O B L E M S
For Problems 12.1 to 12.30, assume that reinforced concrete weighs 150 lb/ft3 , plain concrete weighs 145 lb/ft3 , and soil weighs
100 lb/ft3 .

Wall Footings

For Problems 12.1 to 12.5, design wall footings for the values given. The walls are to consist of reinforced concrete.

Problem Wall Distance from bottom of
No. thickness (in.) D (k/ft) L (k/ft) f ′

c(ksi) fy (ksi) qa (ksf) footing to final grade (ft)

12.1 12 17 25 4 60 4 4

12.2 14 21 20 4 60 4 4

12.3 14 18 20 5 60 5 6

12.4 15 24 30 4 60 4 4

12.5 15 24 32 4 60 4 5

(Answer to Problem 12.1: 22-in. footing, 12 ft 0 in. wide with #8 @ 9-in. main steel)
(Answer to Problem 12.3: 17-in. footing, 9 ft 0 in. wide with #7 @ 9-in. main steel)
(Answer to Problem 12.5: 28-in. footing, 17 ft 0 in. wide with #9 @ 8-in. main steel)

Problem 12.6 Repeat Problem 12.1 if a masonry wall is used.

Column Footings

For Problems 12.7 to 12.12, design square single-column footings for the values given. All columns are interior columns.

Problem Column Distance from bottom of
No. size (in.) D (k) L (k) f ′

c(ksi) fy (ksi) qa (ksf) footing to final grade (ft)

12.7 12 × 12 110 160 4 60 4 4

12.8 12 × 12 100 80 3 60 5 5

12.9 15 × 15 160 180 4 60 4 6

12.10 15 × 15 150 120 3 60 4 4

12.11 16 × 16 110 140 3 60 6 5

12.12 Round, 18 dia. 240 140 4 60 5 6

(Answer to Problem 12.7: 21-in. footing, 9 ft 0 in. × 9 ft 0 in. with 10 #7 bars both directions)
(Answer to Problem 12.9: 23-in. footing, 10 ft 3 in. × 10 ft 3 in. with 13 #7 bars both directions)
(Answer to Problem 12.11: 20-in. footing, 7 ft 0 in. × 7 ft 0 in. with 8 #7 bars both directions)

Problem 12.13 Design for load transfer from an
18-in. × 18-in. column with six #8 bars (D = 200 k, L = 350 k)
to an 8-ft-0-in. × 8-ft-0-in. footing. f ′

c = 4 ksi for footing,
5 ksi for column, and fy = 60 ksi. (Ans. 4 #6, 13.5 in. into
footing, 14.5 in. into column)

Problem 12.14 Repeat Problem 12.7 if a rectangular footing
with one side of the footing is limited to 7 ft.

Problem 12.15 Design a footing with one side limited
to 7 ft for the following: 12-in. × 12-in. edge column,
D = 130 k, L = 155 k, f ′

c = 3000 psi, fy = 60,000 psi,
qa = 4 ksf, and a distance from top of backfill to bottom of
footing = 4 ft. (Ans. 7-ft-0-in. × 11-ft-8-in. footing,
24 in. deep, 8 #8 bars in long direction)

Problem 12.16 Design a footing limited to a maximum width
of 7 ft 0 in. for the following: 15-in. × 15-in. interior column,
D = 180 k, L = 160 k, f ′

c = 4000 psi, fy = 60,000 psi,
qa = 4 ksf, and a distance from top of backfill to bottom of
footing = 5 ft.
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Problem 12.17 Design a rectangular combined footing for the
two columns shown. The bottom of the footing is to be 5 ft
below the final grade, f ′

c = 3.5 ksi, fy = 50 ksi, and qa = 5 ksf.
(Ans. 10 ft 6 in. × 12 ft 9 in., 26 in. deep, 11 #9 bars long
direction)

15-in. × 15-in. column
(D = 80 k, L = 175 k)

18-in. × 18-in. column
(D = 130 k, L = 200 k)

property line

10 ft 0 in.

Problem 12.18 Determine the footing areas required for the
loads given in the accompanying table so that the usual soil
pressures are equal. Assume qe = 5 ksf and a usual live load
percentage of 30% for all of the footings.

Footing Dead Load Live Load

A 120 k 200 k

B 130 k 170 k

C 120 k 200 k

D 150 k 200 k

E 140 k 180 k

F 140 k 200 k

Footings with Moments

For Problems 12.19 and 12.20, determine the width required for the wall footings. Assume footings have total thicknesses of 24 in.

Reinforced Footing Distance from
Problem concrete wall Moment thickness, bottom of footing
No. thickness (in.) D (k/ft) L (k/ft) f ′

c (ksi) fy (ksi) qa (ksf) (ft-k) h (in.) to final grade (ft)

12.19 12 12 16 3.5 60 4 40 24 4

12.20 14 16 24 3 60 4 50 24 5

(Answer to Problem 12.19: 13 ft 3 in.)

Problem 12.21 Repeat Problem 12.13 if a lateral force
Vu = 120 k acts at the base of the column. Use the shear
friction concept. Assume that footing concrete is not
intentionally roughened before column concrete is placed and
that normal-weight concrete is used (μ = 0.6λ). (Ans. 6 #8
dowels, 27 in. into footing, 24 in. into column)

Problem 12.22 Repeat Problem 12.21 using intentionally
roughened concrete (μ = 1.0λ).

Plain Concrete Footings

For Problems 12.23 and 12.24, design plain concrete wall footings of uniform thickness.

Problem Reinforced concrete Distance from bottom of
No. wall thickness (in.) D (k/ft) L (k/ft) f ′

c (ksi) qa (ksf) footing to final grade (ft)

12.23 12 10 14 4 5 5

12.24 14 12 10 3 4 4

(Answer to Problem 12.23: 26-in.-deep footing, 5 ft 6 in. wide)
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For Problems 12.25 and 12.26, design square plain concrete column footings of uniform thickness.

Problem Reinforced concrete Distance from bottom of
No. column size (in.) D (k) L (k) f ′

c (ksi) qa (ksf) footing to final grade(ft)

12.25 12 × 12 50 75 3 4 5

12.26 14 × 14 90 75 3.5 4 5

(Answer to Problem 12.25: 6-ft-3-in. × 6-ft-3-in. footing, 28 in. deep)

Computer Problems

For Problems 12.27 to 12.30, use the Chapter 12 spreadsheet.

Problem 12.27 Repeat Problem 12.2. (Ans. 11 ft 9 in. width,
21 in. depth with #8 @ 10 in.)

Problem 12.28 Repeat Problem 12.8.

Problem 12.29 Repeat Problem 12.10. (Ans. 8 ft 10 in. ×
8 ft 10 in., 21 in. depth with 8 #8 each way)

Problem 12.30 Repeat Problem 12.16.

Problems with SI Units
For Problems 12.31 and 12.32, design wall footings for the values given. The walls are to consist of reinforced concrete.
Concrete weight = 24 kN/m3 and soil weight = 16 kN/m3.

Problem Wall Distance from bottom of
No. thickness (mm) D (kN/m) L (kN/m) f ′

c (MPa) fy (MPa) qa (kN/m2) footing to final grade (m)

12.31 300 150 200 21 420 170 1.500

12.32 400 180 250 28 420 210 1.200

(Answer to Problem 12.31: 370-mm footing, width = 2.5 m, and #16 @ 300 mm main steel)

For Problems 12.33 to 12.35, design square single-column footings for the values given. Concrete weight = 24 kN/m3, soil
weight = 16 kN/m3, and all columns are interior ones.

Problem Column Distance from bottom of
No. size (mm) D (kN) L (kN) f ′

c (MPa) fy (MPa) qa (kN/m2) footing to final grade (m)

12.33 350 × 350 400 500 21 420 170 1.200

12.34 400 × 400 650 800 28 420 170 1.200

12.35 450 × 450 750 1000 28 420 210 1.600

(Answer to Problem 12.33: 480-mm footing, 2.5 m × 2.5 m with 11 #19 bars both directions)
(Answer to Problem 12.35: 600-mm footing, 3.2 m × 3.2 m with 10 #25 bars both directions)

Problem 12.36 Design a plain concrete wall footing for a
300-mm-thick reinforced concrete wall that supports a
100-kN/m dead load (including its own weight) and a
120-kN/m live load. f ′

c = 21 MPa and qa = 170 kN/m2. The
base of the footing is to be 1.250 m below the final grade.
Concrete weight = 24 kN/m3 and soil weight = 16 kN/m3.

Problem 12.37 Design a square plain concrete column
footing to support a 300-mm × 300-mm reinforced concrete
column that in turn is supporting a 130-kN dead load and a
200-kN live load. f ′

c = 28 MPa and qa = 210 kN/m2. The
base of the footing is to be 1.500 m below the final grade.
Concrete weight = 24 kN/m3 and soil weight = 16 kN/m3.
(Ans. 1.4 m × 1.4 m, 520 mm thick)



McCormac c13.tex V2 - January 9, 2013 10:05 P.M. Page 394

CHAPTER 13 Retaining Walls

13.1 Introduction
A retaining wall is a structure built for the purpose of holding back, or retaining or providing
one-sided lateral confinement of soil or other loose material. The loose material being retained
pushes against the wall, tending to overturn and slide it. Retaining walls are used in many
design situations where there are abrupt changes in the ground slope. Perhaps the most obvious
examples to the reader occur along highway or railroad cuts and fills. Often retaining walls
are used in these locations to reduce the quantities of cut and fill as well as to reduce the
right-of-way width required if the soils were allowed to assume their natural slopes. Retaining
walls are used in many other locations as well, such as for bridge abutments, basement walls,
and culverts.

Several different types of retaining walls are discussed in the next section, but whichever
type is used, there will be three forces involved that must be brought into equilibrium: (1) the
gravity loads of the concrete wall and any soil on top of the footing (the so-called developed
weight), (2) the lateral pressure from the soil, and (3) the bearing resistance of the soil. In
addition, the stresses within the structure have to be within permissible values, and the loads
must be supported in a manner such that undue settlements do not occur. A retaining wall
must be designed in such a way that the concrete elements that make up the wall comply with
the ACI Code using, for the most part, principles already discussed in this text. In addition,
the overall stability of the wall must be ensured. The wall may slide or tip over due to global
instability without failure of the concrete elements.

13.2 Types of Retaining Walls
Retaining walls are generally classed as being gravity or cantilever types, with several varia-
tions possible. These are described in the paragraphs to follow, with reference being made to
Figure 13.1.

The gravity retaining wall, shown in Figure 13.1(a), is used for walls of up to about 10
ft to 12 ft in height. It is usually constructed with plain concrete and depends completely on
its own weight for stability against sliding and overturning. It is usually so massive that it is
unreinforced. Tensile stresses calculated by the working-stress method are usually kept below
1.6
√

f ′
c . Gravity walls may also be constructed with stone or block masonry.
Semigravity retaining walls, shown in Figure 13.1(b), fall between the gravity and can-

tilever types (to be discussed in the next paragraph). They depend on their own weights plus
the weight of some soil behind the wall to provide stability. Semigravity walls are used for
approximately the same range of heights as the gravity walls and usually have some light
reinforcement.

The cantilever retaining wall or one of its variations is the most common type of retaining
wall. Such walls are generally used for heights from about 10 ft to 25 ft. In discussing retaining
walls, the vertical wall is referred to as the stem. The outside part of the footing that is pressed
down into the soil is called the toe, while the part that tends to be lifted is called the heel.
These parts are indicated for the cantilever retaining wall of Figure 13.1(c). The concrete and
its reinforcing are so arranged that part of the material behind the wall is used along with the

394
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(a) Gravity retaining wall

(c) Cantilever retaining wall

(d) Counterfort retaining wall

(e) Buttress retaining wall

(b) Semigravity retaining wall

minimum
frost-free
depth

stem

shear key

shear key

shear key

toe

toe

toe

heel

heel
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FI GU RE 13.1 Retaining wall.
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concrete weight to produce the necessary resisting moment against overturning. This resisting
moment is generally referred to as the righting moment.

When it is necessary to construct retaining walls of greater heights than approximately
20 ft to 25 ft, the bending moments at the junction of the stem and footing become so large
that the designer will, from economic necessity, have to consider other types of walls to handle
the moments. This can be done by introducing vertical cross walls on the front or back of the
stem. If the cross walls are behind the stem (i.e., inside the soil) and not visible, the retaining
walls are called counterfort walls. Should the cross walls be visible (i.e., on the toe side), the
walls are called buttress walls. These walls are illustrated in parts (d) and (e) of Figure 13.1.
The stems for these walls are continuous members supported at intervals by the buttresses or
counterforts. Counterforts or buttresses are usually spaced at distances approximately equal to
one-half (or a little more) of the retaining wall heights.

The counterfort type is more commonly used because it is normally thought to be more
attractive, as the cross walls or counterforts are not visible. Not only are the buttresses visible
on the toe side, but their protrusion on the outside or toe side of the wall will use up valuable
space. Nevertheless, buttresses are somewhat more efficient than counterforts because they
consist of concrete that is put in compression by the overturning moments, whereas counterforts
are concrete members used in a tension situation, and they need to be tied to the wall with
stirrups. Occasionally, high walls are designed with both buttresses and counterforts.

Figure 13.2 presents a few other retaining wall variations. When a retaining wall is
placed at a property boundary or next to an existing building, it may be necessary to use a

(a) Cantilever wall without a toe

(b) Cantilever wall without a heel

(c) Bridge abutment

FI GU RE 13.2 More retaining walls.
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wall without a toe, as shown in part (a) of the figure, or without a heel, as shown in part (b).
Another type of retaining wall very often encountered is the bridge abutment shown in part
(c) of the figure. Abutments may very well have wing wall extensions on the sides to retain
the soil in the approach area. The abutment, in addition to other loads, will have to support
the end reactions from the bridge.

The use of precast retaining walls is becoming more common each year. The walls are
built with some type of precast units, and the footings are probably poured in place. The
results are very attractive, and the units are high-quality concrete members made under “plant-
controlled” conditions. Less site preparation is required, and the erection of the walls is much
quicker than cast-in-place ones. The precast units can later be disassembled and the units used
again. Other types of precast retaining walls consist of walls or sheeting actually driven into
the ground before excavation. Also showing promise are gabions, or wire baskets of stone,
used in conjunction with geotextile-reinforced embankments.

13.3 Drainage
One of the most important items in designing and constructing successful retaining walls is the
prevention of water accumulation behind the walls. If water is allowed to build up there, the
result can be great lateral water pressure against the wall and perhaps an even worse situation
in cold climates due to frost action.

The best possible backfill for a retaining wall is a well-drained and cohesionless soil.
This is the condition for which the designer normally plans and designs. In addition to a
granular backfill material, weep holes of 4 in. or more in diameter (the large sizes are used for
easy cleaning) are placed in the walls approximately 5 ft to 10 ft on center, horizontally and
vertically, as shown in Figure 13.3(a). If the backfill consists of a coarse sand, it is desirable to
put a few shovels of pea gravel around the weep holes to try to prevent the sand from stopping
up the holes.

Weep holes have the disadvantages that the water draining through the wall is somewhat
unsightly and also may cause a softening of the soil in the area of the highest soil pressure
(under the footing toe). A better method includes the use of a 6-in. or 8-in. perforated pipe in
a bed of gravel running along the base of the wall, as shown in Figure 13.3(b). Unfortunately,
both weep holes and drainage pipes can become clogged, with the result that increased water

weep holes
(4 in. or
larger)

backfill with
free draining
soil

granular
material of
sufficient
size to avoid
plugging
weep holes

(a) Weep holes

weep
holes

(b) Drain pipe and perhaps
      weep holes too

backfill with
free-draining
soil

perforated pipe
covered with
granular material
(cut hole in
counterforts if
necessary)

FI GU RE 13.3 Retaining wall drainage.
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Retaining wall for Long Island Railroad, Huntington, New York. Constructed with precast
interlocking reinforced concrete modules.

pressure can occur. Manufactured drainage blankets or porous mats placed between the wall
and the soil allow moisture to migrate freely to drainage systems, such as in Figure 13.3(b).

The drainage methods described in the preceding paragraphs are also quite effective for
reducing frost action in colder areas. Frost action can cause very large movements of walls, not
just in terms of inches but perhaps even in terms of a foot or two, and over a period of time
can lead to failures. Frost action, however, can be greatly reduced if coarse, properly drained
materials are placed behind the walls. The thickness of the fill material perpendicular to a wall
should equal at least the depth of frost penetration in the ground in that area.

The best situation of all would be to keep the water out of the backfill altogether. Such
a goal is normally impossible, but sometimes the surface of the backfill can be paved with
asphalt or some other material, or perhaps a surface drain can be provided to remove the water,
or it may be possible in some other manner to divert the water before it can get to the backfill.

13.4 Failures of Retaining Walls
The number of failures or partial failures of retaining walls is rather alarming. The truth of the
matter is that if large safety factors were not used, the situation would be even more severe.
One reason for the large number of failures is the fact that designs are so often based on
methods that are suitable only for certain special situations. For instance, if a wall that has a
saturated clay behind it (never a good idea) is designed by a method that is suitable for a dry
granular material, future trouble will be the result.
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13.5 Lateral Pressure on Retaining Walls
The actual pressures that occur behind retaining walls are quite difficult to estimate because of
the large number of variables present. These include the kinds of backfill materials and their
compactions and moisture contents, the types of materials beneath the footings, the presence
or absence of surcharge, and other variables. As a result, the detailed estimation of the lateral
forces applied to various retaining walls is clearly a problem in theoretical soil mechanics. For
this reason, the discussion to follow is limited to a rather narrow range of cases.

If a retaining wall is constructed against a solid rock face, there will be no pressure applied
to the wall by the rock. If the wall is built to retain a body of water, however, hydrostatic
pressure will be applied to the wall. At any point, the pressure, p, will equal wh, where w is
the unit weight of the water and h is the vertical distance from the surface of the water to the
point in question.

If a wall is built to retain a soil, the soil’s behavior will generally be somewhere between
that of rock and water (but as you will learn, the pressure caused by some soils is much higher
than that caused by water). The pressure exerted against the wall will increase, as did the water
pressure, with depth but usually not as rapidly. This pressure at any depth can be estimated
with the following expression:

p = Cwh
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Retaining wall showing formwork under construction and reinforcing steel projecting from top (Rhodes
Annex, Clemson University) Russell H. Brown.
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FI GU RE 13.4 Chart for estimating pressure of backfill against retaining walls
supporting backfills with plane surface.

In this equation, w is the unit weight of the soil, h is the distance from the surface to the
point in question, and C is a constant that is dependent on the characteristics of the backfill.
Unfortunately, the value of C can vary quite a bit, being perhaps as low as 0.3 or 0.4 for loose
granular soils and perhaps as high as 0.9 or even 1.0 or more for some clay soils. Figure 13.4
presents charts that are sometimes used for estimating the vertical and horizontal pressures
applied by soil backfills of up to 20-ft heights. Several different types of backfill materials are
considered in the figure. Use of this chart is limited to walls not over about 20 ft high. (1) Back-
fill of coarse-grained soil without admixture of fine particles, very permeable, as clean sand or
gravel. (2) Backfill of coarse-grained soil of low permeability because of admixture of particles
of silt size. (3) Backfill of fine silty sand, granular materials with conspicuous clay content,
and residual soil with stones. (4) Backfill of soft or very soft clay, organic silt, or silty clay.1

Unit weights of soils will vary roughly as follows: 90 lb/ft3 to 100 lb/ft3 for soft clays,
100 lb/ft3 to 120 lb/ft3 for stiff clays, 110 lb/ft3 to 120 lb/ft3 for sands, and 120 lb/ft3 to 130
lb/ft3 for sand and gravel mixes.

If you carefully study the second chart of Figure 13.4, you will probably be amazed to
see how high lateral pressures can be, particularly for clays and silts. As an illustration, a 1-ft-
wide vertical strip is considered for a 15-ft-high retaining wall backfilled with soil number (4)
with an assumed δ of 10◦ (6 : 1 slope). The total estimated horizontal pressure on the strip is

Ph = 1

2
kh h2 =

(
1

2

)
(102 psf) (15 ft)2 = 11,475 lb

1 Peck, R. B., Hanson, W. E., and Thornburn, T. H., 1974, Foundation Engineering, 2nd ed. (Hoboken, NJ: John Wiley &
Sons), p. 425.
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FI GU RE 13.5 Possible sliding failure surface for
a retaining wall supporting a sloping earth fill.

If a 15-ft-deep lake is assumed to be behind the same wall, the total horizontal pressure
on the strip will be

Ph =
(

1

2

)
(15 ft) (15 ft) (62.4 lb/ft3) = 7020 lb

(only 61% as large as the estimated pressure for the soil)

For this introductory discussion, a retaining wall supporting a sloping earth fill is shown
in Figure 13.5. Part of the earth behind the wall (shown by the hatched area) tends to slide
along a curved surface (represented by the dashed line) and push against the retaining wall. The
tendency of this soil to slide is resisted by friction along the soil underneath (called internal
friction) and by friction along the vertical face of the retaining wall.

Internal friction is greater for a cohesive soil than for a noncohesive one, but the wetter
such a soil becomes, the smaller will be its cohesiveness and, thus, the flatter the plane of
rupture. The flatter the plane of rupture, the greater is the volume of earth tending to slide and
push against the wall. Once again, it is clear that good drainage is of the utmost importance.
Usually the designer assumes that a cohesionless granular backfill will be placed behind the
walls.

Due to lateral pressure, the usual retaining wall will give or deflect a little because it
is constructed of elastic materials. Furthermore, unless the wall rests on a rock foundation,
it will tilt or lean a small distance away from the soil due to the compressible nature of the
supporting soils. For these reasons, retaining walls are frequently constructed with a slight
batter, or inclination, toward the backfill so that the deformations described are not obvious to
passersby.

Under the lateral pressures described, the usual retaining wall will move a little distance
and active soil pressure will develop, as shown in Figure 13.6. Among the many factors that
affect the pressure applied to a particular wall are the kind of backfill material used, the drainage
situation, the level of the water table, the seasonal conditions such as dry or wet or frozen, the
presence of trucks or other equipment on the backfill, and so on.

For design purposes, it is usually satisfactory to assume that the active pressure varies
linearly with the depth of the backfill. In other words, it is just as though (so far as lateral
pressure is concerned) there is a liquid of some weight behind the wall that can vary from
considerably less than the weight of water to considerably more. The chart of Figure 13.4
shows this large variation in possible lateral pressures. The assumed lateral pressures are often
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FI GU RE 13.6 Active and passive soil pressures.

referred to as equivalent fluid pressures. Values from 30 pcf to 50 pcf are normally assumed but
may be much too low for clay and silt materials.

If the wall moves away from the backfill and against the soil at the toe, a passive soil
pressure will be the result. Passive pressure, which is also assumed to vary linearly with depth,
is illustrated in Figure 13.6. The inclusion or noninclusion of passive pressure in the design
calculations is a matter of judgment on the designer’s part. For effective passive pressure to
be developed at the toe, the toe concrete must be placed against undisturbed earth without the
use of vertical forms. Even if this procedure is followed, the designer will probably reduce the
height of the undisturbed soil (h′ in Figure 13.6) used in the calculations to account for some
disturbance of the earth during construction operations.

As long as the backfills are granular, noncohesive, and dry, the assumption of an equiv-
alent liquid pressure is fairly satisfactory. Formulas based on an assumption of dry sand or
gravel backfills are not satisfactory for soft clays or saturated sands. Actually, clays should
not be used for backfills because their shear characteristics change easily and they may tend
to creep against the wall, increasing pressures as time goes by.

If a linear pressure variation is assumed, the active pressure at any depth can be deter-
mined as

pa = ka wh

or, for passive pressure,
pp = kpwh ′

In these expressions, ka and kp are the approximate coefficients of active and passive pressures,
respectively. These coefficients can be calculated by theoretical equations such as those of
Rankine or Coulomb.2 For a granular material, typical values of ka and kp are 0.3 and 3.3.
The Rankine equation (published in 1857) neglects the friction of the soil on the wall, whereas
the Coulomb formula (published in 1776) takes it into consideration. These two equations
were developed for cohesionless soils. For cohesive soils containing clays and/or silts, it is
necessary to use empirical values determined from field measurements (such as those given in
Figure 13.4).

It has been estimated that the cost of constructing retaining walls varies directly with the
square of their heights. Thus, as retaining walls become higher, the accuracy of the computed

2 Terzaghi, K., and Peck, R. B., 1948, Soil Mechanics in Engineering Practice (Hoboken, NJ: John Wiley & Sons),
pp. 138–166.
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FI GU RE 13.7 Active and passive soil pressures with sloping backfill.

lateral pressures becomes more and more important in providing economical designs. Since
the Coulomb equation does take into account friction on the wall, it is thought to be the more
accurate one and is often used for walls of over 20 ft. The Rankine equation is commonly
used for ordinary retaining walls of 20 ft or less in height. It is interesting to note that the two
methods give identical results if the friction of the soil on the wall is neglected.

The Rankine expressions for the active and passive pressure coefficients are given
at the end of this paragraph with reference to Figure 13.7. In these expressions, δ is
the angle the backfill makes with the horizontal, while φ is the angle of internal friction of
the soil. For well-drained sand or gravel backfills, the angle of internal friction is often taken
as the angle of repose of the slope. One common slope used is 1 vertically to 1 1

2 horizontally
(33◦40′).

ka = cos δ

(
cos δ −

√
cos2 δ − cos2 φ

cos δ +
√

cos2 δ − cos2 φ

)

kp = cos δ

(
cos δ +

√
cos2 δ − cos2 φ

cos δ −
√

cos2 δ − cos2 φ

)

Should the backfill be horizontal—that is, should δ be equal to zero—the expressions
become

ka = 1 − sin φ

1 + sin φ

kp = 1 + sin φ

1 − sin φ

One trouble with using these expressions is in the determination of φ. It can be as small
as 0◦ to 10◦ for soft clays and as high as 30◦ or 40◦ for some granular materials. As a result,
the values of ka can vary from perhaps 0.30 for some granular materials up to about 1.0 for
some wet clays.

Once the values of ka and kp are determined, the total horizontal pressures, Ha and Hp ,
can be calculated as being equal to the areas of the respective triangular pressure diagrams.
For instance, with reference to Figure 13.7, the value of the active pressure is

Ha =
(

1

2

)
(pa ) (h) =

(
1

2

)
(ka wh) (h)

Ha = ka wh2

2



McCormac c13.tex V2 - January 9, 2013 10:05 P.M. Page 404

404 CHA P T E R 13 Retaining Walls

and, similarly,

Hp = kpwh ′2

2

In addition to these lateral pressures applied to the retaining wall, it is considered neces-
sary in many parts of the country to add the effect of frost action at the top of the stem—perhaps
as much as 600 lb or 700 lb per linear foot in areas experiencing extreme weather conditions.

13.6 Footing Soil Pressures
Because of lateral forces, the resultant of the horizontal and vertical forces, R, intersects the
soil underneath the footing as an eccentric load, causing greater pressure at the toe. This toe
pressure should be less than the permissible value, qa , of the particular soil. It is also desirable
to keep the resultant force within the kern or the middle third of the footing base.

If the resultant force intersects the soil within the middle third of the footing, the soil
pressure at any point can be calculated with the formula to follow exactly as the stresses are
determined in an eccentrically loaded column.

q = −Rv

A
± Rv ec

I

In this expression, Rv is the vertical component of R or the total vertical load, e is the eccen-
tricity of the load from the center of the footing, A is the area of a 1-ft-wide strip of soil of a
length equal to the width of the footing base, and I is the moment of inertia of the same area
about its centroid. This expression is correct only if Rv falls within the kern.

This expression can be reduced to the following expression, in which L is the width of
the footing from heel to toe.

q = −Rv

L
± Rv e(L/2)

L3/12
= −Rv

L

(
1 ± 6e

L

)

If the resultant force falls outside of the middle third of the footing, the preceding expres-
sions are not applicable because they indicate a tensile stress on one side of the footing—a
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Retaining wall for United States Army Corps of Engineers, Colchester, Connecticut.
Constructed with precast interlocking reinforced concrete modules.
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stress the soil cannot supply. For such cases, the soil pressures can be determined as previously
described in Section 12.12 and Figure 12.24 in Chapter 12. Such a situation should not be
permitted in a retaining wall and is not considered further.

The soil pressures computed in this manner are only rough estimates of the real values
and, thus, should not be valued too highly. The true pressures are appreciably affected by quite
a few items other than the retaining wall weight. Included are drainage conditions, temperature,
settlement, pore water, and so on.

13.7 Design of Semigravity Retaining Walls
As previously mentioned, semigravity retaining walls are designed to resist earth pressure
by means of their own weight plus some developed soil weight. Because they are normally
constructed with plain concrete, stone, or perhaps some other type of masonry, their design
is based on the assumption that only very little tension or none at all can be permitted in the
structure. If the resultant of the earth pressure and the wall weight (including any developed soil
weight) falls within the middle third of the wall base, tensile stresses will probably be negligible.

A wall size is assumed, safety factors against sliding and overturning are calculated, the
point where the resultant force strikes the base is determined, and the soil pressures are calcu-
lated. It is normally felt that safety factors against sliding should be at least 1.5 for cohesionless
backfills and 2.0 for cohesive ones. Safety factors of 2.0 for overturning are normally specified.
A suitable wall is probably obtained after two or three trial sizes. Example 13.1 illustrates the
calculations that need to be made for each trial.

Figure 13.8(a) shows a set of approximate dimensions that are often used for sizing
semigravity walls. Dimensions may be assumed to be approximately equal to the values given
and the safety factors against overturning and sliding computed. If the values are not suitable,
the dimensions are adjusted and the safety factors are recalculated, and so on. Semigravity
walls are normally trapezoidal in shape, as shown in Figure 13.8(a), but sometimes they may
have broken backs, as illustrated in Figure 13.8(b).

larger of 12 in. or 0.08h

(a) Some approximate dimensions for semigravity walls

if batter used
no less than

 in/ft1
4

1
4 in.

1
2 d to d h

d

0.12h to
0.16h

1 ft
earth

1
2 h tob = 3

4 h

may be
sloped

(b) Broken-back semigravity wall

earth

FI GU RE 13.8 Semigravity retaining walls.
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Example 13.1

A semigravity retaining wall consisting of plain concrete (weight = 145 lb/ft3) is shown in
Figure 13.9. The bank of supported earth is assumed to weigh 110 lb/ft3, to have a φ of
30◦, and to have a coefficient of friction against sliding on soil of 0.5. Determine the safety factors
against overturning and sliding and determine the bearing pressure underneath the toe of the
footing. Use the Rankine expression for calculating the horizontal pressures.

SOLUTION

Computing the Soil Pressure Coefficients

ka = 1 − sin φ

1 + sin φ
= 1 − 0.5

1 + 0.5
= 0.333

kp = 1 + sin φ

1 − sin φ
= 1 + 0.5

1 − 0.5
= 3.00

Value of Ha

Ha = kawh2

2
= (0.333) (110 pcf) (12 ft)2

2
= 2637 lb/ft

Overturning Moment

O.T.M. = (2637 lb/ft)
(

12 ft
3

)
= 10,548 ft-lb/ft

7 ft 0 in.

3 ft 0 in.

12 ft 0 in.

1 ft 0 in.

1 ft 0 in.W1

W3

W5

W4

W2

6 ft 0 in.

toe

0 ft 6 in. 0 ft 6 in.

FI GU RE 13.9 Semigravity retaining wall for Example 13.1.
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Righting Moments (Taken about Toe)

Force Moment Arm Moment

W1 = (7) (1) (145 pcf) = 1,015 lb × 3.5 ft = 3,552 ft-lb

W2 = (1) (11) (145 pcf) = 1,595 lb × 1.0 ft = 1,595 ft-lb

W3 = ( 1
2 )(5)(11)(145 pcf) = 3,988 lb × 3.17 ft = 12,642 ft-lb

W4 = ( 1
2

)
(5)(11)(110 pcf) = 3,025 lb × 4.83 ft = 14,611 ft-lb

W5 = (0.5)(11)(110 pcf) = 605 lb × 6.75 ft = 4,084 ft-lb

Rv = 10,228 lb M = 36,484 ft-lb

Safety Factor Against Overturning (to Be Discussed at Some Length in Section 13.10)

Safety factor = 36,484 ft-lb
10,548 ft-lb

= 3.46 > 2.00 OK

Safety Factor Against Sliding (Also Discussed at Length in Section 13.10)

Assuming soil above the footing toe has eroded, and thus the passive pressure is due only to
soil of a depth equal to footing thickness,

Hp = kpwh′ 2

2
= (3.0) (110 pcf) (1 ft)2

2
= 165 lb

Safety factor against sliding = (0.5) (10,228 lb) + 165 lb
2637 lb

= 2.00 > 1.50 OK

Distance of Resultant from Toe

Distance = 36,484 ft-lb − 10,548 ft-lb
10,228 lb

= 2.54 ft > 2.33 ft ∴ Inside middle third

Soil Pressure Under Heel and Toe

A = (1 ft) (7.0 ft) = 7.0 ft2

I =
(

1
12

)
(1 ft) (7 ft)3 = 28.58 ft4

ftoe = −Rv

A
− Rvec

I
= −10,228 lb

7.0 ft2
− (10,228 lb) (3.50 ft − 2.54 ft) (3.50 ft)

28.58 ft4

= −1461 psf − 1202 psf = −2663 psf

fheel = −Rv

A
+ Rvec

I
= −1461 psf + 1202 psf = −259 psf
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13.8 Effect of Surcharge
Should there be earth or other loads on the surface of the backfill, as shown in Figure 13.10,
the horizontal pressure applied to the wall will be increased. If the surcharge is uniform over
the sliding area behind the wall, the resulting pressure is assumed to equal the pressure that
would be caused by an increased backfill height having the same total weight as the surcharge.
It is usually easy to handle this situation by adding a uniform pressure to the triangular soil
pressure for a wall without surcharge, as shown in the figure.

If the surcharge does not cover the area entirely behind the wall, some rather complex
soil theories are available to consider the resulting horizontal pressures developed. As a con-
sequence, the designer usually uses a rule of thumb to cover the case, a procedure that works
reasonably well.

He or she may assume, as shown in Figure 13.11, that the surcharge cannot affect the
pressure above the intersection of a 45◦ line from the edge of the surcharge to the wall. The
lateral pressure is increased, as by a full surcharge, below the intersection point. This is shown
on the right side of the figure.

equivalent height of earth =
total surcharge weight/ft ÷
unit wt of backfill

F I GU RE 13.10 Equivalent height for surcharge.

F I GU RE 13.11 Effect of partial surcharge.
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13.9 Estimating the Sizes of Cantilever Retaining Walls
The statical analysis of retaining walls and consideration of their stability as to overturning
and sliding are based on service-load conditions. In other words, the length of the footing and
the position of the stem on the footing are based entirely on the actual soil backfill, estimated
lateral pressure, coefficient of sliding friction of the soil, and so on.

On the other hand, the detailed designs of the stem and footing and their reinforcing are
determined by the strength design method. To carry out these calculations, it is necessary to
multiply the service loads and pressures by the appropriate load factors. From these factored
loads, the bearing pressures, moments, and shears are determined for use in the design.

Thus, the initial part of the design consists of an approximate sizing of the retaining wall.
Although this is actually a trial-and-error procedure, the values obtained are not too sensitive
to slightly incorrect values, and usually one or two trials are sufficient.

Various rules of thumb are available with which excellent initial size estimates can be
made. In addition, various handbooks present the final sizes of retaining walls that have been
designed for certain specific cases. This information will enable the designer to estimate very
well the proportions of a wall to be designed. The CRSI Design Handbook is one such useful
reference.3 In the next few paragraphs, suggested methods are presented for estimating sizes
without the use of a handbook. These approximate methods are very satisfactory as long as
the conditions are not too much out of the ordinary.

Height of Wall

The necessary elevation at the top of the wall is normally obvious from the conditions of the
problem. The elevation at the base of the footing should be selected so that it is below frost
penetration in the particular area—about 3 ft to 6 ft below ground level in the northern part
of the United States. From these elevations, the overall height of the wall can be determined.

Stem Thickness

Stems are theoretically thickest at their bases because the shears and moments are greatest
there. They will ordinarily have total thicknesses somewhere in the range of 7% to 12% of the
overall heights of the retaining walls. The shears and moments in the stem decrease from the
bottom to the top; as a result, thicknesses and reinforcement can be reduced proportionately.
Stems are normally tapered, as shown in Figure 13.12. The minimum thickness at the top of
the stem is 8 in., with 12 in. preferable. As will be shown in Section 13.10, it is necessary to
have a mat of reinforcing in the inside face of the stem and another mat in the outside face.

stem reinforcing for moment

temperature and shrinkage reinforcing

F I GU RE 13.12 Cantilever retaining wall with
tapered stem.

3 Concrete Reinforcing Steel Institute, 2008, CRSI Design Handbook, 10th ed. (Chicago, IL: CRSI), pp. 14-1 to 14-46.
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To provide room for these two mats of reinforcing, for cover and spacing between the mats, a
minimum total thickness of at least 8 in. is required.

The use of the minimum thickness possible for walls that are primarily reinforced in one
direction (here it’s the vertical bars) doesn’t necessarily provide the best economy. The reason
is that the reinforcing steel is a major part of the total cost. Making the walls as thin as possible
will save some concrete but will substantially increase the amount of reinforcing needed. For
fairly high and heavily loaded walls, greater thicknesses of concrete may be economical.

If ρ in the stem is limited to a maximum value of approximately (0.18f ′
c/fy), the stem

thickness required for moment will probably provide sufficient shear resistance without using
stirrups. Furthermore, it will probably be sufficiently thick to limit lateral deflections to rea-
sonable values.

For heights up to about 12 ft, the stems of cantilever retaining walls are normally made
of constant thickness because the extra cost of setting the tapered formwork is usually not
offset by the savings in concrete. Above 12-ft heights, concrete savings are usually sufficiently
large to make tapering economical.

Actually, the sloping face of the wall can be either the front or the back, but if the outside
face is tapered, it will tend to counteract somewhat the deflection and tilting of the wall because
of lateral pressures. A taper or batter of 1

4 in. per foot of height is often recommended to offset
deflection or the forward tilting of the wall.

Base Thickness

The final thickness of the base will be determined on the basis of shears and moments. For
estimating, however, its total thickness will probably fall somewhere between 7% and 10% of
the overall wall height. Minimum thicknesses of at least 10 in. to 12 in. are used.

Base Length

For preliminary estimates, the base length can be taken to be about 40% to 60% of the overall
wall height. A little better estimate, however, can be made by using the method described by
the late Professor Ferguson in his reinforced concrete text.4 For this discussion, reference is
made to Figure 13.13. In this figure, W is assumed to equal the weight of all the material
within area abcd. This area contains both concrete and soil, but the authors assume here that it
is all soil. This means that a slightly larger safety factor will be developed against overturning

F I GU RE 13.13 Forces acting on a
cantilever retaining wall.

4 Ferguson, P. M., 1979, Reinforced Concrete Fundamentals, 4th ed. (Hoboken, NJ: John Wiley & Sons), p. 256.
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minimum
batter 

greater than frost
penetration and
depth for which there is
a seasonal change in volume

in/ft1
4

b
3

(8 in. absolute minimum,
(12 in. preferable minimum)

b = 0.4h to 0.6h

0.07h to
0.12h h

0.07h to 0.10h
(10 in. to 12 in. minimum)

F I GU RE 13.14 Rules of thumb for proportioning cantilever retaining walls.

than assumed. When surcharge is present, it will be included as an additional depth of soil, as
shown in the figure.

If the sum of moments about point a due to W and the lateral forces H1 and H2 equal
zero, the resultant force, R, will pass through point a. Such a moment equation can be written,
equated to zero, and solved for x. Should the distance from the footing toe to point a be equal
to one-half of the distance x in the figure and the resultant force, R, pass through point a, the
footing pressure diagram will be triangular. In addition, if moments are taken about the toe of
all the loads and forces for the conditions described, the safety factor against overturning will
be approximately two.

A summary of the preceding approximate first trial sizes for cantilever retaining walls
is shown in Figure 13.14. These sizes are based on the dimensions of walls successfully
constructed in the past. They often will be on the conservative side.

Example 13.2

Using the approximate rules presented in this section, estimate the sizes of the parts of the
retaining wall shown in Figure 13.15. The soil weighs 100 lb/ft3, and a surcharge of 300 psf is
present. Assume ka = 0.32. (For many practical soils such as clays or silts, ka will be two or more
times this large.)

SOLUTION

Stem Thickness

Assume 12 in. thickness at top.

Assume bottom thickness = 0.07h = (0.07) (21 ft) = 1.47 ft Say 1 ft 6 in.

Base Thickness

Assume base t = 7% to 10% of overall wall height.

t = (0.07) (21 ft) = 1.47 ft Say 1 ft 6 in.

Height of stem = 21 ft 0 in. − 1 ft 6 in. = 19 ft 6 in.
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surcharge

1 ft 0 in.

21 ft 0 in.

F I GU RE 13.15 Cantilever retaining wall for
Example 13.2.

300
100

= 3 ft

21 ft
H2

H1

a
x

96 psf

3 × 32 = 96 psf
surcharge

21
2 ft

21
3 ft

(21)(32) = 672 psf3
2 x

F I GU RE 13.16 Forces acting on retaining wall for Example 13.2.



McCormac c13.tex V2 - January 9, 2013 10:05 P.M. Page 413

13.10 Design Procedure for Cantilever Retaining Walls 413

Base Length and Position of Stem

Calculating horizontal forces without load factors, as shown in Figure 13.16.

ρa = kawh = (0.32) (100 pcf) (21 ft) = 672 lb/ft2

H1 =
(

1
2

)
(21 ft) (672 lb/ft2) = 7056 lb/ft

H2 = (21 ft) (96 psf) = 2016 lb/ft

W = (x) (24 ft) (100 psf) = 2400x

ΣMa = 0
−(7056 lb/ft) (7.00 ft) − (2016 lb/ft) (10.5 ft) + (2400x)

( x
2

)
= 0

x = 7.67 ft

b =
(

3
2

)
(7.67 ft) = 11.505 ft Say 11 ft 6 in.

The final trial dimensions are shown in Figure 13.22.

13.10 Design Procedure for Cantilever Retaining Walls
This section is presented to describe in some detail the procedure used for designing a cantilever
retaining wall. At the end of this section, the complete design of such a wall is presented. Once
the approximate size of the wall has been established, the stem, toe, and heel can be designed
in detail. Each of these parts will be designed individually as a cantilever sticking out of a
central mass, as shown in Figure 13.17.

Stem

The values of shear and moment at the base of the stem resulting from lateral earth pressures
are computed and used to determine the stem thickness and necessary reinforcing. Because the
lateral pressures are considered to be live load forces, a load factor of 1.6 is used.

It will be noted that the bending moment requires the use of vertical reinforcing bars on
the soil side of the stem. In addition, temperature and shrinkage reinforcing must be provided.
In Section 14.3 of the ACI Code, a minimum value of horizontal reinforcing equal to 0.0025

F I GU RE 13.17 Cantilever beam model used to design retaining wall stem, heel, and toe.
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of the area of the wall, bt, is required as well as a minimum amount of vertical reinforcing
(0.0015). These values may be reduced to 0.0020 and 0.0012 if the reinforcing is 5

8 in. or less
in diameter and if it consists of bars or welded wire fabric (not larger than W31 or D31), with
fy equal to or greater than 60,000 psi.

The major changes in temperature occur on the front or exposed face of the stem. For this
reason, most of the horizontal reinforcing (perhaps two-thirds) should be placed on that face
with just enough vertical steel used to support the horizontal bars. The concrete for a retaining
wall should be placed in fairly short lengths—not greater than 20-ft or 30-ft sections—to
reduce shrinkage stresses.

Factor of Safety Against Overturning

Moments are taken about the toe of the unfactored overturning and righting forces. Tradition-
ally, it has been felt that the safety factor against overturning should be at least equal to 2. In
making these calculations, backfill on the toe is usually neglected because it may very well
be eroded. Of course, there are cases where there is a slab (e.g., a highway pavement on top
of the toe backfill) that holds the backfill in place over the toe. For such situations, it may be
reasonable to include the loads on the toe.

Factor of Safety Against Sliding

Consideration of sliding for retaining walls is a most important topic because a very large
percentage of retaining wall failures occur because of sliding. To calculate the factor of safety
against sliding, the estimated sliding resistance (equal to the coefficient of friction for concrete
on soil times the resultant vertical force, μRv ) is divided by the total horizontal force. The
passive pressure against the wall is neglected, and the unfactored loads are used.

Typical design values of μ, the coefficient of friction between the footing concrete and
the supporting soil, are as follows: 0.45 to 0.55 for coarse-grained soils, with the lower value
applying if some silt is present, and 0.6 if the footing is supported on sound rock with a rough
surface. Values of 0.3 to 0.35 are used if the supporting material is silt.

It is usually felt that the factor of safety against sliding should be at least equal to 1.5.
When retaining walls are initially designed, the calculated factor of safety against sliding is
very often considerably less than this value. To correct the situation, the most common practice
is to widen the footing on the heel side. Another practice is to use a lug or key, as shown in
Figure 13.18, with the front face cast directly against undisturbed soil. (Many designers feel

F I GU RE 13.18 Passive pressure in a lug.
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El Teniente Copper Mine, Rancagua, Chile.

that the construction of keys disturbs the soil so much that they are not worthwhile.) Keys are
thought to be particularly necessary for moist clayey soils. The purpose of a key is to cause the
development of passive pressure in front of and below the base of the footing, as shown by Pp
in the figure. The actual theory involved, and thus the design of keys, is still a question among
geotechnical engineers. As a result, many designers select the sizes of keys by rules of thumb.
One common practice is to give them a depth between two-thirds and the full depth of the
footing. They are usually made approximately square in cross section and have no reinforcing
provided other than perhaps the dowels mentioned in the next paragraph.

Keys are often located below the stem so that some dowels or extended vertical reinforc-
ing may be extended into them. If this procedure is used, the front face of the key needs to be
at least 5 in. or 6 in. in front of the back face of the stem to allow room for the dowels. From
a soil mechanics view, keys may be a little more effective if they are placed a little farther
toward the heel.

If the key can be extended down into a very firm soil or even rock, the result will be a
greatly increased sliding resistance—that resistance being equal to the force necessary to shear
the key off from the footing, that is, a shear friction calculated as described in Sections 8.12
and 12.13 of this text.
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Heel Design

Lateral earth pressure tends to cause the retaining wall to rotate about its toe. This action tends
to pick up the heel into the backfill. The backfill pushes down on the heel cantilever, causing
tension in its top. The major force applied to the heel of a retaining wall is the downward
weight of the backfill behind the wall. Although it is true that there is some upward soil
pressure, many designers choose to neglect it because it is relatively small. The downward
loads tend to push the heel of the footing down, and the necessary upward reaction to hold
it attached to the stem is provided by the vertical tensile steel in the stem, which is extended
down into the footing.

Because the reaction in the direction of the shear does not introduce compression into
the heel part of the footing in the region of the stem, it is not permissible to determine Vu at
a distance d from the face of the stem, as provided in Section 11.1.3.1 of the ACI Code. The
value of Vu is determined instead at the face of the stem because of the downward loads. This
shear is often of such magnitude as to control the thickness, but the moment at the face of the
stem should be checked also. Because the load here consists of soil and concrete, a load factor
of 1.2 is used for making the calculations.

It will be noted that the bars in the heel will be in the top of the footing. As a result, the
required development length of these “top bars” may be rather large.

The percentage of flexural steel required for the heel frequently is less than the ρmin of
200/fy and 3

√
f ′

c/fy . Despite the fact that the ACI Code (10.5.4) exempts slabs of uniform
from these ρmin values, the authors recommend that these be used because the retaining wall
is a major beamlike structure.

Toe Design

The toe is assumed to be a beam cantilevered from the front face of the stem. The loads it must
support include the weight of the cantilever slab and the upward soil pressure beneath. Usually
any earth fill on top of the toe is neglected (as though it has been eroded). Obviously, such a
fill would increase the upward soil pressure beneath the footing, but because it acts downward
and cancels out the upward pressure, it produces no appreciable changes in the shears and
moments in the toe.

A study of Figure 13.19 shows that the upward soil pressure is the major force applied
to the toe. Because this pressure is primarily caused by the lateral force H, a load factor of 1.6
is used for the calculations. (Section 4.1 of this text shows that all load combinations including
soil loads have a load factor of 1.6 associated with H.) The maximum moment for design is
taken at the face of the stem, whereas the maximum shear for design is assumed to occur at

F I GU RE 13.19 Assumed soil stress distribution
at the base.
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F I GU RE 13.20 Keyway for improved shear capacity.

a distance d from the face of the stem because the reaction in the direction of the shear does
introduce compression into the toe of the footing. The average designer makes the thickness
of the toe the same as the thickness of the heel, although such a practice is not essential.

It is a common practice in retaining wall construction to provide a shear keyway between
the base of the stem and the footing. This practice, though definitely not detrimental, is of ques-
tionable value. The keyway is normally formed by pushing a beveled 2 in. × 4 in. or 2 in. ×
6 in. into the top of the footing, as shown in Figure 13.20. After the concrete hardens, the
wood member is removed, and when the stem is cast in place above, a keyway is formed. It is
becoming more and more common simply to use a roughened surface on the top of the footing
where the stem will be placed. This practice seems to be just as satisfactory as the use of a
keyway.

In Example 13.3, #8 bars 6 in. on center are selected for the vertical steel at the base
of the stem. These bars need to be embedded into the footing for development purposes, or
dowels equal to the stem steel need to be used for the transfer. This latter practice is quite
common because it is rather difficult to hold the stem steel in position while the base concrete
is placed.

The required development length of the #8 bars down into the footing or for #8 dowels
is 33 in. when fy = 60,000 psi and f ′

c = 3000 psi. This length cannot be obtained vertically in
the 1-ft-6-in. footing used unless the bars or dowels are either bent as shown in Figure 13.21(a)
or extended through the footing and into the base key as shown in Figure 13.21(b). Actually,
the required development length can be reduced if more but smaller dowels are used. For #6
dowels, ld is 20 in.

F I GU RE 13.21 Bar development options.
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If instead of dowels the vertical stem bars are embedded into the footing, they should not
extend up into the wall more than 8 ft or 10 ft before they are spliced because they are difficult
to handle in construction and may easily be bent out of place or even broken. Actually, after
examining Figure 13.21(a), you can see that such an arrangement of stem steel can sometimes
be very advantageous economically.

The bending moment in the stem decreases rapidly above the base; as a result, the amount
of reinforcing can be similarly reduced. It is to be remembered that these bars can be cut off
only in accordance with the ACI Code development length requirements.

Example 13.3 illustrates the detailed design of a cantilever retaining wall. Several impor-
tant descriptive remarks are presented in the solution, and these should be carefully read.

Example 13.3

Complete the design of the cantilever retaining wall whose dimensions were estimated in
Example 13.2 and are shown in Figure 13.22 if f ′

c = 3000 psi, fy = 60,000 psi, qa = 4000 psf,
and the coefficient of sliding friction equals 0.50 for concrete on soil. Use ρ approximately equal
to 0.18f ′

c/fy to maintain reasonable deflection control.

SOLUTION

The safety factors against overturning and sliding and the soil pressures under the heel and toe
are computed using the actual unfactored loads.

Safety factor against overturning = 149,456 ft-lb
70,560 ft-lb

= 2.12 > 2.00 OK

1 ft 0 in.

21 ft 0 in.

1 ft 6 in.

6 ft 3 in.3 ft 9 in.

11 ft 6 in.
1 ft 6 in.

300 psf surcharge

F I GU RE 13.22 Dimensions of retaining wall for
Example 13.3.
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1 ft 0 in.

19 ft 6 in.

1 ft 6 in.

3 ft 9 in. 6 ft 3 in.

1 ft 0 in.

1 ft 6 in.
11 ft 6 in.

6 in.

21
2 ft

21
3 ft

H2

W4

W3

W2

W1

H1

3 × 32 = 96 psf

21 × 32 = 672 psf   96 psf

F I GU RE 13.23 Forces acting on retaining wall for Example 13.3.

Safety Factor against Overturning (with Reference to Figure 13.23)

Overturning Moment

Force Moment Arm Moment

H1 = ( 1
2

)
(21 ft) (672 psf) = 7056 lb × 7.00 ft = 49,392 ft-lb

H2 = (21 ft) (96 psf) = 2016 lb × 10.50 ft = 21,168 ft-lb

Total 70,560 ft-lb

Righting Moment

Force Moment Arm Moment

W1 = (1.5 ft) (11.5 ft) (150 pcf) = 2,588 lb × 5.75ft = 14,881 ft-lb

W2 = ( 1
2

)
(19.5 ft)

( 6
12 ft

)
(150 pcf) = 731 lb × 4.08ft = 2,982 ft-lb

W3 = (19.5 ft)
( 12

12 ft
)

(150 pcf) = 2,925 lb × 4.75ft = 13,894 ft-lb

W4 = (22.5 ft) (6.25 ft) (100 pcf) = 14,062 lb × 8.37ft = 117,699 ft-lb*

Rv = 20,306 lb M = 149,456 ft-lb

* Includes surcharge.
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Factor of Safety Against Sliding

Here the passive pressure against the wall is neglected. Normally it is felt that the factor of safety
should be at least 1.5. If it is not satisfactory, a little wider footing on the heel side will easily take
care of the situation. In addition to or instead of this solution, a key, perhaps 1 ft 6 in. × 1 ft 6 in.
(size selected to provide sufficient development length for the dowels selected later in this
design) can be used. Space is not taken here to improve this safety factor.

Force causing sliding = H1 + H2 = 9072 lb

Resisting force = μRv = (0.50) (20,306 lb) = 10,153 lb

Safety factor = 10,153 lb
9072 lb

= 1.12 < 1.50 No good

Footing Soil Pressures

Rv = 20,306 lb and is located a distance x from the toe of the footing

x = 149,456 ft-lb − 70,560 ft-lb
20,306 lb

= 78,896 ft-lb
20,306 lb

= 3.89 ft Just inside middle third

Soil pressure = −Rv

A
± Mc

I

A = (1 ft) (11.5 ft) = 11.5 ft2

I =
(

1
12

)
(1 ft) (11.5 ft)3 = 126.74 ft4

ftoe = −20,306 lb

11.5 ft2
− (20,306 lb) (5.75 ft − 3.89 ft) (5.75 ft)

126.74 ft4

= −1766 psf − 1714 psf = −3480 psf

fheel = −1766 psf + 1714 psf = −52 psf

Design of Stem

The lateral forces applied to the stem are calculated using a load factor of 1.6, as shown in
Figure 13.24.

Design of Stem for Moment

Mu = (H1) (6.50 ft) + (H2) (9.75 ft) = (9734 lb) (6.50 ft) + (2995 lb) (9.75 ft)

Mu = 92,472 ft-lb

Use

ρ = approximately
0.18f ′

c

fy
= (0.18) (3000 psi)

60,000 psi
= 0.009

Mu

φbd2
= 482.6 psi (from Appendix A, Table A.12)

bd2 = (12 in/ft) (92,472 ft-lb)
(0.9) (482.6 psi)

= 2555 in.3

d =
√

2555 in.3

12 in.
= 14.59 in.

h = 14.59 in. + 2 in. + 1 in.
2

= 17.09 in. Say 18 in. (d = 15.50 in.)
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19.50 ft

19.50
2 = 9.75 ft

19.50
3 = 6.50 ft

(19.50 ft) (998.4 psf) = 9734 lb/ftH1 =

(19.5 ft) (153.6 psf) = 2995 lb/ftH2 =

1
2( (

F I GU RE 13.24 Lateral forces from backfill and surcharge.

Mu

φbd2
= (12 in/ft) (92,472 ft-lb)

(0.90) (12 in.) (15.5 in.)2
= 427.7 psi

ρ = 0.00786 (from Appendix A, Table A.12)

As = (0.00786) (12 in.) (15.5 in.) = 1.46 in.2 Use #8 @ 6 in. (1.57 in.2)

Minimum vertical ρ by ACI Section 14.3 = 0.0015 <
1.57 in.2

(12 in.) (15.5 in.)
= 0.0084 OK

Minimum horizontal As = (0.0025) (12 in.) (average stem t)

= (0.0025) (12 in.)
(

12 in. + 18 in.
2

)
= 0.450 in.2

(say one-third inside face and two-thirds outside face)

Use #4 @ 7 1
2 in. outside face and #4 @ 15 in. inside face

Checking Shear Stress in Stem

Actually, Vu at a distance d from the top of the footing can be used, but for simplicity:

Vu = H1 + H2 = 9734 lb + 2995 lb = 12,729 lb

φVc = φ2λ
√

f ′
cbd = (0.75) (2) (1.0) (

√
3000 psi) (12 in.) (15.5 in.)

= 15,281 lb > 12,729 lb OK

Design of Heel

The upward soil pressure is conservatively neglected, and a load factor of 1.2 is used for
calculating the shear and moment because soil and concrete make up the load.

Vu = (22.5 ft) (6.25 ft) (100 pcf) (1.2) + (1.5 ft) (6.25 ft) (150 pcf) (1.2) = 18,563 lb/ft

φVc = (0.75) (2) (1.0) (
√

3000 psi) (12 in.) (14.5 in.) = 14,295 lb < 18,563 lb No good
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d = 3 ft 7 in.

#8 @ 11 in.

#4 @ 18 in.

clear cover required = 2 in.

F I GU RE 13.25 Heel reinforcing.

Try 24-in. Depth (d = 20.5 in.)

Neglecting slight change in Vu with different depth

φVc = (0.75) (2) (1.0) (
√

3000 psi) (12 in.) (20.5 in.)

= 20,211 lb > 18,563 lb OK

Mu at face of stem = (18,563 lb)
(

6.25 ft
2

)
= 58,009 ft-lb

Mu

φbd2 = (12 in/ft) (58,009 ft-lb)
(0.9) (12 in.) (20.5 in.)2

= 153 psi

ρ = ρmin

Using ρ = 0.00333,

Ax = (0.00333) (12 in.) (20.5 in.) = 0.82 in2/ft Use #8 @ 11 in.

ld required calculated with ACI Equation 12-1 for #8 top bars with c = 2.50 in. and Ktr = 0 is
43 in. < 72 in. available. OK

Heel reinforcing is shown in Figure 13.25.

Note: Temperature and shrinkage steel is normally considered unnecessary in the heel and toe.
However, the authors have placed #4 bars at 18 in. on center in the long direction, as shown in
Figures 13.25 and 13.27, to serve as spacers for the flexural steel and to form mats out of the
reinforcing.

Design of Toe

For service loads, the soil pressures previously determined are multiplied by a load factor of 1.6
because they are primarily caused by the lateral forces, as shown in Figure 13.26.

Vu = 10,440 lb + 7086 lb = 17,526 lb

(The shear can be calculated a distance d from the face of the stem because the reaction in the
direction of the shear does introduce compression into the toe of the slab, but this advantage
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3 ft 9 in. 6 ft 3 in.

1 ft 6 in.
11 ft 6 in.

7086

10,440

3779 psf

5568 psf

83 psf

F I GU RE 13.26 Soil reactions.

is neglected because 17,526 lb is already less than the 19,125 lb shear in the heel, which was
satisfactory.)

Mu at face of stem = (7086 lb)
(

3.75 ft
3

)
+ (10,440 lb)

(
2
3

× 3.75 ft
)

= 34,958 ft-lb

Mu

φbd2 = (12 in/ft) (34,958 ft-lb)
(0.9) (12 in.) (20.5 in.)2

= 92 psi

ρ = less than ρmin

Therefore, use

200
60,000 psi

= 0.00333

As = (0.00333) (12 in.) (20.5 in.) = 0.82 in2/ft Use #8 @ 11 in.

ld required calculated with ACI Equation 12-1 for #8 bottom bars with c = 2.50 in. and Ktr = 0
equals 33 in. < 42 in. available. OK

Toe reinforcing is shown in Figure 13.27.

d = 2 ft 11 in.

#8 @ 11 in.
#4 @ 18 in.

clear cover required = 3 in.
F I GU RE 13.27 Toe reinforcing.
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TABLE 13.1 Stem Design for Example 13.3

Distance from Effective As required

Top of Stem (ft) Mu (ft-lb) Stem d (in.) ρ (in2/ft) Bars Needed

5 2,987 11.04 Use ρmin = 0.00333 0.44 #8 @ 18 in.

10 16,213 12.58 Use ρmin = 0.00333 0.50 #8 @ 18 in.

15 46,080 14.12 0.00452 0.77 #8 @ 12 in.

19.5 92,472 15.50 0.00786 1.46 #8 @ 6 in.

Selection of Dowels and Lengths of Vertical Stem Reinforcing

The detailed selection of vertical bar lengths in the stem is omitted here to save space, and
only a few general comments are presented. Table 13.1 shows the reduced bending moments
up in the stem and the corresponding reductions in reinforcing required.

After considering the possible arrangements of the steel in Figure 13.21 and the required
areas of steel at different elevations in Table 13.1, the authors decided to use dowels for load
transfer at the stem base.

Use #8 dowels at 6 in. extending 33 in. down into footing and key.

If these dowels are spliced to the vertical stem reinforcing with no more than one-
half the bars being spliced within the required lap length, the splices will fall into the class
B category (ACI Code 12.15), and their lap length should at least equal 1.3ld = (1.3) (33) =
43 in. Therefore, two dowel lengths are used—half 3 ft 7 in. up into the stem and the other half
7 ft 2 in.—and the #7 bars are lapped over them, half running to the top of the wall and the other
half to middepth. Actually, a much more refined design can be made that involves more cutting
of bars. For such a design, a diagram comparing the theoretical steel area required at various
elevations in the stem and the actual steel furnished is very useful. It is to be remembered (ACI
Code 12.10.3) that the bars cut off must run at least a distance d or 12 diameters beyond their
theoretical cutoff points and must also meet the necessary development length requirements.

13.11 Cracks and Wall Joints
Objectionable horizontal cracks are rare in retaining walls because the compression faces
are the ones that are visible. When they do occur, it is usually a sign of an unsatisfactory
structural design and not shrinkage. In Chapter 6 of this book, the ACI procedure (Section
10.6) for limiting crack sizes in tensile zones of one-way beams and slabs was presented.
These provisions may be applied to vertical retaining wall steel. However, they are usually
thought unnecessary because the vertical steel is on the earth side of the wall.

Vertical cracks in walls, however, are quite common unless sufficient construction joints
are used. Vertical cracks are related to the relief of tension stresses because of shrinkage, with
the resulting tensile forces exceeding the longitudinal steel capacity.

Construction joints may be used both horizontally and vertically between successive
pours of concrete. The surface of the hardened concrete can be cleaned and roughened, or keys
can be used as shown in Figure 13.28(a) to form horizontal construction joints.

If concrete is restrained from free movement when shrinking—for example, by being
attached to more rigid parts of the structure—it will crack at points of weakness. Contraction
joints are weakened places constructed so that shrinkage failures will occur at prepared loca-
tions. When the shrinkage tensile stresses become too large, they will pull these contraction
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F I GU RE 13.28 Examples of construction joints.

joints apart and form neat cracks rather than the crooked, unsightly ones that might otherwise
occur. In addition to handling shrinkage problems, contraction joints are useful in handling dif-
ferential settlements. They need to be spaced at intervals about 25 ft on center (the AASHTO
says not greater than 30 ft). The joints are usually constructed with rubber strips that are left
in place or with wood strips that are later removed and replaced with caulking.

Expansion joints are vertical joints that completely separate the different parts of a wall.
They are placed approximately 50 ft to 100 ft on centers (the AASHTO says maximum spacing
should not be greater than 90 ft). Reinforcing bars are generally run through all joints so that
vertical and horizontal alignment is maintained. When the bars do run through a joint, one end
of the bars on one side of the joint is either greased or sheathed so that the desired expansion
can take place.
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Box culvert.
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It is difficult to estimate the amount of shrinkage or expansion of a particular wall because
the wall must slide on the soil beneath, and the resulting frictional resistance may be sufficient
so that movement will be greatly reduced or even prevented. A rough value for the width of an
expansion joint can be determined from the following expression, in which �L is the change in
length, L is the distance between joints, �T is the estimated temperature change, and 0.000005
per unit length per degree Fahrenheit is the estimated coefficient of contraction of the wall.

�L = (0.000005L) (�T )

P R O B L E M S

For Problems 13.1 to 13.4, use the Rankine equation to calculate the total horizontal active force and the overturning moment for
the wall shown. Assume φ = 30◦ and the soil weighs 100 lb/ft3 . Neglect the fill on the toe for each wall.

1 ft 0 in.

soil h

E

D

A

C
B

Problem No. A B C D E h

13.1 6 ft 0 in. 3 ft 0 in. 1 ft 6 in. 5 ft 6 in. 1 ft 6 in. 16 ft 0 in.

13.2 10 ft 6 in. 2 ft 6 in. 1 ft 9 in. 6 ft 3 in. 1 ft 8 in. 18 ft 0 in.

13.3 13 ft 0 in. 4 ft 6 in. 1 ft 6 in. 6 ft 0 in. 1 ft 6 in. 24 ft 0 in.

13.4 12 ft 6 in. 4 ft 0 in. 1 ft 6 in. 7 ft 0 in. 2 ft 0 in. 22 ft 0 in.

(Answer to Problem 13.1: 4266 lb, 22,754 ft-lb)
(Answer to Problem 13.3: 9600 lb, 76,800 ft-lb)

Problem 13.5 Repeat Problem 13.1 if δ is 20◦. (Ans. 6276 lb, 33,472 ft-lb)

Problem 13.6 Repeat Problem 13.3 if δ is 23◦40′.
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For Problems 13.7 to 13.9, determine the safety factors against
overturning and sliding for the gravity and semigravity walls
shown if φ = 30◦ and the coefficient of friction (concrete on
soil) is 0.5. Compute also the soil pressure under the toe and heel
of each footing. The soil weighs 100 lb/ft3 and the plain con-
crete used in the footing weighs 145 lb/ft3 . Determine horizontal
pressures using the Rankine equation.

Problem 13.7 (Ans. 5.69, 2.67, −2193 psf, −1015 psf)

3 ft 0 in. 5 ft 0 in.

5 ft 0 in.

7 ft 0 in.

12 ft 0 in.

8 ft 0 in.

soil

Problem 13.8

3 ft 0 in. 4 ft 0 in.

8 ft 0 in.

8 ft 0 in.

16 ft 0 in.

7 ft 0 in.

soil

Problem 13.9 (Ans. 3.08, 1.82, −3158 psf, −247 psf)

1 ft 0 in.

1 ft 0 in.

soil

15 ft 0 in.

1 ft 6 in.

8 ft 0 in.

For Problems 13.10 to 13.13, if Rankine’s coefficient ka is 0.75, the soil weighs 110 lb/ft3 , the concrete weighs 110 lb/ft3 , and the
coefficient of friction (concrete on soil) is 0.55, determine the safety factors against overturning and sliding for the wall shown.

1 ft 0 in.

soil h

E

D

A

C
B
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Problem No. A B C D E h

13.10 8 ft 0 in. 2 ft 0 in. 1 ft 0 in. 5 ft 0 in. 1 ft 3 in. 14 ft 0 in.

13.11 14 ft 0 in. 3 ft 6 in. 1 ft 6 in. 9 ft 0 in. 2 ft 6 in. 12 ft 0 in.

13.12 13 ft 6 in. 4 ft 0 in. 1 ft 6 in. 8 ft 0 in. 1 ft 6 in. 18 ft 0 in.

13.13 19 ft 0 in. 4 ft 6 in. 1 ft 6 in. 13 ft 0 in. 2 ft 9 in. 25 ft 0 in.

(Answer to Problem 13.11: 5.63, 1.52)
(Answer to Problem 13.13: 2.30, 0.93)

Problem 13.14 Repeat Problem 13.4 assuming a surcharge of
200 psf. Calculate overturning moment.

Problem 13.15 Repeat Problem 13.9 assuming a surcharge of
200 psf. (Ans. 2.43, 1.72, −3906 psf, 0 psf)

Problem 13.16 Repeat Problem 13.12 assuming a surcharge
of 330 psf. Also determine toe and heel soil pressures.

For Problems 13.17 to 13.20, determine approximate dimensions
of retaining walls, check safety factors against overturning and
sliding, and calculate soil pressures for the wall shown. Also
determine the required stem thickness at their bases and select
vertical reinforcing there, using fy = 60,000 psi, f ′

c = 3000 psi,
qa = 5000 psf, ρ = approximately 0.18f ′

c/fy , angle of internal
friction = 33◦40′, and coefficient of sliding friction (concrete on
soil) = 0.45. Soil weight = 100 lb/ft3 . Concrete weight = 150
lb/ft3 .

Problem No. h Surcharge

13.17 16 ft 0 in. None

13.18 12 ft 0 in. None

13.19 15 ft 0 in. 200 psf

13.20 18 ft 0 in. None

(Answer to Problem 13.17: 7 ft 6 in. wide, O.T. safety
factor = 2.26)
(Answer to Problem 13.19: 8 ft 0 in. wide, O.T. safety
factor = 2.30)

For Problems 13.21 to 13.23, determine the same information
required for Problems 13.17 to 13.20 with same data, but design
heels instead of stems.

1 ft 0 in.

soil
h

Problem No. h Surcharge

13.21 14 ft 0 in. None

13.22 18 ft 0 in. 300 psf

13.23 20 ft 0 in. 300 psf starting 4 ft 0 in.
from inside face of wall

(Answer to Problem 13.21: 6 ft 6 in. wide, O.T. safety
factor = 2.24)
(Answer to Problem 13.23: 10 ft 3 in. wide, O.T. safety
factor = 2.16)
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Problems with SI Units

For Problems 13.24 to 13.26, use the Rankine equation to calculate the total horizontal force and the overturning moment for
the wall shown. Assume sin φ = 0.5 and the soil weighs 16 kN/m3.

E

A

C
DB

h

250 mm

soil

Problem No. A B C D E h

13.24 2.400 m 600 mm 500 mm 1.300 m 450 mm 4 m

13.25 2.700 m 700 mm 500 mm 1.500 m 500 mm 6 m

13.26 3.150 m 800 mm 550 mm 1.800 m 500 mm 8 m

(Answer to Problem 13.25: 95.904 kN, 191.908 kN-m)

For Problems 13.27 and 13.28, determine the safety factors
against overturning and sliding for the gravity and semigravity
walls shown if φ = 30◦ and the coefficient of sliding (concrete
on soil) is 0.45. Compute also the soil pressure under the toe
and heel of each footing. The soil weighs 16 kN/m3 and the
plain concrete used in the footing weighs 22.7 kN/m3.

Problem 13.27 (Ans. 3.06, 1.68, −141.87 kN/m2,
−17.03 kN/m2)

1 m 1 m

2 m

2 m

4 m

2 m

soil

Problem 13.28
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For Problems 13.29 and 13.30, if Rankine’s coefficient is 0.35,
the soil weight is 16 kN/m3, the concrete weight is 23.5 kN/m3,
and the coefficient of friction (concrete on soil) is 0.50, deter-
mine the safety factors against overturning and sliding for the
wall shown.

Problem No. A B C D E h

13.29 4 m 1.5 m 300 mm 2.2 m 700 mm 5 m

13.30 5 m 1.5 m 500 mm 3.0 m 800 mm 7 m

(Answer to Problem 13.29: 5.32, 1.77)

For Problems 13.31 to 13.33, select approximate dimensions
for the cantilever retaining wall shown and determine rein-
forcing required at base of stem, using those dimensions
and the following data: f ′

c = 21 MPa, fy = 420 MPa, ρ =
approximately 3

8 ρbal, angle of internal friction = 33◦40′, soil
weight = 16 kN/m3, and reinforced concrete weight = 23.5
kN/m3.

Problem No. h Surcharge

13.31 4 m none

13.32 6 m none

13.33 7 m 4 kN/m

(Answer to Problem 13.31: Use 320-mm stem at base with
d = 250 mm and #16 bars @ 225 mm vertical steel)
(Answer to Problem 13.33: Use 560 mm stem at base with
d = 490 mm and #25 bars @ 225 mm vertical steel)
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CHAPTER 14Continuous Reinforced
Concrete Structures

14.1 Introduction
During the construction of reinforced concrete structures, as much concrete as possible is placed
in each pour. For instance, the concrete for a whole floor or for a large part of it, including
the supporting beams and girders and parts of the columns, may be placed at the same time.
The reinforcing bars extend from member to member, as from one span of a beam into the
next. When there are construction joints, the reinforcing bars are left protruding from the older
concrete, so they may be lapped or spliced to the bars in the newer concrete. In addition, the
old concrete is cleaned so that the newer concrete will bond to it as well as possible. The result
of all these facts is that reinforced concrete structures are generally monolithic or continuous
and, thus, statically indeterminate.

A load placed in one span of a continuous structure will cause shears, moments, and
deflections in the other spans of that structure. Not only are the beams of a reinforced concrete
structure continuous, but the entire structure is also continuous. In other words, loads applied
to a column affect the beams, slabs, and other columns, and vice versa.

The result is that more economical structures are obtained because the bending moments
are smaller, and thus member sizes are smaller. Although the analyses and designs of continuous
structures are more complicated than they are for statically determinate structures, this fact has
become less important because of the constantly increasing availability of good software.

14.2 General Discussion of Analysis Methods
In reinforced concrete design today, we use elastic methods to analyze structures loaded with
factored or ultimate loads. Such a procedure probably doesn’t seem quite correct to the reader,
but it does yield satisfactory results. The reader might very well ask, “Why don’t we use
ultimate or inelastic analyses for reinforced concrete structures?” The answer is that our theory
and tests are just not sufficiently advanced.

It is true that under certain circumstances, some modifications of moments are permitted
to recognize ultimate or inelastic behavior as described in Section 14.5 of this chapter. In
general, however, we will discuss elastic analyses for reinforced concrete structures. Actually,
no method of analysis, elastic or inelastic, will give exact results because of the unknown
effects of creep, settlement, shrinkage, workmanship, and so on.

14.3 Qualitative Influence Lines
Many methods might be used to analyze continuous structures. The most common hand cal-
culation method is moment distribution, but other methods are frequently used, such as matrix
methods, computer solutions, and others. Whichever method is used, you should understand
that to determine maximum shears and moments at different sections in the structure, it is
necessary to consider different positions of the live loads. As a background for this material,
a brief review of qualitative influence lines is presented.

431
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Confinazas Financial Center, Caracas, Venezuela.

Qualitative influence lines are based on a principle introduced by the German professor
Heinrich Müller-Breslau. This principle is as follows: The deflected shape of a structure rep-
resents to some scale the influence line for a function such as reaction, shear, or moment if the
function in question is allowed to act through a small distance. In other words, the structure
draws its own influence line when the proper displacement is made.

The shape of the usual influence line needed for continuous structures is so simple to
obtain with the Müller-Breslau principle that, in many situations, it is unnecessary to compute
the numerical values of the coordinates. It is possible to sketch the diagram roughly with
sufficient accuracy to locate the critical positions for live loads for various functions of the
structure. These diagrams are referred to as qualitative influence lines, whereas those with
numerical values are referred to as quantitative influence lines.1

If the influence line is desired for the left reaction of the continuous beam of
Figure 14.1(a), its general shape can be determined by letting the reaction act upward through
a unit distance, as shown in Figure 14.1(b). If the left end of the beam is pushed up, the
beam will take the shape shown. This distorted shape can be sketched easily by remembering
that the other supports are considered to be unyielding. The influence line for Vc , drawn in a
similar manner, is shown in Figure 14.1(c).

Figure 14.1(d) shows the influence line for positive moment at point x near the center
of the left-hand span. The beam is assumed to have a pin or hinge inserted at x and a couple
is applied adjacent to each side of the pin, which will cause compression in the top fibers.
Bending the beam on each side of the pin causes the left span to take the shape indicated, and
the deflected shape of the remainder of the beam may be roughly sketched. A similar procedure

1 McCormac, J. C., 2007, Structural Analysis: Using Classical and Matrix Methods, 4th ed. (Hoboken, NJ: John Wiley &
Sons), pp. 189–194.
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FI GU RE 14.1 Qualitative influence lines.

is used to draw the influence line for negative moment at point y in the third span, except that
a moment couple is applied at the assumed pins, which will tend to cause compression in the
bottom beam fibers, corresponding with negative moment.

Finally, qualitative influence lines are drawn for positive shear at points x and y. At point
x, the beam is assumed to be cut, and the two vertical forces of the nature required to give
positive shear are applied to the beam on the sides of the cut section. The beam will take
the shape shown in Figure 14.1(f). The same procedure is used in Figure 14.1(g) to draw a
diagram for positive shear at point y. (Theoretically, for qualitative shear influence lines, it is
necessary to have a moment on each side of the cut section sufficient to maintain equal slopes.
Such moments are indicated in parts (f) and (g) of the figure by the letter M.)

From these diagrams, considerable information is available concerning critical live load-
ing conditions. If a maximum positive value of VA were desired for a uniform live load, the
load would be placed in spans 1 and 3, where the diagram has positive ordinates; if maximum
negative moment were required at point y, spans 2 and 4 would be loaded, and so on.

Qualitative influence lines are particularly valuable for determining critical load positions
for buildings, as illustrated by the moment influence line for the building of Figure 14.2. In

FI GU RE 14.2 Qualitative influence line for moment in a frame.
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FI GU RE 14.3 Load positions for maximum moments.

drawing diagrams for an entire frame, the joints are assumed to be free to rotate, but the
members at each joint are assumed to be rigidly connected to each other so that the angles
between them do not change during rotation. The influence line shown in the figure is for
positive moment at the center of beam AB.

The spans that should be loaded to cause maximum positive moment are obvious from
the diagram. It should be realized that loads on a member more than approximately three spans
away have little effect on the function under consideration.

In the last few paragraphs, influence lines have been used to determine the critical
positions for placing live loads to cause maximum moments. The same results can be obtained
(and perhaps more easily) by considering the deflected shape or curvature of a member under
load. If the live loads are placed so that they cause the greatest curvature at a particular point,
they will have bent the structure the greatest amount at that point, which means that the greatest
moment will have been obtained.

For the continuous beam of Figure 14.3(a), it is desired to cause the maximum negative
moment at support B by the proper placement of a uniform live load. In part (b) of the figure,
the deflected shape of the beam is sketched as it would be when a negative moment occurs at
B, and the rest of the beam’s deflected shape is drawn as shown by the dashed line. The live
uniform load is then placed in the locations that would exaggerate that deflected shape. This
is done by placing the load in spans 1, 2, and 4.

A similar situation is shown in Figure 14.3(c), where it is desired to obtain maximum
positive moment at the middle of the second span. The deflected shape of the beam is sketched
as it would be when a positive moment occurs in that span, and the rest of the beam’s deflected
shape is drawn in. To exaggerate this positive or downward bending in the second span, it can
be seen that the live load should be placed in spans 2 and 4.

14.4 Limit Design
It can be clearly shown that a statically indeterminate beam or frame normally will not collapse
when its ultimate moment capacity is reached at just one section. Instead, there is a redistribu-
tion of the moments in the structure. Its behavior is rather similar to the case where three men
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are walking along with a log on their shoulders and one of the men gets tired and lowers his
shoulder just a little. The result is a redistribution of loads to the other men and, thus, changes
in the shears and moments throughout the log.

It might be well at this point to attempt to distinguish between the terms plastic design as
used in structural steel and limit design as used in reinforced concrete. In structural steel, plastic
design involves both (a) the increased resisting moment of a member after the extreme fiber
of the member is stressed to its yield point and (b) the redistribution or change in the moment
pattern in the member. (Load and resistance factor design [LRFD] is a steel design method
that incorporates much of the theory associated with plastic design.) In reinforced concrete, the
increase in resisting moment of a section after part of the section has been stressed to its yield
point has already been accounted for in the strength design procedure. Therefore, limit design
for reinforced concrete structures is concerned only with the change in the moment pattern
after the steel reinforcing at some cross section is stressed to its yield point.

The basic assumption used for limit design of reinforced concrete structures and for
plastic design of steel structures is the ability of these materials to resist a so-called yield
moment while an appreciable increase in local curvature occurs. In effect, if one section of
a statically indeterminate member reaches this moment, it begins to yield but does not fail.
Rather, it acts like a hinge (called a plastic hinge) and throws the excess load off to sections
of the members that have lesser stresses. The resulting behavior is much like that of the log
supported by three men when one man lowered his shoulder.

To apply the limit design or plastic theory to a particular structure, it is necessary for
that structure to behave plastically. For this initial discussion, it is assumed that an ideal plastic
material, such as a ductile structural steel, is involved. Figure 14.4 shows the relationship of
moment to the resulting curvature of a short length of a ductile steel member. The theoretical
ultimate or nominal resisting moment of a section is referred to in this text as Mn (it’s the
same as the plastic moment Mp).

Although the moment-to-curvature relationship for reinforced concrete is quite different
from the ideal one pictured in Figure 14.4, the actual curve can be approximated reasonably
well by the ideal one, as shown in Figure 14.5. The dashed line in the figure represents the
ideal curve, while the solid line is a typical one for reinforced concrete. Tests have shown that
the lower the reinforcing percentage in the concrete ρ or ρ − ρ′ (where ρ′ is the percentage
of compressive reinforcing), the closer will the concrete curve approach the ideal curve. This
is particularly true when very ductile reinforcing steels, such as Grade 40, are used. Should a
large percentage of steel be present in a reinforced concrete member, the yielding that actually
occurs before failure will be so limited that the ultimate or limit behavior of the member will
not be greatly affected by yielding.

M
om

en
t

Curvature or rotation

Mp = plastic moment = Mn

FI GU RE 14.4 Moment–curvature relationship
for an ideal plastic material.
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FI GU RE 14.5 Typical moment–curvature relationship for a reinforced
concrete member.

The Collapse Mechanism

To understand moment redistribution in steel or reinforced concrete structures, it is necessary
first to consider the location and number of plastic hinges required to cause a structure to
collapse. A statically determinate beam will fail if one plastic hinge develops. To illustrate this
fact, the simple beam of constant cross section loaded with a concentrated load at midspan
shown in Figure 14.6(a) is considered. Should the load be increased until a plastic hinge is
developed at the point of maximum moment (underneath the load in this case), an unstable
structure will have been created, as shown in Figure 14.6(b). Any further increase in load will
cause collapse.

The plastic theory is of little advantage for statically determinate beams and frames, but
it may be of decided advantage for statically indeterminate beams and frames. For a statically
indeterminate structure to fail, it is necessary for more than one plastic hinge to form. The
number of plastic hinges required for failure of statically indeterminate structures will be

FI GU RE 14.6 Plastic hinge formation in a statically determinate beam.
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FI GU RE 14.7 Plastic hinge formation in a fixed-fixed statically
indeterminate beam.

shown to vary from structure to structure but can never be less than two. The fixed-end beam
of Figure 14.7 cannot fail unless the three plastic hinges shown in the figure are developed.

Although a plastic hinge may be formed in a statically indeterminate structure, the load
can still be increased without causing failure if the geometry of the structure permits. The
plastic hinge will act like a real hinge insofar as increased loading is concerned. As the load
is increased, there is a redistribution of moment because the plastic hinge can resist no more
moment. As more plastic hinges are formed in the structure, there will eventually be a sufficient
number of them to cause collapse.

The propped beam of Figure 14.8 is an example of a structure that will fail after two
plastic hinges develop. Three hinges are required for collapse, but there is a real hinge at the
right end. In this beam, the largest elastic moment caused by the design-concentrated load is at
the fixed end. As the magnitude of the load is increased, a plastic hinge will form at that point.

The load may be further increased until the moment at some other point (here it will be
at the concentrated load) reaches the plastic moment. Additional load will cause the beam to
collapse. The arrangement of plastic hinges, and perhaps real hinges that permit collapse in a
structure, is called the mechanism. Parts (b) of Figures 14.6, 14.7, and 14.8 show mechanisms
for various beams.

FI GU RE 14.8 Plastic hinge formation in a propped cantilever
statically indeterminate beam.
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Plastic Analysis by the Equilibrium Method

To analyze a structure plastically, it is necessary to compute the plastic or ultimate moments
of the sections, to consider the moment redistribution after the ultimate moments develop, and
finally to determine the ultimate loads that exist when the collapse mechanism is created. The
method of plastic analysis known as the equilibrium method will be illustrated in this section.

The fixed-end beam of Figure 14.9 is considered first. It is desired to determine the
value of wn , the theoretical ultimate load the beam can support. The maximum moments in a
uniformly loaded fixed-end beam in the elastic range occur at the fixed ends, as shown in the
figure.

If the magnitude of the uniform load is increased, the moments in the beam will be
increased proportionately until a plastic moment eventually develops at some point. Because
of symmetry, plastic moments will be developed at the beam ends, as shown in Figure 14.10(b).
Should the loads be further increased, the beam will be unable to resist moments larger than Mn
at its ends. Those points will rotate through large angles, and thus the beam will be permitted to

w k/ft

` = 18 ft

w`2

24

w`2

12
w`2

12

FI GU RE 14.9 Elastic moment diagram in a fixed-fixed statically
indeterminate beam.

wn k/ft

(a)

(b)

plastic hinge plastic hinge

(c)

less than Mn
Mn Mn

“simple beam”

F I GU RE 14.10 Moment diagram after hinge formation at supports
in a fixed-fixed beam.
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deflect more and allow the moments to increase out in the span. Although the plastic moment
has been reached at the ends and plastic hinges are formed, the beam cannot fail because it
has, in effect, become a simple end-supported beam for further load increases, as shown in
Figure 14.10(c).

The load can now be increased on this “simple” beam, and the moments at the ends will
remain constant; however, the moment out in the span will increase as it would in a uniformly
loaded simple beam. This increase is shown by the dashed line in Figure 14.11(b). The load
can be increased until the moment at some other point (here the beam centerline) reaches the
plastic moment. When this happens, a third plastic hinge will have developed and a mechanism
will have been created, permitting collapse.

One method of determining the value of wn is to take moments at the centerline of the
beam (knowing the moment there is Mn at collapse). Reference is made here to Figure 14.11(a)
for the beam reactions.

Mn = −Mn +
(

wn
l

2

)(
l

2
− l

4

)
= −Mn + wnl

2

8

wn = 16Mn

l2

The same value could be obtained by considering the diagrams shown in Figure 14.12.
You will remember that a fixed-end beam can be replaced with a simply supported beam plus
a beam with end moments. Thus, the final moment diagram for the fixed-end beam equals the
moment diagram if the beam had been simply supported plus the end moment diagram.

wn k/ft

moment increase
after end plastic 
hinges formed

(a)

(b)

(c)

plastic hinges

collapse mechanism

Mn

Mn

Mn

Mn
Mn

wn`
`2

wn`

2

F I GU RE 14.11 Formation of a collapse mechanism in a fixed-fixed beam.
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wn k/ft wn k/ft

F I GU RE 14.12 Moment superposition.

For the fixed-fixed beam under consideration, the value of Mn can be calculated as
follows (see Figure 14.13):

2Mn = wnl
2

8

Mn = wnl
2

16

The propped beam of Figure 14.14, which supports a concentrated load, is presented as a
second illustration of plastic analysis. The goal is to determine the value of Pn , the theoretical
ultimate load the beam can support before collapse. The maximum moment in this beam in
the elastic range occurs at the fixed end, as shown in the figure. If the magnitude of the
concentrated load is increased, the moments in the beam will increase proportionately until
a plastic moment is eventually developed at some point. This point will be at the fixed end,
where the elastic moment diagram has its largest ordinate.

After this plastic hinge is formed, the beam will act as though it is simply supported
insofar as load increases are concerned, because it will have a plastic hinge at the left end and
a real hinge at the right end. An increase in the magnitude of the load P will not increase the
moment at the left end but will increase the moment out in the beam, as it would in a simple
beam. The increasing simple beam moment is indicated by the dashed line in Figure 14.14(c).
Eventually, the moment at the concentrated load will reach Mn and a mechanism will form,
consisting of two plastic hinges and one real hinge, as shown in Figure 14.14(d).

The value of the theoretical maximum concentrated load, Pn , that the beam can support
can be determined by taking moments to the right or left of the load. Figure 14.14(e) shows
the beam reactions for the conditions existing just before collapse. Moments are taken to the
right of the load as follows:

Mn =
(

Pn

2
− Mn

20

)
10

Pn = 0.3Mn

wn `2

Mn Mn

Mn 2Mn8

F I GU RE 14.13 Determination of required Mn from fixed-fixed beam with hinges
forming mechanism.
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P

Mn

Mn

Pn
Mn

(a)

(b)

(c)

(d)

(e)

plastic hinge real hinge

plastic hinge

10 ft 10 ft

5P`

32

3P`

16

Pn

2
Mn

20
Pn

2
Mn

20

F I GU RE 14.14 Hinge formation sequence in a propped cantilever beam.

The subject of plastic analysis can be continued for different types of structures and
loadings, as described in several textbooks on structural analysis or steel design.2 The method
has been proved to be satisfactory for ductile structural steels by many tests. Concrete, however,
is a relatively brittle material, and the limit design theory has not been fully accepted by the ACI
Code. The code does recognize that there is some redistribution of moments and permits partial
redistribution based on a rule of thumb that is presented in the next section of this chapter.

2 McCormac, J. C. and Csernak, S. F., 2011, Structural Steel Design, 5th ed. (Hoboken, NJ: Pearson Prentice Hall),
pp. 240–244.
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14.5 Limit Design under the ACI Code
Tests of reinforced concrete frames have shown that under certain conditions, there is definitely
a redistribution of moments before collapse occurs. Recognizing this fact, the ACI Code (8.4.1)
permits factored moments calculated by elastic theory (not by an approximate analysis) to be
decreased at locations of maximum negative or positive moment in any span of a continuous
structure for any loading arrangement. The amount by which moments can be decreased cannot
exceed 1000εt% with a maximum of 20%. Redistribution of moments as described herein is
not permissible unless εt is equal to or greater than 0.0075 at the section where moment is
reduced (ACI Section 8.4.2). Appendix A, Table A.7 and Appendix B, Table B.7 of this book
provide percentages of steel for which εt will be equal to 0.0075. If ρ is greater than these
values, redistribution is not permitted, because εt will be less than 0.0075. The values given
in the table are for rectangular sections with tensile reinforcing.

According to ACI Section 18.10.4.1, negative or positive moments may be decreased for
prestressed sections, using the same rules, if bonded reinforcing (as described in Chapter 19
herein) is used.

The ACI Code’s percentage of moment redistribution has purposely been limited to a
very conservative value to be sure that excessively large concrete cracks do not occur at high
steel stresses and to ensure adequate ductility for moment redistribution at the plastic hinges.
The ACI Code likely will expand its presently conservative redistribution method after the
behavior of plastic hinges is better understood, particularly in regard to shears, deflections, and
development of reinforcing. It is assumed here that the sections are satisfactorily reinforced
for shears so that the ultimate moments can be reached without shear failure occurring. The
adjustments are applied to the moments resulting from each of the different loading conditions.
The member in question will then be proportioned on the basis of the resulting moment
envelope. Figures 14.15 through 14.18 illustrate the application of the moment redistribution
permitted by the code to a three-span continuous beam. It will be noted in these figures that
factored loads and elastic analyses are used for all the calculations.

Three different live-load conditions are considered in these figures. To determine the
maximum positive moment in span 1, the live load is placed in spans 1 and 3 (Figure 14.15).
Similarly, to produce maximum positive moment in span 2, the live load is placed in that span
only (Figure 14.16). Finally, maximum negative moment at the first interior support from the
left end is caused by placing the live load in spans 1 and 2 (Figure 14.17).

For this particular beam, it is assumed that the code permits a 10% decrease in the
negative or positive moments. This will require that 1000εt exceed 10 at the sections where
the moment is reduced to provide the needed ductility. The result will be smaller design
moments at the critical sections. Initially, the loading for maximum positive moment in span 1
is considered as shown in Figure 14.15. If the maximum calculated positive moments of 425 ft-k
near midspan of the end spans are each decreased by 10% to 383 ft-k, the negative moments
at both interior supports will be increased to 406 ft-k. Even though the negative moment has
increased significantly, from 308 ft-k to 406 ft-k, this higher value still will not control the
required moment capacity at this location. Hence, the positive design moment is decreased,
but the negative moment is not increased.

In the same fashion, in Figure 14.16, where the beam is loaded to produce maximum
positive moment in span 2, a 10% decrease in positive moment from 261 ft-k to 235 ft-k will
increase the negative moment at both interior supports from 339 ft-k to 365 ft-k.

Finally, in Figure 14.17, the live-load placement causes a maximum negative moment at
the first interior support of 504 ft-k. If this value is reduced by 10%, the maximum moment
there will be −454 ft-k. In this figure, the authors have reduced the negative moment at the
other interior support by 10% also.

It will be noticed that the net result of all of the various decreases in the positive or
negative moments is a net reduction in both the maximum positive and the maximum negative
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these are factored loads

wuD = 2.8 k/ft

406 ft-k406 ft-k

204 ft-k

106 ft-k
383 ft-k

425 ft-k425 ft-k

2.8 k/ft

13.62 ft
V = 4.1 k

M− = 406 ft-k

10.38 ft77.9 k

7.9 k/ft7.9 k/ft

dotted lines represent
adjusted moments
permitted by ACI

Section 8.4.1

darkened lines represent
moments due to

loads shown

reduce M+ from
425 ft-k to 383 ft-k

383 ft-k

308
ft-k308 ft-k

wuL = 5.1 k/ft

CL

F I GU RE 14.15 Maximum positive moment in end spans. (a) Loading patterns for
maximum positive moment in both end spans. (b) Moment diagram before and
after reducing positive moment in end spans. (c) Shears and moments in left span
after M + is reduced 10% in end spans.
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77 ft-k 261 ft-k
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ft-k
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ft-k
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ft-k

339 ft-k

77 ft-k

wuL = 5.1 k/ft
wuD = 2.8 k/ft

F I GU RE 14.16 Maximum positive moment in span 2.
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102 ft-k

wuL = 5.1 k/ft

365 ft-k

345
ft-k

454
ft-k

504 ft-k

193
ft-k

230 ft-k 234
ft-k

93
ft-k

260 ft-k

wuD = 2.8 k/ft

F I GU RE 14.17 Maximum negative moment at support B.

values. The result of these various redistributions is actually an envelope of the extreme values
of the moments at the critical sections. The envelope for the three-span beam considered in
this section is presented in Figure 14.18. You can see at a glance the parts of the beams that
need positive reinforcement, negative reinforcement, or both.

The reductions in bending moments because of moment redistribution as described here
do not mean that the safety factors for continuous members will be less than those for simple
spans. Rather, the excess strength that such members have because of this continuity is reduced
so that the overall factors of safety are nearer but not less than those of simple spans.

Various studies have shown that cracking and deflection of members selected by the limit
design process are no more severe than those for the same members designed without taking
advantage of the permissible redistributions.3,4

(Appendix B of the ACI Code presents quite a few variations that can be used in design for
flexure and axial loads. There are changes in the moment redistribution percentages permitted
for continuous members, in the reinforcing limits and in the strength reduction or φ factors.
These latter changes are dependent on the strain conditions, including whether the sections are
compression or tension controlled.)

235 ft-k 383 ft-k383 ft-k

−204 ft-k

−454 ft-k−454 ft-k

F I GU RE 14.18 Moment envelope.

3 Cohn, M. Z., 1964, “Rotational Compatibility in the Limit Design of Reinforced Concrete Continuous Beams,” Proceedings
of the International Symposium on the Flexural Mechanics of Reinforced Concrete (Miami, FL: ASCE-ACI), pp. 359–382.
4 Mattock, A. H., 1959, “Redistribution of Design Bending Moments in Reinforced Concrete Continuous Beams,” Proceedings
of the Institution of Civil Engineers, 113, pp. 35–46.
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14.6 Preliminary Design of Members
Before an “exact” analysis of a building frame can be made, it is necessary to estimate the
sizes of the members. Even if a computer design is used, it is often economically advisable to
make some preliminary estimates as to sizes. If an approximate analysis of the structure has
been made, it will be possible to make very reasonable member size estimates. The result will
be appreciable saving of both computer time and money.

An experienced designer can usually make very satisfactory preliminary size estimates
based on previous experience. In the absence of such experience, however, the designer can still
make quite reasonable size estimates based on knowledge of structural analysis. For instance,
to size columns approximately, a designer can neglect moments and assume an average axial
stress, or Pu/Ag , value of about 0.4f ′

c to 0.6f ′
c . This rough value can be divided into the

estimated column load to obtain its estimated area. If moments are large, lower values of
average stress (0.4f ′

c to 0.5f ′
c) can be used; if moments are small, higher values (0.55f ′

c to
0.6f ′

c) can be used.
Preliminary beam sizes can be obtained by considering their approximate moments.

A uniformly loaded simple beam will have a maximum bending moment equal to wul
2/8,

whereas a uniformly loaded fixed-end beam will have a maximum moment of wul
2/12. For a

continuous uniformly loaded beam, the designer might very well estimate a maximum moment
somewhere between the values given, perhaps wul2/10, and use that value to estimate the
beam size.

For many structures, it is necessary to conduct at least two different analyses. One
analysis is made to consider the effect of gravity loads as described in Section 14.7 of this
chapter, while another might be made to consider the effect of lateral loads as discussed in
Section 14.8. For the gravity loads only, U usually equals 1.2D + 1.6L.

Because the gravity loads affect only the floor to which they are applied, each floor can
be analyzed independently of the others. Such is not the case for lateral loads because lateral
loads applied anywhere on the frame affect the lateral displacements throughout the frame and,
thus, affect the forces in the frame below. For this situation, the load factor equations involving
lateral forces (ACI Equations 9-3, 9-4, etc.) must be applied.

Sometimes a third analysis should be made—one that involves the possibility of force
reversals on the windward side or even overturning of the structure. If overturning is being
considered, the dead and live gravity loads should be reduced to their smallest possible values
(i.e., zero live load and 0.9D, in case the dead loads have been overestimated a little) while
the lateral loads are acting. For this case, ACI load factor equations 9-6 and 9-7 must be
considered.

14.7 Approximate Analysis of Continuous Frames
for Vertical Loads

Statically indeterminate structures may be analyzed “exactly” or “approximately.” Some
approximate methods involving the use of simplifying assumptions are presented in this
section. Despite the increased use of computers for making “exact” analyses, approximate
methods are used about as much or more than ever, for several reasons. These include the
following:

1. The structure may be so complicated that no one who has the knowledge to make an
“exact” analysis is available or no suitable computer software is available.

2. For some structures, either method may be subject to so many errors and imperfections
that approximate methods may yield values as accurate as those obtained with an “exact”
analysis. A specific example is the analysis of a building frame for wind loads where
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the walls, partitions, and floors contribute an indeterminate amount to wind resistance.
Wind forces calculated in the frame by either method are not accurate.

3. To design the members of a statically indeterminate structure, it is sometimes necessary
to make an estimate of their sizes before structural analysis can begin by an exact
method. Approximate analysis of the structure will yield forces from which reasonably
good initial estimates can be made as to member sizes.

4. Approximate analyses are quite useful in rough-checking exact solutions.

From the discussion of influence lines in Section 14.3, you can see that unless a com-
puter is used (a very practical alternative today), an exact analysis involving several different
placements of the live loads would be a long and tedious affair. For this reason, it is common
when a computer is not readily available to use some approximate methods of analysis, such
as the ACI moment and shear coefficients, the equivalent rigid-frame method, the assumed
point-of-inflection-location method, and others discussed in the pages to follow.

ACI Coefficients for Continuous Beams and Slabs

A very common method used for the design of continuous reinforced concrete structures
involves the use of the ACI coefficients given in Section 8.3.3 of the code. These coefficients,
which are reproduced in Table 14.1, provide estimated maximum shears and moments for
buildings of normal proportions. The values calculated in this manner will usually be somewhat
larger than those that would be obtained with an “exact” analysis. As a result, appreciable
economy can normally be obtained by taking the time or effort to make such an analysis. In
this regard, it should be realized that these coefficients are considered best applied to continuous
frames having more than three or four continuous spans.

TABLE 14.1 ACI Coefficients

Positive moment

End spans

If discontinuous end is unrestrained 1
11 wul 2

n

If discontinuous end is integral with the support 1
14 wul

2
n

Interior spans 1
16 wul

2
n

Negative moment at exterior face of first interior support

Two spans 1
9 wul2

n

More than two spans 1
10 wul

2
n

Negative moment at other faces of interior supports 1
11 wul

2
n

Negative moment at face of all supports for (a) slabs with spans not
exceeding 10 ft and (b) beams and girders where ratio of sum of column
stiffnesses to beam stiffness exceeds eight at each end of the span

1
12 wul

2
n

Negative moment at interior faces of exterior supports for members built
integrally with their supports

Where the support is a spandrel beam or girder 1
24 wul

2
n

Where the support is a column 1
16 wul

2
n

Shear in end members at face of first interior support 1.15(wuln/2)

Shear at face of all other supports wuln/2
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One Shell Plaza, Houston, Texas, which has 52 stories and is 714 ft high.

In developing the coefficients, the negative-moment values were reduced to take into
account the usual support widths and also some moment redistribution, as described in Section
14.5 of this chapter. In addition, the positive-moment values have been increased somewhat
to account for the moment redistribution. It will also be noted that the coefficients account for
the fact that, in monolithic construction, the supports are not simple and moments are present
at end supports, such as where those supports are beams or columns.
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11
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14+ wu`n
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F I GU RE 14.19 Moment envelopes for continuous slab constructed integrally with
beams.

In applying the coefficients, wu is the design load while ln is the clear span for calculating
positive moments and the average of the adjacent clear spans for calculating negative moments.
These values can be applied only to members with approximately equal spans (the larger of
two adjacent spans not exceeding the smaller by more than 20%) and for cases where the
ratio of the uniform service live load to the uniform service dead load is not greater than
three. In addition, the values are not applicable to prestressed concrete members. Should these
limitations not be met, a more precise method of analysis must be used.

For the design of a continuous beam or slab, the moment coefficients provide in effect
two sets of moment diagrams for each span of the structure. One diagram is the result of
placing the live loads so that they will cause maximum positive moment out in the span, while
the other is the result of placing the live loads so as to cause maximum negative moments
at the supports. To be truthful, however, it is not possible to produce maximum negative
moments at both ends of a span simultaneously. It takes one placement of the live loads to
produce maximum negative moment at one end of the span and another placement to produce
maximum negative moment at the other end. The assumption of both maximums occurring at
the same time is on the safe side, however, because the resulting diagram will have greater
critical values than are produced by either one of the two separate loading conditions.

The ACI coefficients give maximum points for a moment envelope for each span of a
continuous frame. Typical envelopes are shown in Figure 14.19 for a continuous slab, which
is assumed to be constructed integrally with its exterior supports, which are spandrel girders.

Example 14.1 presents the design of the slab of Figure 14.20 using the moment coeffi-
cients of the ACI Code. The calculations for this problem can be conveniently set up in some
type of table, such as the one shown in Figure 14.21. For this particular slab, the authors
used an arrangement of reinforcement that included bent bars. It is quite common, however,
in slabs—particularly those 5 in. or less in thickness—to use straight bars only in the top and
bottom of the slab.

F I GU RE 14.20 Clear spans for Example 14.1.
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psi

0.456 in.
2

0.319 in.
2

0.285 in.
2

0.285 in.
2

#5 @ 6 in.
Alt Bend

#5 @ 6 in.
Alt Bend

#5 @ 12
(0.31)

bars
selected

#5 @ 6
(0.61)

#5 @ 6
(0.61)

#5 @ 6
(0.61)

#5 @ 6
(0.61)

symmetrical about centerline

*The minimum p values specified in ACI 10.5.1 for tensile steel are applicable to both
positive and negative moment regions (ACI Commentary R10.5).

#5 @ 6
(0.61)

#5 @ 12
(0.31)

Mu = –

Mu = –2535 ft-lb

= 124.8 214.0

ρ = 0.0050*

299.6 187.2 299.6 214.0 124.8
Mu

φbd2

–6084 ft-lb –6084 ft-lb
+4346 ft-lb+3802 ft-lb+ 4346 ft-lb

–2535 ft-lb

wu`n
21

24

+ wu`n
21

14
+ wu`n

21
16 + wu`n

21
14

− wu`n
21

10
− wu`n

21
10

− wu`n
21

24

As = 0.285 in.2 0.319 in.2 0.456 in.2

0.0050* 0.0050*0.00560.0056 0.0080 0.0080

F I GU RE 14.21 Calculations for Example 14.1.

Example 14.1

Design the continuous slab of Figure 14.20 for moments calculated with the ACI coefficients.
The slab is to support a service live load of 165 psf and a superimposed dead load of 5 psf in
addition to its own dead weight. f ′

c = 3000 psi and fy = 40,000 psi. The slab is to be constructed
integrally with its spandrel girder supports, and the spandrel supports are 12 in. wide.

SOLUTION

Minimum t for Deflection by ACI Code 9.5.2.3 (Note that This Table Uses 	, Not 	n, as the
Span.)

Deflection multiplier for 40,000-psi steel = 0.4 + 40,000 psi
100,000 psi

= 0.80

Minimum t for end span = 0.8
l

24
= (0.8) (12 in/ft) (13 ft + 1 ft)

24
= 5.6 in.

Minimum t for interior span = 0.8
l

28
= (0.8) (12 in/ft) (13 ft + 1 ft)

28
= 4.80 in.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Select 6-in. slab
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Loads and Maximum Moment for a 6-in. Slab
(

d = 4 3
4 in.

)

wD = slab weight =
(

6 in.
12 in/ft

)
(150 pcf) = 75 psf

wL = 165 psf

wu = (1.2) (75 psf + 5 psf) + (1.6) (165 psf) = 360 psf

Max Mu =
(

1
10

)
wul

2
n =

(
1
10

)
(360 psf) (13 ft)2 = 6084 ft-lb

Computing moments, ρ values, As requirements, and selecting bars at each section, as
shown in Figure 14.21.

For floor slabs, we are not concerned with the design of web reinforcing. For continuous
beams, however, web reinforcing must be carefully designed. Such designs are based on the
maximum shears occurring at various sections along the span.

From previous discussions, you will remember that to determine the maximum shear
occurring at section 1–1 in the beam of Figure 14.22, the uniform dead load would extend
all across the span while the uniform live load would be placed from the section to the most
distant support.

If the live load is placed so as to cause maximum shears at various points along the span
and the shear is calculated for each point, a maximum shear curve can be drawn. Practically
speaking, however, it is unnecessary to go through such a lengthy process for buildings of
normal proportions because the values that would be obtained do not vary significantly from
the values given by the ACI Code, which are shown in Figure 14.23.

LL

DL

1

1

F I GU RE 14.22 Position of live load for maximum shear at section 1–1.

1.15w`n

2

1.15w`n

2

w`n

2

w`n

2

F I GU RE 14.23 Shear diagrams resulting from use of shear coefficients in
Table 14.1.
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Equivalent Rigid-Frame Method

When continuous beams frame into and are supported by girders, the normal assumption made
is that the girders provide only vertical support. Thus, they are analyzed purely as continuous
beams, as shown in Figure 14.24. The girders do provide some torsional stiffness, and if the
calculated torsional moments exceed φλ

√
f ′

c(A
2
cp/ρcp) as specified in ACI Section 11.6.1, they

must be considered, as will be described in Chapter 15.
Where continuous beams frame into columns, the bending stiffnesses of the columns

together with the torsional stiffnesses of the girders are of such magnitude that they must be
considered. An approximate method frequently used for analyzing such reinforced concrete
members is the equivalent rigid-frame method. In this method, which is applicable only to
gravity loads, the loads are assumed to be applied only to the floor or roof under consideration
and the far ends of the columns are assumed to be fixed, as shown in Figure 14.25. The sizes
of the members are estimated, and an analysis is frequently made with moment distribution.

For this type of analysis, it is necessary to estimate the sizes of the members and compute
their relative stiffness, or I /l, values. From these values, distribution factors can be computed
and the method of moment distribution applied. The moments of inertia of both columns and
beams are normally calculated on the basis of gross concrete sections, with no allowance made
for reinforcing.

There is a problem involved in determining the moment of inertia to be used for con-
tinuous T beams. The moment of inertia of a T beam is much greater where there is positive
moment with the flanges in compression than where there is negative moment with the flanges
cracked because of tension. Because the moment of inertia varies along the span, it is necessary
to use an equivalent value. A practice often used is to assume that the equivalent moment of
inertia equals twice the moment of inertia of the web, assuming that the web depth equals
the full effective depth of the beam.5 Some designers use other equivalent values, such as
assuming an equivalent T section with flanges of effective widths equal to so many (say, two
to six) times the web width. These equivalent sections can be varied over a rather wide range
without appreciably affecting the final moments.

F I GU RE 14.24 Continuous with only vertical support.

F I GU RE 14.25 Continuous with both vertical and rotational support.

5 Portland Cement Association, 1959, Continuity in Concrete Building Frames, 4th ed. (Chicago, IL: PCA), pp. 17–20.
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The ACI Code (8.9.2) states that for such an approximate analysis, only two live-load
combinations need to be considered. These are (1) live load placed on two adjacent spans
and (2) live load placed on alternate spans. Example 14.2 illustrates the application of the
equivalent rigid-frame method to a continuous T beam.

Computer results appear to indicate that the model shown in Figure 14.25 (as permitted
by the ACI Code) may not be trustworthy for unsymmetrical loading. Differential column
shortening can completely redistribute the moments obtained from the model (i.e., positive
moments can become negative moments). As a result, designers should take into account
possible axial deformations in their designs.

Example 14.2

Using the equivalent rigid-frame method, draw the shear and moment diagrams for the continuous
T beam of Figure 14.26. The beam is assumed to be framed into 16-in. × 16-in. columns and
is to support a service dead load of 2.33 k/ft (including beam weight) and a service live load of
3.19 k/ft. Assume that the live load is applied in the center span only. The girders are assumed
to have a depth of 24 in. and a web width of 12 in. Assume that the I of the T beam equals two
times the I of its web.

SOLUTION

Computing Fixed-End Moments

wu in first and third spans = (1.2) (2.33 klf) = 2.8 k/ft

Mu = (2.8 klf) (24 ft)2

12
= 134.4 ft-k

wu in center span = (1.2) (2.33 klf) + (1.6) (3.19 klf) = 7.9 k/ft

Mu = (7.9 klf) (24 ft)2

12
= 379.2 ft-k

Computing Stiffness Factors

I of columns =
(

1
12

)
(16 in.) (16 in.)3 = 5461 in.4

k of columns = I
l

= 5461 in.4

12 ft
= 455 in4/ft

Equivalent I of T beam = (2)
(

1
12

bwh3
)

= (2)
(

1
12

)
(12 in.) (24 in.)3 = 27,648 in.4

k of T beam = 27,648 in.4

24 ft
= 1152 in4/ft

F I GU RE 14.26 Frame dimensions for Example 14.2.
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455 in4/ft

455 in4/ft

455 in4/ft

455 in4/ft

455 in4/ft

455 in4/ft

455 in4/ft

455 in4/ft

1152 in4/ft 1152 in4/ft0.56 0.36 0.36 0.36 0.36 0.561152 in4/ft

F I GU RE 14.27 Stiffness and carry-over factors for Example 14.2.

Record stiffness factors on the frame and compute distribution factors, as shown in
Figure 14.27.

Balance fixed-end moments and draw shear and moment diagrams, as shown in
Figure 14.28.

All are in
ft-k

k

ft-k

8.76 ft 8.76 ft

0.56

– 134.4
+   75.3

– 134.4
+   37.6
+   74.6

– 134.4
–   37.6

–   88.0

+ 379.2

+   37.3
–   88.0

– 379.2

+   74.6

–   10.4
+   19.6

–   44.0
+   19.6 +     9.8

–     8.0

+     1.2
–     0.8

+ 330.7

+   12.3
–     8.0

+     1.1
–     0.8

– 255.4

–     2.7
+     2.4

–     0.4
+     0.3

+ 255.4

33.60
9.06

24.54

107.5
94.80 k 568.8

42.66 k
325.1

24.54 k

94.80 k
42.66 k

69.6

255.5

330.7 330.7

255.5

37.9

69.6

238.1

+
+

+

24.54 k –325.1

–37.9
– –

–568.8 –107.5

33.60
9.06

42.66

33.60
9.06

42.66

33.60
9.06

24.54

94.80

94.80

94.80

94.80

–     4.0
+     2.4

–     0.4
+     0.3

– 330.7

+   37.3
–   20.9

+     9.8
–     5.5
+     1.2
–     0.7

–    37.9

+ 134.4
–   75.3

–   44.0
+   24.6

–     4.0
+     2.2

–     0.4
+     0.2

+    37.7

0.36 0.36 0.36 0.36 0.56

15.24 ft 15.24 ft12.00 ft 12.00 ft

F I GU RE 14.28 Results of moment distribution of Example 14.2.
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Assumed Points of Inflection

Another approximate method of analyzing statically indeterminate building frames is to assume
the locations of the points of inflection in the members. Such assumptions have the effect of
creating simple beams between the points of inflection in each span, and the positive moments
in each span can be determined by statics. Negative moments occur in the girders between
their ends and the points of inflection. They may be computed by considering the portion of
each beam out to the point of inflection (P.I.) to be a cantilever. The shear at the end of each
of the girders contributes to the axial forces in the columns. Similarly, the negative moments
at the ends of the girders are transferred to the columns.

In Figure 14.29, beam AB of the building frame shown is analyzed by assuming points
of inflection at the one-fifth points and assuming fixed supports at the beam ends.

14.8 Approximate Analysis of Continuous Frames
for Lateral Loads

Building frames are subjected to lateral loads as well as to vertical loads. The necessity for
careful attention to these forces increases as buildings become taller. Buildings must not only
have sufficient lateral resistance to prevent failure, but also must have sufficient resistance to
deflections to prevent injuries to their various parts. Rigid-frame buildings are highly statically
indeterminate; their analysis by “exact” methods (unless computers are used) is so lengthy as
to make the approximate methods very popular.

The approximate method presented here is called the portal method. Because of its
simplicity, it has probably been used more than any other approximate method for determining
wind forces in building frames. This method, which was presented by Albert Smith in the
Journal of the Western Society of Engineers in April 1915, is said to be satisfactory for most
buildings up to 25 stories in height. Another method very similar to the portal method is the
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The 16-story Apoquindo Tower, Santiago, Chile.
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3 k/ft

3 k/ft

3 k/ft

P.I.s

assumed P.I. locations

20 k

349.3 ft-k 382.7 ft-k

72.78 k

222.3 ft-k

moment diagram 382.7 ft-k349.3 ft-k

67.22 k

(d)

(c)

(b)

(a)

20 k 30 k

B

BA

0.2` = 6 ft 0.2` = 6 ft

A

49.22 k 54.78 k

54.78 k49.22 k

“simple beam”
between P.I.s

30 k

20 k 30 k

3 k/ft

3 k/ft

F I GU RE 14.29 Assumed points-of-inflection method applied to middle
span of Example 14.2.
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cantilever method. It is thought to give slightly better results for high narrow buildings and
can be used for buildings not in excess of 25 to 35 stories.6

The portal method is merely a variation of the method described in Section 14.7 for
analyzing beams in which the location of the points of inflection was assumed. For the portal
method, the loads are assumed to be applied at the joints only. If this loading condition is
correct, the moments will vary linearly in the members, and points of inflection will be located
fairly close to member midpoints.

No consideration is given in the portal method to the elastic properties of the members.
These omissions can be very serious in unsymmetrical frames and in very tall buildings. To
illustrate the seriousness of the matter, the changes in member sizes are considered in a very
tall building. In such a building, there will probably not be a great deal of change in beam
sizes from the top floor to the bottom floor. For the same loadings and spans, the changed
sizes would be the result of the large wind moments in the lower floors. The change in column
sizes from top to bottom, however, would be tremendous. The result is that the relative sizes
of columns and beams on the top floors are entirely different from the relative sizes on the
lower floors. When this fact is not considered, it causes large errors in the analysis.

In the portal method, the entire wind loads are assumed to be resisted by the building
frames, with no stiffening assistance from the floors, walls, and partitions. Changes in the
lengths of girders and columns are assumed to be negligible. They are not negligible, however,
in tall slender buildings, the height of which is five or more times the least horizontal dimension.

If the height of a building is roughly five or more times its least lateral dimension, it
is generally felt that a more precise method of analysis should be used. There are several
approximate methods that make use of the elastic properties of structures and give values
closely approaching the results of the “exact” methods. These include the factor method,7 the
Witmer method of K percentages, and the Spurr method.8

The building frame shown in Figure 14.30 is analyzed by the portal method, as described
in the following paragraphs.

At least three assumptions must be made for each individual portal or for each girder. In
the portal method, the frame is theoretically divided into independent portals (Figure 14.31),
and the following three assumptions are made:

1. The columns bend in such a manner that there is a point of inflection at middepth.

2. The girders bend in such a manner that there is a point of inflection at their centerlines.

3. The horizontal shears on each level are arbitrarily distributed between the columns. One
commonly used distribution (and the one illustrated here) is to assume that the shear
divides among the columns in the ratio of one part to exterior columns and two parts to
interior columns.

The reason for the ratio in assumption 3 can be seen in Figure 14.31. Each of the interior
columns is serving two bents, whereas the exterior columns are serving only one. Another
common distribution is to assume that the shear, V, taken by each column is in proportion to
the floor area it supports. The shear distribution by the two procedures would be the same for
a building with equal bays, but for one with unequal bays the results would differ, with the
floor area method probably giving more realistic results.

6 “Wind Bracing in Steel Buildings,” 1940, Transactions of the American Society of Civil Engineers, 105, pp. 1723–1727.
7 Norris, C. H., Wilbur, J. B., and Utku, S., 1976, Elementary Structural Analysis, 3rd ed. (New York: McGraw-Hill),
pp. 207–212.
8 “Wind Bracing in Steel Buildings,” pp. 1723–1727.
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F I GU RE 14.30 Frame analyzed by the portal method.

F I GU RE 14.31 One level of frame of
Figure 14.30.

Frame Analysis by Portal Method

The frame of Figure 14.30 is analyzed in Figure 14.32 on the basis of the preceding assump-
tions. The arrows shown on the figure give the direction of the girder shears and the column
axial forces. You can visualize the stress condition of the frame if you assume that the wind is
tending to push it over from left to right, stretching the left exterior columns and compressing
the right exterior columns. Briefly, the calculations were made as follows:

1. Column shears—The shears in each column on the various levels were obtained first.
The total shear on the top level is 15 k. Because there are two exterior and two interior
columns, the following expression may be written:

x + 2x + 2x + x = 15 k

x = 2.5 k

2x = 5.0 k

The shear in column CD is 2.5 k, in GH it is 5.0 k, and so on. Similarly, the member
shears were determined for the columns on the first and second levels, where the total
shears are 75 k and 45 k, respectively.
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M = moment (ft-k)

V = shear (k)

S = axial force (k)

F I GU RE 14.32 Results of portal analysis.

2. Column moments—The columns are assumed to have points of inflection at their mid-
depths; therefore, their moments, top and bottom, equal the column shears times half
the column heights.

3. Girder moments and shears—At any joint in the frame, the sum of the moments in the
girders equals the sum of the moments in the columns. The column moments have been
previously determined. Beginning at the upper-left corner of the frame and working
across from left to right, adding or subtracting the moments as the case may be, the
girder moments were found in this order: DH, HL, LP, CG, GK, and so on. It follows
that with points of inflection at girder centerlines, the girder shears equal the girder
moments divided by half-girder lengths.

4. Column axial forces—The axial forces in the columns may be directly obtained from the
girder shears. Starting at the upper-left corner, the column axial force in CD is equal to
the shear in girder DH. The axial force in column GH is equal to the difference between
the two girder shears DH and HL, which equals zero in this case. (If the width of each
of the portals is the same, the shears in the girder on one level will be equal and the
interior columns will have no axial force, since only lateral loads are considered.)

14.9 Computer Analysis of Building Frames
All structures are three-dimensional, but theoretical analyses of such structures by hand cal-
culation methods are so lengthy as to be impractical. As a result, such systems are normally
assumed to consist of two-dimensional or planar systems, and they are analyzed independently
of each other. The methods of analysis presented in this chapter were handled in this manner.
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Today’s computers have greatly changed the picture, and it is now possible to analyze
complete three-dimensional structures. As a result, more realistic analyses are available, and
the necessity for high safety factors is reduced. The application of computers is not restricted
merely to analysis; they are used in almost every phase of concrete work from analysis to
design to detailing to specification writing to material take-offs to cost estimating and so on.

Another major advantage of computer analysis for building frames is that the designer
is able to consider many different loading patterns quickly. The results are sometimes rather
surprising.

14.10 Lateral Bracing for Buildings
For the usual building, the designer will select relatively small columns. Although such a pro-
cedure results in more floor space, it also results in buildings with small lateral stiffnesses or
resistance to wind and earthquake loads. Such buildings may have detrimental lateral deflec-
tions and vibrations during windstorms unless definite lateral stiffness or bracing is otherwise
provided in the structure.

To provide lateral stiffness, it is necessary for the roof and floor slabs to be attached to
rigid walls, stairwells, or elevator shafts. Sometimes structural walls, called shear walls, are
added to a structure to provide the necessary lateral resistance. (The design of shear walls is
considered in Chapter 18 of this text.) If it is not possible to provide such walls, stairwells
or elevator shafts may be designed as large, box-shaped beams to transmit lateral loads to the
supporting foundations. These members will behave as large cantilever beams. In designing
such members, the designer should try to keep resistance symmetrical so as to prevent uneven
lateral twisting or torsion in the structure when lateral loads are applied.9

14.11 Development Length Requirements
for Continuous Members

In Chapter 7, a general introduction to the subject of development lengths for simple and
cantilever beams was presented. This section examines the ACI development length require-
ments for continuous members for both positive and negative reinforcing. After studying this
information, the reader probably will be pleased to find at the end of this section a discussion
of simplified design office practices for determining bar lengths.

Positive-Moment Reinforcement

Section 12.11 of the code provides several detailed requirements for the lengths of positive-
moment reinforcement. These are briefly summarized in the following paragraphs.

1. At least one-third of the positive steel in simple beams and one-fourth of the positive steel
in continuous members must extend uninterrupted along the same face of the member
at least 6 in. in the support (12.11.1). The purpose of this requirement is to make sure
that the moment resistance of a beam will not be reduced excessively in parts of beams
where the moments may be changed due to settlements, lateral loads, and so on.

2. The positive reinforcement required in the preceding paragraph must, if the member is
part of a primary lateral load resisting system, be extended into the support a sufficient
distance to develop the yield stress in tension of the bars at the face of the support. This
requirement is included by the code (12.11.2) to ensure a ductile response to severe
overstress, as might occur with moment reversal during an earthquake or explosion.
As a result of this requirement, it is necessary to have bottom bars lapped at interior
supports and to use additional embedment lengths and hooks at exterior supports.

9 Leet, K., 1991, Reinforced Concrete Design, 2nd ed. (New York: McGraw-Hill), pp. 453–454.
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3. Section 12.11.3 of the code says that at simple supports and at points of inflection,
the positive-moment tension bars must have their diameters limited to certain maximum
sizes. The purpose of the limitation is to keep bond stresses within reason at these points
of low moments and large shears. (It is to be remembered that when bar diameters are
smaller, the bars have greater surface area in proportion to their cross-sectional areas.
Thus, for bonding to concrete, the larger the bars’ diameters, the larger must be their
development lengths. This fact is reflected in the expressions for ld .) It has not been
shown that long anchorage lengths are fully effective in developing bars in a short
distance between a P.I. and a point of maximum bar stress, a condition that might occur
in heavily loaded short beams with large bottom bars. It is specified that ld as computed
by the requirements presented in Chapter 7 may not exceed the following:

ld ≤ Mn

Vu
+ la (ACI Equation 12-5)

In this expression, Mn is the computed theoretical flexural strength of the member
if all reinforcing in that part of the beam is assumed stressed to fy , and Vu is the
factored shear at the section. At a support, la is equal to the sum of the embedment
length beyond the centerline of the support and the equivalent embedment length of any
furnished hooks or mechanical anchorage. Headed and mechanically anchored deformed
bars, which are permitted in Section 12.6 of the ACI Code, consist of bars or plates
or angles or other pieces welded or otherwise attached transversely to the flexural bars
in locations where sufficient anchorage length is not available. See Sections 1.15 and
7.15 of this text for details on headed anchorage. At a point of inflection, la is equal to
the larger of the effective depth of the member or 12d (ACI 12.11.3). When the ends
of the reinforcement are confined by a compression reaction, such as when there is a
column below but not when a beam frames into a girder, an increase of 30% in the
value Mn/Vu to 1.3Mn/Vu is allowed. The values described here are summarized in
Figure 14.33, which is similar to Figure R12.11.3 of the ACI Code. A brief numerical
illustration for a simple end-supported beam is provided in Example 14.3.

end anchorage

reaction

Note: The 1.3 value is usable only
if the ends of the bars are confined
by a compressive reaction.

(a) At a simple support

(b) At a point of inflection

P.I.

usable `a = d or 12db
whichever is larger

actual `a 

max `d

max `d

1.3Mn

Vu

Mn

Vu

`a

F I GU RE 14.33 Development length requirements for positive-moment reinforcing.
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Example 14.3

At the simple support shown in Figure 14.34, two uncoated #9 bars have been extended from
the maximum moment area and into the support. Are the bar sizes satisfactory if fy = 60 psi,
f ′
c = 3 ksi, b = 12 in., d = 24 in., and Vu = 65 k; if normal sand-gravel concrete is used; and if

the reaction is compressive? Assume cover for bars = 2 in. clear.

SOLUTION

a = Asfy
0.85f ′

cb
= (2.00 in.2) (60 ksi)

(0.85) (3 ksi) (12 in.)
= 3.92 in.

Mn = Asfy
(
d − a

2

)
= (2.00 in.2) (60 ksi)

(
24 in. − 3.92 in.

2

)
= 2644.8 in-k

c = side cover = 2 in. + 1.128 in.
2

= 2.564 in. ←

c = one-half to c. to c. spacing of bars =
(

1
2

)
(12 in. − 2 × 2 in. − 1.128 in.) = 3.436 in.

Assume Ktr = 0.

ld

db
= 3

40

fy
λ
√

f ′
c

�t�e�s
cb + Ktr

db

=
(

3
40

)[
60,000 psi

(1.0)
√

3000 psi

]
(1.0) (1.0) (1.0)
2.564 in. + 0

1.128 in.

= 36.14 diameters

ld = (36.14) (1.128 in.) = 41 in.

Maximum permissible ld = Mn

Vu
+ la

= (1.3)
(

2644.8 in-k
65 k

)
+ 7 in. = 59.90 in. > 41 in. OK

Note: If this condition has not been satisfied, the permissible value of ld could have been
increased by using smaller bars or by increasing the end anchorage, la, for example, by the use
of hooks.

`a = 7 in.

max `d = `a + 1.3

Mn

Vu

Mn

Vu

1.3

support

F I GU RE 14.34 Support details for Example 14.3.
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Negative-Moment Reinforcement

Section 12.12 of the code says that the tension reinforcement required by negative moments
must be properly anchored into or through the supporting member. Section 12.12.1 of the code
says that the tension in these negative bars shall be developed on each side of the section in
question by embedment length, hooks, or mechanical anchorage. Hooks may be used because
these are tension bars.

Section 12.10.3 of the code says that the reinforcement must extend beyond the point
where it is no longer required for moment by a distance equal to the effective depth d of the
member or 12 bar diameters, whichever is greater, except at the supports of simple beams or at
the free ends of cantilevers. Section 12.12.3 of the code says that at least one-third of the total
reinforcement provided for negative moment at the support must have an embedment length
beyond the point of inflection no less than the effective depth of the member, 12 bar diameters,
or one-sixteenth of the clear span of the member, whichever is greatest. The location of the
point of inflection can vary for different load combinations; therefore, be certain to use the
most critical case.

Example 14.4, which follows, presents a detailed consideration of the lengths required
by the code for a set of straight negative-moment bars at an interior support of a continuous
beam.

Example 14.4

At the first interior support of the continuous beam shown in Figure 14.35, six #8 straight
uncoated top bars (4.71 in.2) are used to resist a moment Mu of 390 ft-k for which the calculated
As required is 4.24 in.2 If fy = 60 ksi, f ′

c = 3 ksi, and normal sand-gravel concrete is used,
determine the length of the bars as required by the ACI Code. The dimensions of the beam are
bw = 14 in. and d = 24 in. Assume bar cover = 2db and clear spacing = 3db.

8 ft 0 in. 7 ft 0 in.

390 ft-k

P.I.P.I.

`n = 24 ft 0 in. `n = 34 ft 0 in.

“bottom” bars

“middle” bars“top” bars

F I GU RE 14.35 Continuous beam for Example 14.4.
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Note: The six negative-tension bars are actually placed in one layer in the top of the beam, but
they are shown for illustration purposes in Figures 14.35 and 14.36 as though they are arranged
in three layers of two bars each. In the solution that follows, the ‘‘bottom’’ two bars are cut
off first, at the point where the moment plus the required development length is furnished; the
‘‘middle’’ two are cut when the moment plus the needed development length permits; and the
‘‘top’’ two are cut off at the required distance beyond the P.I.

SOLUTION

1. Required development length

cb = side cover = (2) (1.0 in.) + 1.0 in.
2

= 2.5 in.

cb = one-half of c. to c. spacing of bars =
(

3
2

)
(1.0 in.) +

(
1.0 in.

2

)
= 2.0 in. ←

Assume Ktr = 0

ld

db
=
(

3
40

)[
60,000 psi

(1.0)
√

3000 psi

]
(1.3) (1.0) (1.0)

2.0 + 0
1.0

= 53.4 diameters

ld = (53.41) (1.0 in.) = 53.4 in. Say 54 in. OK

2. Section 12.12.3 of the code requires one-third of the bars to extend beyond P.I. ( 1
3 × 6 =

2 bars) for a distance equal to the largest of the following values (applies to ‘‘top’’ bars in
figure).

(a) d of web = 24 in.

(b) 12db = (12) (1 in.) = 12 in.

(c)
( 1

16

)
(24 ft × 12 in/ft) for 24 in. span = 18 in.

(d)
( 1

16

)
(34 ft × 12 in/ft) for 34 in. span = 25 1

2 in.

Use 24 in. for short span and 25 1
2 in. for long span

3. Section 12.10.3 of the code requires that the bars shall extend beyond the point where they
are no longer required by moment for a distance equal to the greater of

(a) d = 24 in.

(b) 12db = (12) (1 in.) = 12 in.

4. Section 12.3.3 says required ld can be multiplied by As reqd/As furn. This applies only to the
first bars cut off (‘‘bottom’’ bars here).

Reduced ld = (53.4 in.)

(
4.24 in.2

4.71 in.2

)
= 48 in.

5. In Figure 14.36, these values are applied to the bars in question and the results are given.
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18 in.23 in.55 in. 16 in.

48 in. + half
support 
width

18 in. + 54 in.=
6 ft 0 in.

16 in. + 54 in. =
5 ft 10 in.

48 in. + half
support 
width

moment capacity with 6 bars

"bottom" 2 bars

"middle" 2 bars

"top" 2 bars

moment capacity with 4 bars

moment capacity with 2 bars

P.I. P.I.

20 in.

8 ft 0 in. 7 ft 0 in.

48 in.

16 in. + 20 in. + 48 in. + 25   in. 
= 9 ft 1   in.

1
21

2

18 in. + 23 in. + 55 in. + 24 in.
= 10 ft 0 in.

F I GU RE 14.36 Bar cutoff details for Example 14.4.

The structural designer is seldom involved with a fixed-moment diagram—the loads
move and the moment diagram changes. Therefore, the code (12.10.3) says that reinforcing
bars should be continued for a distance of 12 bar diameters or the effective depth of the
member, whichever is greater (except at the supports of simple spans and the free ends of
cantilevers), beyond their theoretical cutoff points.

As previously mentioned, the bars must be embedded a distance ld from their point of
maximum stress.

Next, the code (12.11.1) says that at least one-third of the positive steel in simple spans
and one-fourth of the positive steel in continuous spans must be continued along the same face
of the beam at least 6 in. into the support.

Somewhat similar rules are provided by the code (12.12.3) for negative steel. At least
one-third of the negative steel provided at a support must be extended beyond its point of
inflection a distance equal to one-sixteenth of the clear span or 12 bar diameters or the effective
depth of the member, whichever is greatest. Other negative bars must be extended beyond their
theoretical point of cutoff by the effective depth, 12 bar diameters and at least ld from the
face of the support.
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6 in.

standard
90˚ hook

0.125`n

0.25`n

0.125`n 0.125`n
6 in. 6 in.

`n `n

`n

3
`n

2

F I GU RE 14.37 Recommended bar details for continuous beams.

Trying to go through these various calculations for cutoff or bend points for all of the
bars in even a modest-size structure can be a very large job. Therefore, the average designer or
perhaps the structural draftsperson will cut off or bend bars by certain rules of thumb, which
have been developed to meet the code rules described here. In Figure 14.37, a sample set of
such rules is given for continuous beams. In the CRSI Handbook,10 such rules are provided for
several different types of structural members, such as solid one-way slabs, one-way concrete
joists, two-way slabs, and so forth.

P R O B L E M S

Qualitative Influence Lines

For Problems 14.1 to 14.3, draw qualitative influence lines for the functions indicated in the structures shown.

Problem 14.1 Reactions at A and B, positive moment and positive shear at X.

A B X C D

Problem 14.2 Reactions at B and D, negative moment and negative shear at X.

A B XC D

10 Concrete Reinforcing Steel Institute, 2002 CRSI Handbook, 9th ed., (Chicago), p. 12-1.
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Problem 14.3 Positive moment at X, positive shear at X, negative moment just to the left of Y.

Moment Envelopes

Problem 14.4 For the continuous beam shown and for a service dead load of 2 k/ft and a service live load of 3 k/ft, draw the
moment envelope using factored loads assuming a permissible 10% up-or-down redistribution of the maximum negative moment.
Do not use ACI coefficients.

Slab Designs with ACI Coefficients

For Problems 14.5 and 14.6, design the continuous slabs shown using the ACI moment coefficients assuming that a service live
load of 200 psf is to be supported in addition to the weight of the slabs. The slabs are to be built integrally with the end supports,
which are spandrel beams. Assume fy = 60,000 psi, f ′

c = 4000 psi, and normal-weight concrete. Clear spans are shown.

Problem 14.5 (One ans. 7 1
2 -in. slab, d = 6 1

4 in., #4 bars @ 6 1
2 in. positive As , all 3 spans)

Problem 14.6
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Equivalent Frame Analysis

Problem 14.7 With the equivalent rigid-frame method, draw the shear and moment diagrams for the continuous beam shown
using factored loads. Service dead load, including beam weight, is 1.5 k/ft and service live load is 3 k/ft. Place the live load in the
center span only. Assume the moments of inertia of the T beams equal two times the moments of inertia of their webs. (Ans. max
−M = 184.8 ft-k, max +M = 145.2 ft-k)

Problem 14.8 With the equivalent rigid-frame method, draw the shear and moment diagrams for the continuous beam shown
using factored loads. Service dead load, including beam weight, is 2.4 k/ft and service live load is 3.2 k/ft. Place the live load in
spans 1 and 2 only. Assume the moments of inertia of the T beams equal two times the moments of inertia of their webs.

Analyses by Assuming P.I. Locations

Problem 14.9 Draw the shear and moment diagrams for member AB of the frame shown in the accompanying illustration if
points of inflection are assumed to be located at 0.15L from each end of the span. (Ans. max M = 304 ft-k @ centerline)

30 k20 k
3 k/ft

BA
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Portal Method of Analysis

For Problems 14.10 to 14.12, compute moments, shears, and axial forces for all the members of the frames shown using the portal
method.

Problem 14.10

Problem 14.11 (Ans. V = 12.5 k, M = 75 ft-k, and S = 6.6 k for lower left column)

Problem 14.12
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Problems in SI Units

Problem 14.13 For the continuous beam shown and for a service dead load of 26 kN/m and a service live load of 32 kN/m,
draw the moment envelope assuming a permissible 10% up-or-down redistribution of the maximum negative moment.
(Ans. max −M = 1110.7 N •m, max +M = 748.8 N •m)

Problem 14.14 Design the continuous slab shown using the ACI moment coefficients assuming the concrete weighs
23.5 kN/m3 and that a service live load of 9 kN/m is to be supported. The slabs are built integrally with the end supports,
which are spandrel beams. fy = 420 MPa and f ′

c = 21 MPa. Clear spans are given.

Problem 14.15 Using the equivalent rigid-frame method, draw the shear and moment diagrams for the continuous beams
shown using factored loads. Service dead load, including beam weight, is 10 kN/m and service live load is 14 kN/m. Place the
live load in spans 1 and 3 only. Assume the I of T beams equals 1.5 times the I of their webs. (Ans. max −M = 171.6 N •m,
max +M = 127.3 N •m)

columns 400 mm × 400 mm

Problem 14.16 Compute moments, shears, and axial forces for all the members of the frame shown using the portal method.
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CHAPTER 15 Torsion

15.1 Introduction
The average designer probably does not worry about torsion very much. He or she thinks almost
exclusively of axial forces, shears, and bending moments, and yet most reinforced concrete
structures are subject to some degree of torsion. Until recent years, the safety factors required
by codes for the design of reinforced concrete members for shear, moment, and so forth were
so large that the effects of torsion could be safely neglected in all but the most extreme cases.
Today, however, overall safety factors are less than they used to be and members are smaller,
with the result that torsion is a more common problem.

Appreciable torsion does occur in many structures, such as in the main girders of bridges,
which are twisted by transverse beams or slabs. It occurs in buildings where the edge of a floor
slab and its beams are supported by a spandrel beam running between the exterior columns.
This situation is illustrated in Figure 15.1, where the floor beams tend to twist the spandrel
beam laterally. Earthquakes can cause dangerous torsional forces in all buildings. This is
particularly true in asymmetrical structures, where the centers of mass and rigidity do not
coincide. Other cases where torsion may be significant are in curved bridge girders, spiral
stairways, and balcony girders, and whenever large loads are applied to any beam “off center.”
An off-center case where torsional stress can be very large is illustrated in Figure 15.2. It
should be realized that if the supporting member is able to rotate, the resulting torsional
stresses will be fairly small. If, however, the member is restrained, the torsional stresses can be
quite large.

FI GU RE 15.1 Torsion in spandrel beams.

470
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FI GU RE 15.2 Off-center loads causing torsion in main beam.

Should a plain concrete member be subjected to pure torsion, it will crack and fail along
45◦ spiral lines because of the diagonal tension corresponding to the torsional stresses. For a
very effective demonstration of this type of failure, you can take a piece of chalk in your hands
and twist it until it breaks. Although the diagonal tension stresses produced by twisting are
very similar to those caused by shear, they will occur on all faces of a member. As a result,
they add to the stresses caused by shear on one side and subtract from them on the other.1

Recently, there have been more reports of structural failures attributed to torsion. As a
result, a rather large amount of research has been devoted to the subject, and thus there is
a much-improved understanding of the behavior of structural members subjected to torsion.
On the basis of this rather extensive experimental work, the ACI Code includes very specific
requirements for the design of reinforced concrete members subjected to torsion or to torsion
combined with shear and bending. It should be realized that maximum shears and torsional
forces may occur in areas where bending moments are small. For such cases, the interaction
of shear and torsion can be particularly important as it relates to design.

15.2 Torsional Reinforcing
Reinforced concrete members subjected to large torsional forces may fail quite suddenly if
they are not specially provided with torsional reinforcing. The addition of torsional reinforcing
does not change the magnitude of the torsion that will cause diagonal tension cracks, but it
does prevent the members from tearing apart. As a result, they will be able to resist substantial
torsional moments without failure. Tests have shown that both longitudinal bars and closed
stirrups (or spirals) are necessary to intercept the numerous diagonal tension cracks that occur
on all surfaces of members subject to appreciable torsional forces.

The normal -shaped stirrups are not satisfactory. They must be closed either by welding
their ends together to form a continuous loop, as illustrated in Figure 15.3(a), or by bending
their ends around a longitudinal bar, as shown in part (b) of the same figure. If one-piece
stirrups such as these are used, the entire beam cage may have to be prefabricated and placed
as a unit (and that may not be feasible if the longitudinal bars have to be passed between
column bars) or the longitudinal bars will have to be threaded one by one through the closed
stirrups and perhaps the column bars. It is easy to see that some other arrangement is usually
desirable.

1 White, R. N., Gergely, P., and Sexsmith, R. G., 1974, Structural Engineering, vol. 3 (Hoboken, NJ: John Wiley & Sons),
pp. 423–424.
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Elevated highway bridge, Wichita Falls, Texas.

FI GU RE 15.3 Closed stirrups (these types frequently
impractical).

FI GU RE 15.4 Overlaping  stirrups used as torsion reinforcing but
not desirable.
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In the recent past, it was rather common to use two overlapping  stirrups arranged as
shown in Figure 15.4. Although this arrangement simplifies the placement of longitudinal bars,
it has not proved very satisfactory. As described in the ACI Commentary (R11.5.4.1), members
primarily subjected to torsion lose their concrete side cover by spalling at high torques. Should
this happen, the lapped spliced  stirrups of Figure 15.4 will prove ineffective, and premature
torsion failure may occur.

A much better type of torsion reinforcement consists of  stirrups, each with a properly
anchored top bar, such as the ones shown in Figure 15.5. It has been proved by testing that the use
of torsional stirrups with 90◦ hooks results in spalling of the concrete outside the hooks. The use
of 135◦ hooks for both the  stirrups and the top bars is very helpful in reducing this spalling.

Should lateral confinement of the stirrups be provided as shown in parts (b) and (c) of
Figure 15.5, the 90◦ hooks will be satisfactory for the top bars.

Should beams with wide webs (say, 2 ft or more) be used, it is common to use multiple-
leg stirrups. For such situations, the outer stirrup legs will be proportioned for both shear and
torsion, while the interior legs will be designed to take only vertical shear.

FI GU RE 15.5 Recommended
torsion reinforcement.
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The strength of closed stirrups cannot be developed unless additional longitudinal rein-
forcing is supplied. Longitudinal bars should be spaced uniformly around the insides of the
stirrups, not more than 12 in. apart. There must be at least one bar in each corner of the stirrups
to provide anchorage for the stirrup legs (Code 11.6.6.2); otherwise, if the concrete inside the
corners were to be crushed, the stirrups would slip and the result would be even larger torsional
cracks. These longitudinal bars must have diameters at least equal to 0.042 times the stirrup
spacing. Their size may not be less than #3.

15.3 Torsional Moments that Have to
Be Considered in Design

The reader is well aware from his or her studies of structural analysis that if one part of a
statically indeterminate structure “gives” when a particular force is applied to that part, the
amount of force that the part will have to resist will be appreciably reduced. For instance, if
three men are walking along with a log on their shoulders (a statically indeterminate situation)
and one of them lowers his shoulder a little under the load, there will be a major redistribution
of the internal forces in the “structure” and a great deal less load for him to support. On
the other hand, if two men are walking along with a log on their shoulders (a statically
determinate situation) and one of them lowers his shoulder slightly, there will be little change
in force distribution in the structure. These are similar to the situations that occur in statically
determinate and indeterminate structures subject to torsional moments. They are referred to
respectively as equilibrium torsion and compatibility torsion.

1. Equilibrium torsion—For a statically determinate structure, there is only one path along
which a torsional moment can be transmitted to the supports. This type of torsional moment,
which is referred to as equilibrium torsion or statically determinate torsion, cannot be
reduced by a redistribution of internal forces or by a rotation of the member. Equilibrium
torsion is illustrated in Figure 15.6, which shows an edge beam supporting a concrete
canopy. The edge beam must be designed to resist the full calculated torsional moment.

2. Compatibility torsion—The torsional moment in a particular part of a statically indeter-
minate structure may be substantially reduced if that part of the structure cracks under
the torsion and “gives,” or rotates. The result will be a redistribution of forces in the
structure. This type of torsion, which is illustrated in Figure 15.7, is referred to as
statically indeterminate torsion or compatibility torsion, in the sense that the part of the
structure in question twists in order to keep the deformations of the structure compatible.

Design torque may
not be reduced because
moment redistribution
is not possible.

FI GU RE 15.6 Equilibrium torsion.
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Design torque for this spandrel
beam may be reduced because
moment redistribution is possible.

FI GU RE 15.7 Compatibility torsion.

Where a reduction or redistribution of torsion is possible in a statically indeterminate
structure, the maximum factored moment, Tu , can be reduced as follows for nonprestressed
members according to ACI Section 11.5.2.2. In the expression to follow, Acp is the area
enclosed by the outside perimeter of the concrete cross section and pcp is the outside perimeter
of that cross section. It is assumed that torsional cracking will occur when the principal tension
stress reaches the tensile strength of the concrete in biaxial tension-compression. This cracking
value is taken to be 4λ

√
f ′

c , and thus the torque at cracking, Tcr , is

Tcr = φ4λ
√

f ′
c

(
A2

cp

pcp

)

When reinforced concrete members are subjected to axial tensile or compressive forces,
Tcr is to be computed with the expression to follow in which Nu is the factored axial force
taken as positive if the force is compressive and negative if it is tensile.

Tcr = φ4λ
√

f ′
c

(
A2

cp

pcp

)
λ

√
1 + Nu

4
√

f ′
c

After cracking occurs, the torsional moments in the spandrel beam shown in Figure 15.7
are reduced as a result of the redistribution of the internal forces. Consequently, the torsional
moment used for design in the spandrel beam can be reduced.

15.4 Torsional Stresses
As previously mentioned, the torsional stresses add to the shear stresses on one side of a
member and subtract from them on the other. This situation is illustrated for a hollow beam
in Figure 15.8.

Torsional stresses are quite low near the center of a solid beam. Because of this, hollow
beams (assuming the wall thicknesses meet certain ACI requirements) are assumed to have
almost exactly the same torsional strengths as solid beams with the same outside dimensions.

In solid sections, the shear stresses due to the torsion, Tu , are concentrated in an outside
“tube” of the member, a shown in Figure 15.9(a), while the shear stresses resulting from Vu
are spread across the width of the solid section, as shown in part (b) of the figure. As a result,
the two types of shear stresses (those from shear and torsion) are combined, using a square
root expression shown in the next section of this chapter.
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(a) Torsional stresses (b) Shear stresses

FI GU RE 15.8 Torsion and shear stresses
in a hollow beam.

(a) Torsional stresses (b) Shear stresses

FI GU RE 15.9 Torsion and shear stresses
in a solid beam.

stirrups

cracks

V1

x0
T

y0

V3

θ
V2

V4

concrete
compression
diagonals

longitudinal
bar

F I GU RE 15.10 Imaginary space truss.

After cracking, the resistance of concrete to torsion is assumed to be negligible. The
torsion cracks tend to spiral around members (hollow or solid) located at approximately 45◦

angles with the longitudinal edges of those members. Torsion is assumed to be resisted by an
imaginary space truss located in the outer “tube” of concrete of the member. Such a truss is
shown in Figure 15.10. The longitudinal steel in the corners of the member and the closed
transverse stirrups act as tension members in the “truss,” while the diagonal concrete between
the stirrups acts as struts of compression members. The cracked concrete is still capable of
taking compression stresses.

15.5 When Torsional Reinforcing Is Required by the ACI
The design of reinforced concrete members for torsion is based on a thin-walled tube space
truss analogy in which the inside or core concrete of the members is neglected. After torsion
has caused a member to crack, its resistance to torsion is provided almost entirely by the closed
stirrups and the longitudinal reinforcing located near the member surface. Once cracking occurs,
the concrete is assumed to have negligible torsional strength left. (This is not the case in shear
design, where the concrete is assumed to carry the same amount of shear as it did before
cracking.)

If torsional stresses are less than about one-fourth of the cracking torque, Tcr , of a mem-
ber, they will not appreciably reduce either its shear or flexural strengths. Torsional cracking
is assumed to occur when the principal tensile stress reaches 4λ

√
f ′

c . In ACI Section 11.6.1, it
is stated that torsion effects may be neglected for nonprestressed members if

Tu < φλ
√

f ′
c

(
A2

cp

pcp

)
= 1

4
Tcr
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hw ≤ 4hf hw ≤ 4hf
hw

hf

F I GU RE 15.11 Portions of monolithic T beam that
may be used for torsion calculations.

For statically indeterminate structures where reductions in torsional moments can occur
because of redistribution of internal forces, Section 11.6.2.2 of the ACI Code permits the
maximum factored torsional moment to be reduced to the following value:

φ4λ
√

f ′
c

(
A2

cp

pcp

)

In other words, the applied torque may be limited to a member’s calculated cracking
moment. (If the computed torque for a particular member is larger than the preceding value,
the preceding value may be used in design.) Should the torsional moments be reduced as
described here, it will be necessary to redistribute these moments to adjoining members. The
ACI Commentary (R11.5.2.1 and R11.5.2.2) does say that when the layout of structures is
such as to impose significant torsional rotations within a short length of a member (as where
a large torque is located near a stiff column), a more exact analysis should be used.

For isolated members with or without flanges, Acp equals the area of the entire cross
sections (including the area of any voids in hollow members), and pcp represents the perimeters
of the entire cross sections. Should a beam be cast monolithically with a slab, the values of Acp
and pcp may be assumed to include part of the adjacent slabs of the resulting T- or L-shaped
sections. The widths of the slabs that may be included as parts of the beams are described
in ACI Section 13.2.4 and illustrated in Figure 15.11. Those widths or extensions may not
exceed the projections of the beams above or below the slab or four times the slab thickness,
whichever is smaller.

When appreciable torsion is present, it may be more economical to select a larger beam
than would normally be selected so that torsion reinforcing does not have to be used. Such
a beam may very well be more economical than a smaller one with the closed stirrups and
additional longitudinal steel required for torsion design. On other occasions, such a practice
may not be economical, and sometimes architectural considerations may dictate the use of
smaller sections.

15.6 Torsional Moment Strength
The sizes of members subject to shear and torsion are limited by the ACI Code so that unsightly
cracking is reduced and crushing of the surface concrete caused by inclined compression
stresses is prevented. This objective is accomplished with the equations that follow, in which
the left-hand portions represent the shear stresses from shear and torsion. The sum of these
two stresses in a particular member may not exceed the stress that will cause shear cracking
(8
√

f ′
c as per ACI R11.6.3). In these expressions, Vc = 2λ

√
f ′

cbw d (ACI Equation 11-3). For
solid sections√(

Vu

bw d

)2

+
(

Tuph

1.7A2
oh

)2

≤ φ

(
Vc

bw d
+ 8
√

f ′
c

)
(ACI Equation 11-18)

For hollow sections(
Vu

bw d

)
+
(

Tu ph

1.7A2
oh

)
≤ φ

(
Vc

bw d
+ 8
√

f ′
c

)
(ACI Equation 11-19)
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Should the wall thickness of a hollow section be less than Aoh/ph , the second term in ACI
Equation 11-19 is to be taken not as Tuph/1.7A2

oh but as Tu/1.7Aoh , where t is the thickness
of the wall where stresses are being checked (ACI 11.5.3.3).

Another requirement given in ACI Section 11.5.4.4 for hollow sections is that the distance
from the centerline of the transverse torsion reinforcing to the inside face of the wall must
not be less than 0.5Aoh/ph . In this expression, ph is the perimeter of the centerline of the
outermost closed torsional reinforcing, while Aoh is the cross-sectional area of the member that
is enclosed within this centerline. The letters oh stand for outside hoop (of stirrups).

15.7 Design of Torsional Reinforcing
The torsional strength of reinforced concrete beams can be greatly increased by adding torsional
reinforcing consisting of closed stirrups and longitudinal bars. If the factored torsional moment
for a particular member is larger than the value given in ACI Section 11.5.1

[
φλ
√

f ′
c

(
A2

cp/Ph

)]
,

the code provides an expression to compute the absolute minimum area of transverse closed
stirrups that may be used.

(Av + 2At ) = 0.75
√

f ′
c

bw s

fyt
≥ 50bw s

fyt
(ACI Equation 11-23)

In this expression, Av is the area of reinforcing required for shear in a distance s (which
represents the stirrup spacing). You will remember from shear design that the area Av obtained
is for both legs of a two-legged stirrup (or for all legs of a four-legged stirrup, etc.). The
value At , which represents the area of the stirrups needed for torsion, is for only one leg of
the stirrup. Therefore, the value Av + 2At is the total area of both legs of the stirrup (for two-
legged stirrups) needed for shear plus torsion. It is considered desirable to use equal volumes
of steel in the stirrups and the added longitudinal steel so that they will participate equally in
resisting torsional moments. This theory was followed in preparing the ACI equations used
for selecting torsional reinforcing. The ACI Code requires that the area of stirrups At used for
resisting torsion be computed with the equation that follows:

Tn = 2AoAt fyt

s
cot θ (ACI Equation 11-21)

This equation is usually written in the following form:

At

s
= Tn

2Ao fyt cot θ

The transverse reinforcing is based on the torsional moment strength, Tn , which equals
Tu/φ. The term Ao represents the gross area enclosed by the shear flow path around the perime-
ter of the tube. This area is defined in terms of Aoh , which is the area enclosed by the outermost
closed hoops. Figure 15.12 illustrates this definition of Aoh for several beam cross sections.

The value of Ao may be determined by analysis, or it may be taken as 0.85Aoh . The term
θ represents the angle of the concrete “compression diagonals” in the analogous space truss. It

Aoh = shaded area

closed stirrup

F I GU RE 15.12 Values of Aoh .
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may not be smaller than 30◦ or larger than 60◦, and it may be taken equal to 45◦, according to
ACI Section 11.5.3.6. In ACI Section 11.5.3.6, the value of θ may be 45◦ for nonprestressed
members, and that practice is followed herein. Suggested θ values for prestressed concrete are
given in this same ACI section.

As given in the ACI Commentary (R11.5.3.8), the required stirrup areas for shear and
torsion are added together as follows for a two-legged stirrup:

Total

(
Av+t

s

)
= Av

s
+ 2At

s

The spacing of transverse torsional reinforcing may not be larger than ph/8 or 12 in.,
where ph is the perimeter of the centerline of the outermost closed transverse reinforcing (ACI
11.5.6.1). Remember also the maximum spacings of stirrups for shear d/2 and d/4 given in
ACI Sections 11.4.5.1 and 11.4.5.3.

It has been found that reinforced concrete specimens with less than about 1% torsional
reinforcing by volume that are loaded in pure torsion fail as soon as torsional cracking occurs.
The percentage is smaller for members subject to both torsion and shear. The equation to
follow, which provides a minimum total area of longitudinal torsional reinforcing, is based on
using about 0.5% torsional reinforcing by volume. In this expression, Acp is the area enclosed
by the outside concrete cross section. The value At /s may not be taken as less than 25bw/fyv ,
according to ACI Section 11.5.5.3.

Al min = 5
√

f ′
cAcp

fy
−
(

At

s

)
ph

fyt

fy
(ACI Equation 11-24)

ACI Section 11.5.4.3 states the longitudinal torsion reinforcement must be developed at
both ends.

Maximum torsion generally acts at the ends of beams, and as a result the longitudinal
torsion bars should be anchored for their yield strength at the face of the supports. To do this,
it may be necessary to use hooks or horizontal -shaped bars lap spliced with the longitudinal
torsion reinforcing. A rather common practice is to extend the bottom reinforcing in spandrel
beams subjected to torsion 6 in. into the supports. Usually this is insufficient.

15.8 Additional ACI Requirements
Before we present numerical examples for torsion design, it is necessary to list several other
ACI requirements. These are:

1. Sections located at a distance less than d from the face of support may be designed for
the torque at a distance d. Should, however, a concentrated torque be present within this
distance, the critical design section will be at the face of the support (ACI 11.5.2.4).

2. The design yield strength of torsion reinforcing for nonprestressed members may not
be greater than 60,000 psi. The purpose of this maximum value is to limit the width of
diagonal cracks (ACI 11.5.3.4).

3. The longitudinal tension created by torsion moments is partly offset in the flexural com-
pression zones of members. In these zones, the computed area of longitudinal torsional
reinforcing may be reduced by an amount equal to Mu/0.9dfy , according to ACI Section
11.5.3.9. In this expression, Mu is the factored moment acting at the section in combi-
nation with Tu . The reinforcing provided, however, may not be less than the minimum
values required in ACI Sections 11.5.5.3 and 11.5.6.2.

4. The longitudinal reinforcing must be distributed around the inside perimeter of the closed
stirrups and must be spaced no farther apart than 12 in. At least one bar must be placed
in each corner of the stirrups to provide anchorage for the stirrup legs. These bars have
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to be #3 or larger in size, and they must have diameters no less than 0.042 times the
stirrup spacings (ACI 11.5.6.2).

5. Torsional reinforcing must be provided for a distance no less than bt + d beyond the
point where it is theoretically no longer required. The term bt represents the width of
that part of the member cross section which contains the closed torsional stirrups (ACI
11.5.6.3).

15.9 Example Problems Using U.S. Customary Units
In this section, the design of torsional reinforcing for a beam is presented using U.S. customary
units; an example using SI units is presented in the next section.

Example 15.1

Design the torsional reinforcing needed for the beam shown in Figure 15.13 if f ′
c = 4000 psi,

fy = 60,000 psi, Tu = 30 ft-k, and Vu = 60 k. Assume 1.5-in. clear cover, #4 stirrups, and a
required As for Mu of 3.52 in.2. Select #8 bars for flexural reinforcing. Normal-weight concrete is
specified.

SOLUTION

1. Is Torsion Reinforcing Needed?

Acp = area enclosed by outside perimeter of concrete cross section = (16) (26) = 416 in.2

(the letter c stands for concrete, and the letter p stands for perimeter of cross section)

pcp = outside perimeter of the cross section

= (2) (16 in. + 26 in.) = 84 in.

Torsion, Tu, can be neglected if less than

φλ
√

f ′
c

A2
cp

pcp
= (0.75) (1.0) (

√
4000 psi)

[
(416 in.2)2

84 in.

]

= 97,723 in-lb = 97.72 in-k < 30 ft-k × 12 in/ft = 360 in-k

∴ Torsion must be considered

16 in.

x1

y1 26 in.

Note x1 and
y1 run from
c.g. of stirrup
on one edge
to c.g. of 
stirrup on 
other edge.

F I GU RE 15.13 Beam cross section for Example 15.1.
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2. Compute Sectional Properties

Aoh = area enclosed by centerline of the outermost closed stirrups

Noting 1.5-in. clear cover and #4 stirrups

x1 = 16 in. − (2) (1.5 in. + 0.25 in.) = 12.5 in.

y1 = 26 in. − (2) (1.5 in. + 0.25 in.) = 22.5 in.

}
See Figure 15.13

Aoh = (12.5 in.) (22.5 in.) = 281.25 in.2

Ao = gross area enclosed by shear flow path

= 0.85Aoh (from ACI Section 11.5.3.6)

= (0.85) (281.25 in.2) = 239.06 in.2

d = effective depth of beam

= 26 in. − 1.50 in. − 0.50 in. − 1.00 in.
2

= 23.50 in.

ph = perimeter of centerline of outermost closed torsional reinforcing

= (2) (x1 + y1)

= (2) (12.5 in. + 22.5 in.) = 70 in.

3. Is the Concrete Section Sufficiently Large to Support the Torsion?

Vc = nominal shear strength of concrete section

= 2λ
√

f ′
cbwd = (2) (1.0) (

√
4000 psi) (16 in.) (23.50 in.) = 47,561 lb

Applying ACI Equation 11-18

√√√√( Vu

bwd

)2

+
(

Tuph

1.7A2
oh

)2

≤ φ

(
Vc

bwd
+ 8
√

f ′
c

)
√(

60,000 lb
16 in. × 23.50 in.

)2

+
[

360,000 in-lb × 70 in.

1.7 × (281.25 in.2)2

]2

≤ 0.75
(

47,561 lb
16 in. × 23.50 in.

+ 8
√

4000 psi
)

246 psi < 474 psi

∴ Section is sufficiently large

4. Determine the Transverse Torsional Reinforcing Required

Tn = Tu

φ
= 30 ft-k

0.75
= 40 ft-k = 480,000 in-lb

Assuming θ = 45◦ as per ACI Section 11.5.3.6(a)

At

s
= Tn

2Aofyt cot θ
= 480,000 in-lb

(2) (239.06 in.2) (60,000 psi) (cot 45◦)

= 0.0167 in.2/in. for one leg of stirrups
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5. Calculate the Area of Shear Reinforcing Required

Vu = 60,000 lb >
1
2

φVc =
(

1
2

)
(0.75) (47,561 lb) = 17,835 lb

∴ Shear reinforcing is required

Vs = Vu − φVc

φ
= 60,000 lb − (0.75) (1.0) (47,561 lb)

0.75
= 32,439 lb

Applying ACI Equation 11-15

Av

s
= Vs

fytd
= 32,439 lb

(60,000 psi) (23.50 in.)

= 0.0230 in.2/in. for 2 legs of stirrup

6. Select Stirrups

Total web reinforcing required for two legs = Av+t

s

= 2At

s
+ Av

s
= (2) (0.0167 in.2/in.) + 0.0230 in.2/in.

= 0.0564 in.2/in. for two legs

Using #4 stirrups

s = (2) (0.20 in.2)

0.0564 in.2/in.
= 7.09 in. o.c. Say 7 in.

Maximum allowable spacing of stirrups

from ACI Section 11.5.6.1 = ph

8
= 70 in.

8
= Say 8.75 in. or 12 in.

Minimum area of stirrups Av by ACI Equation 11-23

Av + 2At = 0.75
√

f ′
c

bws
fyt

<
50bws

fyt
= (50) (16 in.) (7 in.)

60,000 psi
= 0.0933 in.

= 0.75
√

4000
(16 in.) (7 in.)
60,000 psi

= 0.089 in.2

< (2) (0.20 in.2) = 0.40 in.2 OK

Use #4 stirrups @ 7 in.

7. Selection of Longitudinal Torsion Reinforcing

Additional longitudinal reinforcing required for torsion

Al = At

s
ph

(
fyt

fy

)
cot2 θ (ACI Equation 11-22)

= (0.0167 in.2/in.) (70 in.)
(

60,000 psi
60,000 psi

)
(1.00)2 = 1.17 in.2

Min. Al = 5
√

f ′
cAcp

fy
−
(

At

s

)
ph

fyt

fy
(ACI Equation 11-24)

[
with min

At

s
= 25bw

fyv
= (25) (16 in.)

60,000 psi
= 0.00667 in.2/in.

]

= (5
√

4000 psi) (416 in.2)
60,000 psi

− (0.0167 in.2/in.) (70 in.)
(

60,000 psi
60,000 psi

)

= 1.02 in.2 < 1.17 in.2 OK
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16 in.

4 @ 2 
= 11

2 2
1

4
3

2 2
1

26 in.

#4 closed
ties @ 7 in.

2 #4

2 #4

5 #8

F I GU RE 15.14 Reinforcing selected for beam of Example 15.1.

This additional longitudinal steel is spread out into three layers to the four inside corners
of the stirrups and vertically in between, with a spacing not in excess of 12 in.

Assume one-third in top = 1.17 in.2/3 = 0.39 in.2, 0.39 in.2 + 3.52 in.2 = 3.91 in.2 in bot-
tom, and remainder 0.39 in.2 in between.

Use two #4 bars (0.40 in.2) in top corner, two #4 bars in the middle, and five #8 bars
(3.93 in.2) at the bottom, as shown in Figure 15.14.

15.10 SI Equations and Example Problem
The SI equations necessary for the design of reinforced concrete members that are different
from those needed for similar designs using U.S. customary units are listed here, and their
use is illustrated in Example 15.2.

Torsional moments can be neglected if

Tu = φ(0.083)λ
√

f ′
c

12

A2
cp

pcp
(ACI Section 11.5.1[a])

Vc = 0.17λ
√

f ′
cbw d (ACI Equation 11-3)

Maximum torsional moment strength for solid sections√(
Vu

bw d

)2

+
(

Tuph

1.7A2
oh

)2

≤ φ

(
Vc

bw d
+ 0.66

√
f ′

c

)
(ACI Equation 11-18)

Maximum torsional moment strength for hollow sections

Vu

bw d
+ Tu ph

1.7A2
oh

≤ φ

(
Vc

bw d
+ 0.66

√
f ′

c

)
(ACI Equation 11-19)

The expression used to calculate the required area of torsional reinforcing needed for
one leg of stirrups

Tn = 2AoAt fyt

s
cot θ (ACI Equation 11-21)

from which
At

s
= Tn

2Aofyv cot θ
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Minimum area of transverse reinforcing required

Av + 2At = 0.062
√

f ′
c

bw s

fyt
(ACI Equation 11-23)

≥ 0.35bw s

fyt

Additional longitudinal reinforcing required for torsion

Al = At

s
ph

(
fyt

fy

)
cot2 θ (ACI Equation 11-22)

Minimum total area of additional longitudinal reinforcing required

Al min = 0.42
√

f ′
cAcp

fy
− At

s
ph

fyt

fy
(ACI Equation 11-24)

In this last expression, the value of (At /s) may not be taken as less than (bw/6fyv). Other
SI requirements for design of torsional reinforcing are:

1. Max spacing permitted for transverse torsional reinforcing = 1
8 ph or 300 mm

or d/2 or d/4 as required for shear design (ACI 11.5.6.1 and 11.4.4).

2. The diameter of stirrups may not be less than 0.042 times their spacing, and
stirrups smaller than #10 may not be used (ACI Section 11.5.6.2).

3. Maximum yield stresses fy or fyt = 420 MPa (ACI Section 11.5.3.4).

Example 15.2 illustrates the design of the torsional reinforcing for a member using SI
units.

Example 15.2

Design the torsional reinforcing for the beam shown in Figure 15.15, for which f ′
c = 28 MPa,

fy = 420 MPa, Vu = 190 kN, Tu = 30 kN-m, and As required for Mu is 2050 mm2. Assume
#13 stirrups and a clear cover equal to 40 mm.

350 mm

x1

y1 650 mm

F I GU RE 15.15 Beam cross section for Example 15.2.
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SOLUTION

1. Is Torsion Reinforcing Necessary?

Acp = (350 mm) (650 mm) = 227 500 mm2

pcp = (2) (350 mm + 650 mm) = 2000 mm

φ(0.083λ)
√

f ′
c

A2
cp

pcp
= (0.75) (0.083) (1)

√
28 MPa

12
(227 500 mm2)2

2000 mm
[ACI 11:5:1(a)]

= 8.558 × 106 N •mm = 8.56 kN •m < 30 kN •m

∴ Torsion reinforcing is required

2. Compute Sectional Properties

With 40-mm clear cover and #13 stirrups (diameter = 12.7 mm)

x1 = 350 mm − (2)
(

40 mm + 12.7 mm
2

)
= 257.3 mm

y1 = 650 mm − (2)
(

40 mm + 12.7 mm
2

)
= 557.3 mm

Aoh = (257.3 mm) (557.3 mm) = 143 393 mm2

Ao = 0.85Aoh = (0.85) (143 393 mm2) = 121 884 mm2

Assuming bottom reinforcing consists of #25 bars (diameter = 25.4 mm)

d = 650 mm − 40 mm − 12.7 mm − 25.4 mm
2

= 584.6 mm

ph = 2(x1 + y1) = (2) (257.3 mm + 557.3 mm) = 1629 mm

3. Is the Concrete Section Sufficiently Large to Support Tu?

Vc = 0.17λ
√

f ′
cbwd = (0.17) (1.0)

√
28 MPa (350 mm) (584.6 mm) = 180 449 N

= 180.45 kN (ACI Equation 11-3)√√√√( Vu

bwd

)2

+
(

Tuph

1.7A2
oh

)2

≤ φ

(
Vc

bwd
+ 0.66

√
f ′
c

)
(ACI Equation 11-18)

√√√√( 190 kN × 103

350 mm × 584.6 mm

)2

+
(

30 kN-m × 106 × 1629 mm

1.7
(
143 393 mm2

)2
)2

< 0.75

(
180.45 kN × 103

350 mm × 584.6 mm
+ 0.66

√
28 Mpa

)

1.678 N/mm2 < 3.307 N/mm2

∴Section is sufficiently large

4. Determine the Transverse Torsional Reinforcing Required

Tn = Tu

φ
= 30 kN •m

0.75
= 40 kN •m

Assuming θ = 45◦ as per ACI 11.5.3.6(a)

At

s
= Tn

2Aofyt cot θ
= 40 kN •m × 106

(2) (121 884 mm2) (420 MPa) (1.0)
(ACI Equation 11-21)

= 0.391 mm2/mm for one leg of stirrup
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5. Calculate the Area of Shear Reinforcing Required

Vu = 190 kN >
1
2

Vc =
(

1
2

)
(180.45 kN) = 90.22 kN

∴ Shear reinforcing is required

Vs = Vu − φVc

φ
= 190 kN − (0.75) (180.45 kN)

0.75
= 72.88 kN

Av

s
= Vs

fyd
= 72.88 kN × 103

(420 MPa) (584.6 mm)
= 0.297 mm2/mm for two legs of stirrup

6. Select Stirrups

2At

s
+ Av

s
= (2) (0.391 mm2) + 0.297 mm2 = 1.079 mm2/mm for two legs of stirrup

Using #13 stirrup (As = 129 mm2)

s = (2) (129 mm2)
1.079 mm2/mm

= 239 mm

Maximum allowable spacing of stirrup

= ph

8
= 1629 mm

8
= 204 mm Use 200 mm

Minimum area of stirrup

Av + 2At = 0.062
√

28 MPa
(350 mm) (200 mm)

420 MPa
= 55.11 mm2

≤ 0.35
bws
fy

= 0.35
(350 mm) (200 mm)

420 MPa
(ACI Equation 11-23)

= 55.56 mm2 < (2) (129 mm2) = 258 mm2 OK

7. Selection of Longitudinal Torsion Reinforcing

Al = At

s
ph

fyt

fy
cot2 θ = (0.391 mm2/mm) (1629 mm)

(
420 MPa
420 MPa

)
(1.0)2

= 637 mm2 (ACI Equation 11-22)

Min Al = 0.42
√

f ′
cAcp

fy
− At

s
ph

fyt

fy
(ACI Equation 11-24)

= (0.42
√

28 MPa) (227 500 mm2)
(420 MPa)

− (0.391 mm2/mm) (1629 mm)
(

420 MPa
420 MPa

)
= 557 mm2 OK

Additional longitudinal steel is spread out to the four inside corners of the stirrups
and vertically in between. Assume one-third in top = 557 mm2/3 = 186 mm2, 186 mm2 +
2050 mm2 = 2236 mm2 in bottom, and remainder 186 mm2 in between.

Use two #13 bars (258 mm2) in top corners and at middepth and five #25 (2550 mm2)
in bottom.
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15.11 Computer Example

Example 15.3

Repeat Example 15.1 using the Excel spreadsheet provided for Chapter 15.

SOLUTION

Open the Excel spreadsheet for Chapter 15 and the worksheet entitled Torsion. Observe that
this sheet has U.S. customary units. Enter values for all cells highlighted in yellow (only in the
Excel spreadsheets, not the printed example). Note that the results are the same as those
obtained in Example 15.1.

Shear and Torsion Design — Rectangular Beams
U.S. Customary Units

Vu = 60 k
Tu = 30 ft-k

Nu = 0 k
f'c = 4000 psi
λ = 1
b = 16 in.
h = 26 in.

cover = 1.5 in.
stirrup dia. = 0.5 in.

Av = 0.40 in.2

fyt = 60,000 psi
fy = 60,000 psi
φ = 0.75

Acp = 416.00 in.2

pcp= 84.00 in.

Neglect torsion if Tu < 97723 in-lb = 8.144 ft-k < Tu consider torsion
x1 = 12.50 in.

y1 = 22.50 in.

Aoh = 281.25 in.2

Ao = 239.06 in.2

d = 23.5 in.
p

h
 = 70.00 in.

Vc = 47561 lb
Eq. 11-18 left 246

Eq. 11-18 right 474 section is large enough
At⎜s = 0.0167 in.2/in. for 2 legs of stirrup

in.2/in. for 2 legs of stirrup

in.2/in. for 2 legs of stirrup

Vu > φ Vc⎜2? yes, shear reinforcing needed
Vs = 32439 lb

Av⎜s = 0.0230

Av+t⎜s = 0.0565
s = 7.08 in.

s ≤ ph⎜8 = 8.75 in.
s ≤ 12 = 12.00 in.

s = 7.08 in.
Use s = 7.00 in.

Eq. 11-23 0.75Sqrt( f'
c)bs⎜fyt = 0.089 <Av – OK

A`̀ = 1.17 in.2 Select additional longitudinal bars
Min A`̀ = 1.02 OK
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P R O B L E M S

For Problems 15.1 to 15.3, determine the equilibrium torsional
capacity of the sections if no torsional reinforcing is used.
f ′

c = 4000 psi, fy = 60,000 psi, and normal-weight concrete.

Problem 15.1 (Ans. 6.57 ft-k)

4 #8

21 in.

24 in.

3 in.

15 in.

Problem 15.2

3 #10

16 in. 16 in.

14 in.

4 in.

3 in.

15 in. 22 in.

Problem 15.3 (Ans. 8.14 ft-k)

16 in.

5 in. 5 in.6 in.

5 #10

16 in.

6 in.

4 in.

26 in.

Problem 15.4 Repeat Problem 15.1 if the width is changed
from 16 in. to 12 in. and the depth from 20 in. to 28 in.

Problem 15.5 Repeat Problem 15.3 if f ′
c = 3000 psi and

sand-lightweight concrete. (Ans. 5.99 ft-k)

Problem 15.6 What minimum total theoretical depth is needed
for the beam shown if no torsional reinforcing is to be used?
The cross section is not shown, but it is rectangular with
b = 20 in. and the depth to be determined. The concentrated
load is located at the end of the cantilever 8 in. to one side of
the beam centerline, fy = 60,000 psi, f ′

c = 4000 psi, and all
lightweight concrete.

neglect beam weight

8 ft

PD = 9 k, PL = 5 k

Problem 15.7 If the reinforced concrete spandrel beam shown
has f ′

c = 4000 psi, sand-lightweight concrete, and
fy = 60,000 psi, determine the theoretical spacing required for
#3 stirrups at a distance d from the face of the support where
Vu = 32 k and Tu = 10 ft-k. Clear cover = 1 1

2 in. (Ans. 5.87
ft-k < 10 ft-k ∴ torsion reinf. reqd @ 7.81 in. on center)

24 in.

14 in.

4 #9

2    in.1
2
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Problem 15.8 Design the torsion reinforcement for the beam shown at a section a distance d from the face of the support for a
torsional moment of 24 ft-k. Vu = 90 k, f ′

c = 3000 psi, and fy = 60,000 psi. Clear cover = 1.50 in. Use #4 stirrups.

80 in.

8 #10

14 in.

6 in.

27 in.

4 in.

37 in.

Problem 15.9 Determine the theoretical spacing of #4 closed stirrups at a distance d from the face of the support for the edge
beam shown if f ′

c = 4000 psi and fy = 60,000 psi. Tu equals 36 ft-k at the face of the support and is assumed to vary along the
beam in proportion to the shear. Clear cover = 1 1

2 in. and normal-weight concrete. (Ans. 6.82 in.)

18 in. 16 in.

4 #8

D = 2 k/ft (including beam weight)
L = 3 k/ft

30 in.

26 in.17 in.

3 in.

6 in.

24 ft

Problem 15.10 A 12-in. × 22-in. spandrel beam (d = 19.5 in.) with a 20-ft simple span has a 4-in. slab 16 in. wide on one side
acting as a flange. It must carry a maximum Vu of 60 k and a maximum Tu of 20 ft-k at the face of the support. Assuming these
values are zero at the beam centerline, select #4 stirrups if f ′

c = 3000 psi, normal-weight concrete, fy = 60,000 psi, and clear
cover = 1.5 in.
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Problem 15.11 Determine the theoretical spacing of #4 closed stirrups at a distance d from the face of the support for the beam
shown if the load is acting 3 in. off center of the beam. Assume that the torsion equals the uniform load times the 3 in.,
f ′

c = 3000 psi, all lightweight aggregate concrete, and fy = 60,000 psi. Assume that the torsion value varies from a maximum at the
support to 0 at the beam centerline as does the shear. Assume 1.5-in. clear cover. (Ans. 8.51 in.)

28 in.

20 ft

14 in.

3 #8

7 in.

in.2 1
2

in.25 1
2

in.3 1
2

in.3 1
2

D = 1 k/ft (including beam weight)
L = 2.8 k/ft

Problem 15.12 Is the beam shown satisfactory to resist a Tu
of 15 ft-k and a Vu of 60 k if f ′

c = 4000 psi and
fy = 60,000 psi? The bars shown are used in addition to those
provided for bending moment.

14 in.

20 in.

3 in.

#4 @ 5 in.

#6

12 in.
7 in. in.2 1

2
in.2 1

2

Problem 15.13 Using Chapter 15 Excel spreadsheet,
determine the required spacing at a distance d from the support
for Problem 15.7. Use the same materials, but change concrete
to all-lightweight aggregate. (Ans. 7.81 in.)

Problem 15.14 Repeat Problem 15.11 using #3 closed
stirrups, f ′

c = 4000 psi, semi-lightweight concrete, and
Chapter 15 spreadsheet.
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Problems in SI Units

Problem 15.15 Determine the required spacing of #13 closed stirrups at a distance d from the face of the support for the
beam shown assuming that the torsion decreases uniformly from the beam end to the beam centerline. The member is
subjected to a 34-kN •m service dead load torsion and a 40-kN •m service line load torsion at the face of the support,
fy = 420 MPa, f ′

c = 24 MPa, and clear cover = 40 mm. (Ans. 175 mm)

D = 10 kN/m (including beam weight)
L  = 25 kN/m

Problem 15.16 Determine stirrup spacing at distance d from support for the beam shown if the load is acting 100 mm off
center of the beam. Assume the torsion at the support equals the uniform load times 100 mm, f ′

c = 28 MPa, and
fy = 420 MPa. Use #13 stirrups and assume that the torsion and shear vary from a maximum at the support to zero at the
beam centerline. Clear cover = 40 mm.

D = 12 kN/m (including beam weight)
L  = 25 kN/m

6 m

600 mm

3 #32

300 mm
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CHAPTER 16 Two-Way Slabs, Direct
Design Method

16.1 Introduction
In general, slabs are classified as being one way or two way. Slabs that primarily deflect in one
direction are referred to as one-way slabs; see Figure 16.1(a). Simple-span, one-way slabs have
been discussed previously in Section 4.7 of this text, while the design of continuous one-way
slabs was considered in Section 14.7. When slabs are supported by columns arranged generally
in rows so that the slabs can deflect in two directions, they are usually referred to as two-way
slabs.

Two-way slabs can be strengthened by the addition of beams between the columns, by
thickening the slabs around the columns (drop panels), and by flaring the columns under the
slabs (column capitals). These situations are shown in Figure 16.1 and discussed in the next
several paragraphs.

Flat plates, Figure 16.1(b), are solid concrete slabs of uniform depths that transfer loads
directly to the supporting columns without the aid of beams or capitals or drop panels. Flat
plates can be constructed quickly because of their simple formwork and reinforcing bar arrange-
ments. They need the smallest overall story heights to provide specified headroom requirements,
and they give the most flexibility in the arrangement of columns and partitions. They also pro-
vide little obstruction to light and have high fire resistance because there are few sharp corners
where spalling of the concrete might occur. Flat plates are probably the most commonly used
slab system today for multistory reinforced concrete hotels, motels, apartment houses, hospitals,
and dormitories.

Flat plates present a possible problem in transferring the shear at the perimeter of the
columns. In other words, there is a danger that the columns may punch through the slabs.
As a result, it is frequently necessary to increase column sizes or slab thicknesses or to use
shearheads. Shearheads consist of steel I or channel shapes placed in the slab over the columns,
as discussed in Section 16.5 of this chapter. Although such procedures may seem expensive,
the simple formwork required for flat plates will usually result in such economical construction
that the extra costs required for shearheads are more than canceled. For heavy industrial loads
or long spans, however, some other type of floor system may be required.

Flat slabs, shown in Figure 16.1(c), include two-way reinforced concrete slabs with
capitals, drop panels, or both. These slabs are very satisfactory for heavy loads and long
spans. Although the formwork is more expensive than for flat plates, flat slabs will require less
concrete and reinforcing than would be required for flat plates with the same loads and spans.
They are particularly economical for warehouses, parking and industrial buildings, and similar
structures, where exposed drop panels or capitals are acceptable.

In Figure 16.1(d), a two-way slab with beams is shown. This type of floor system is used
where its cost is less than the costs of flat plates or flat slabs. In other words, when the loads or
spans or both become quite large, the slab thickness and column sizes required for flat plates or
flat slabs are of such magnitude that it is more economical to use two-way slabs with beams,
despite the higher formwork costs.

Another type of floor system is the waffle slab. The floor is constructed by arranging
square fiberglass or metal pans with tapered sides with spaces. When the concrete is placed over
and between the pans and the forms are removed, the waffle shape is obtained. The intervals

492
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or gaps between the pans form the beam webs. These webs are rather deep and provide large
moment arms for the reinforcing bars. With waffle slabs, the weight of the concrete is greatly
reduced without significantly changing the moment resistance of the floor system. As in flat
plates, shear can be a problem near columns. Consequently, waffle floors are usually made
solid in those areas to increase shear resistance.

(a) One-way slab with beams

(b) Flat plate

drop panel

capital

(c) Flat slab

FI GU RE 16.1 Slabs.

(continues)
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(d) Two-way slab with beams

FI GU RE 16.1 (continued)
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Flat plate without edge beams. (Buckley Gray Yeoman, Fashion
Street, London, 2010)
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16.2 Analysis of Two-Way Slabs
Two-way slabs bend under load into dish-shaped surfaces, so there is bending in both principal
directions. As a result, they must be reinforced in both directions by layers of bars that are
perpendicular to each other. A theoretical elastic analysis for such slabs is a very complex
problem because of their highly indeterminate nature. Numerical techniques such as finite
difference and finite elements are required, but such methods require sophisticated software
to be practical in design. The methods described in this chapter can be done by hand or with
simple spreadsheets, and are sufficiently accurate for most design problems.

Actually, the fact that a great deal of stress redistribution can occur in such slabs at high
loads makes it unnecessary to make designs based on theoretical analyses. Therefore, the design
of two-way slabs is generally based on empirical moment coefficients, which, although they
might not accurately predict stress variations, result in slabs with satisfactory overall safety
factors. In other words, if too much reinforcing is placed in one part of a slab and too little
somewhere else, the resulting slab behavior will probably still be satisfactory. The total amount
of reinforcement in a slab seems more important than its exact placement.

You should clearly understand that, although this chapter and the next are devoted to
two-way slab design based on approximate methods of analysis, there is no intent to prevent
the designer from using more exact methods. Designers may design slabs on the basis of
numerical solutions, yield-line analysis, or other theoretical methods, provided that it can be
clearly demonstrated that they have met all the necessary safety and service ability criteria
required by the ACI Code.

Although it has been the practice of designers for many years to use approximate analyses
for design and to use average moments rather than maximum ones, two-way slabs so designed
have proved to be very satisfactory under service loads. Furthermore, they have been proved
to have appreciable overload capacity.

16.3 Design of Two-Way Slabs by the ACI Code
The ACI Code (13.5.1.1) specifies two methods for designing two-way slabs for gravity loads.
These are the direct design method and the equivalent frame method.

Direct Design Method

The code (13.6) provides a procedure with which a set of moment coefficients can be deter-
mined. The method, in effect, involves a single-cycle moment distribution analysis of the
structure based on (a) the estimated flexural stiffnesses of the slabs, beams (if any), and
columns and (b) the torsional stiffnesses of the slabs and beams (if any) transverse to the
direction in which flexural moments are being determined. Some types of moment coefficients
have been used satisfactorily for many years for slab design. They do not, however, give very
satisfactory results for slabs with unsymmetrical dimensions and loading patterns.

Equivalent Frame Method

In this method, a portion of a structure is taken out by itself, as shown in Figure 16.2, and
analyzed much as a portion of a building frame was handled in Example 14.2. The same
stiffness values used for the direct design method are used for the equivalent frame method.
This latter method, which is very satisfactory for symmetrical frames as well as for those with
unusual dimensions or loadings, is discussed in Chapter 17 of this text.
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FI GU RE 16.2 Equivalent frame method.

Design for Lateral Loads

The ACI Code permits considerable freedom for the designer to model two-way slab systems
for lateral loads. The method must satisfy equilibrium and geometric compatibility and be in
reasonable agreement with test data. The effects of cracking and such parameters as the slab
aspect ratio and ratio of column-to-slab span dimensions should be considered1 (ACI Section
R13.5.1.2).

16.4 Column and Middle Strips
After the design moments have been determined by either the direct design method or the
equivalent frame method, they are distributed across each panel. The panels are divided into
column and middle strips, as shown in Figure 16.3, and positive and negative moments are
estimated in each strip. The column strip is a slab with a width on each side of the column

0.25`1 or 0.25`2, whichever is smaller

column
strip

column
strip

middle
strip

`1

`2

FI GU RE 16.3 Column and middle strips.

1 Vanderbilt, M. D., and Corley, W. G., 1983. “Frame Analysis of Concrete Buildings,” Concrete International: Design and
Construction, Vol. 5, No. 12, pp. 33–43.
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Flat Plate Construction—Pharr Road Condominiums, Atlanta, Georgia.

centerline equal to one-fourth the smaller of the panel dimensions l1 or l2. It includes beams
if they are present. The middle strip is the part of the slab between the two column strips.

The part of the moments assigned to the column and middle strips may be assumed to be
uniformly spread over the strips. As will be described later in this chapter, the percentage of
the moment assigned to a column strip depends on the effective stiffness of that strip and on its
aspect ratio, l2/l1 (where l1 is the length of span, center to center, of supports in the direction
in which moments are being determined and l2 is the span length, center to center, of supports
in the direction transverse to l1). Note that Figure 16.3 shows column and middle strips in
only one direction. A similar analysis must be performed in the perpendicular direction. The
resulting analysis will result in moments in both directions.

16.5 Shear Resistance of Slabs
For two-way slabs supported by beams or walls, shears are calculated at a distance d from
the faces of the walls or beams. The value of φVc is, as for beams, φ2λ

√
f ′

cbw d . Shear is not
usually a problem for these types of slabs.

For flat slabs and flat plates supported directly by columns, shear may be the critical
factor in design. In almost all tests of such structures, failures have been the result of shear or
perhaps shear and torsion. These conditions are particularly serious around exterior columns.

Two kinds of shear must be considered in the design of flat slabs and flat plates. These
are the same two that were considered in column footings—one-way and two-way shears (i.e.,
beam shear and punching shear). For beam shear analysis, the slab is considered to act as a
wide beam running between the supports. The critical sections are taken at a distance d from
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the face of the column or capital. For punching shear, the critical section is taken at a distance
d/2 from the face of the column, capital, or drop panel and the shear strength, as usually used
in footings, is φ4λ

√
f ′

cbw d .

If shear stresses are too large around interior columns, it is possible to increase the
shearing strength of the slabs by as much as 75% by using shearheads. A shearhead, as defined
in Section 11.11.4 of the code, consists of four steel I or channel shapes fabricated into cross
arms and placed in the slabs, as shown in Figure 16.4(a). The code states that shearhead designs
of this type do not apply at exterior columns. Thus, special designs are required, and the code
does not provide specific requirements. Shearheads increase the effective bo for two-way shear,
and they also increase the negative moment resistance of the slab, as described in the code
(11.11.4.9). The negative moment reinforcing bars in the slab are usually run over the top of
the steel shapes, while the positive reinforcing is normally stopped short of the shapes.

Another type of shear reinforcement permitted in slabs by the code (11.11.3) involves
the use of groups of bent bars or wires. One possible arrangement of such bars is shown in
Figure 16.4(b). The bars are bent across the potential diagonal tension cracks at 45◦ angles,
and they are run along the bottoms of the slabs for the distances needed to fully develop the

(a) Shearhead (b) Bent-bar arrangement

(c) Shear bar reinforcing

FI GU RE 16.4 Shear reinforcement for slabs at columns.
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bar strengths. Another type of bar arrangement that might be used is shown in Figure 16.4(c).
When bars (or wires) are used as shear reinforcement, the code (11.11.3.2) states that the
nominal two-way shear strength permitted on the critical section at a distance d/2 from the
face of the column may be increased from 4

√
f ′

cbod to 6
√

f ′
cbod .

The main advantage of shearheads is that they push the critical sections for shear far-
ther out from the columns, thus giving a larger perimeter to resist the shear, as illustrated in
Figure 16.5. In this figure, lv is the length of the shearhead arm from the centroid of the con-
centrated load or reaction, and c1 is the dimension of the rectangular or equivalent rectangular
column or capital or bracket, measured in the direction in which moments are being calculated.
The code (11.11.4.7) states that the critical section for shear shall cross the shearhead arm at a
distance equal to 3

4 [lv − (c1/2)] from the column face, as shown in Figure 16.5(b). Although
this critical section is to be located so that its perimeter is a minimum, it does not have to be
located closer to the column face or edges of capitals or drop panels than d/2 at any point.
When shearhead reinforcing is provided with reinforcing bars or steel I or channel shapes,
the maximum shear strength can be increased to 7

√
f ′

cbod at a distance d/2 from the column.
According to the code (11.11.4.8), this is permissible only if the maximum computed shear
does not exceed 4

√
f ′

cbod along the dashed critical section for shear shown in Figure 16.5(b).

columnc1

c2

c1 + d

c1

`v

`v –       

d
2

d
2 3

4
c1
2

(a) No shearhead

(b) With shearhead

column

critical sections
for shear

c2 + d

b0 = 2c1 + 2c2 + 4d

))

FI GU RE 16.5 Critical sections for shear.
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In Section 16.12, the subject of shear stresses is continued with a consideration of the
transfer of moments and shears between slabs and columns. The maximum load that a two-way
slab can support is often controlled by this transfer strength.

16.6 Depth Limitations and Stiffness Requirements
It is obviously very important to keep the various panels of a two-way slab relatively level (i.e.,
with reasonably small deflections). Thin reinforced two-way slabs have quite a bit of moment
resistance, but deflections are often large. As a consequence, their depths are very carefully
controlled by the ACI Code so as to limit these deflections. This is accomplished by requiring
the designer to either (a) compute deflections and make sure they are within certain limitations
or (b) use certain minimum thicknesses as specified in Section 9.5.3 of the code. Deflection
computations for two-way slabs are rather complicated, so the average designer usually uses
the minimum ACI thickness values, presented in the next few paragraphs of this chapter.

Slabs without Interior Beams

For a slab without interior beams spanning between its supports and with a ratio of its long
span to short span not greater than 2.0, the minimum thickness can be taken from Table 16.1
of this chapter [Table 9.5(c) in the code]. The values selected from the table, however, must
not be less than the following values (ACI 9.5.3.2):

1. Slabs without drop panels 5 in.

2. Thickness of those slabs with drop panels outside the panels 4 in.

In Table 16.1, some of the values are given for slabs with drop panels. To be classified
as a drop panel, according to Sections 13.3.7 and 13.2.5 of the code, a panel must (a) extend
horizontally in each direction from the centerline of the support no less than one-sixth the

TABLE 16.1 Minimum Thickness of Slabs without Interior Beams

Without Drop Panels† With Drop Panels†

Interior Interior
Exterior Panels Panels Exterior Panels Panels

Yield strength, Without edge With edge Without edge With edge
f y , psi∗ beams beams‡ beams beams‡

40,000
ln

33

[§] ln

36
ln

36
ln

36
ln

40
ln

40

60,000
ln

30
ln

33
ln

33
ln

33
ln

36
ln

36

75,000
ln

28
ln

31
ln

31
ln

31
ln

34
ln

34

∗For values of reinforcement yield strength between the values given in the table, minimum thickness shall be determined
by linear interpolation.
†Drop panel is defined in ACI Sections 13.3.7 and 13.2.5.
‡Slabs with beams between columns along exterior edges. The value of αf for the edge beam shall not be less than 0.8.
§For two-way construction, ln is the length of the clear span in the long direction, measured face to face of the supports
in slabs without beams and face to face of beams or other supports in other cases.
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distance, center to center, of supports in that direction and (b) project vertically below the slab
a distance no less than one-fourth the thickness of the slab away from the drop panel. In this
table, ln is the length of the clear span in the long direction of two-way construction, measured
face to face of the supports in slabs without beams and face to face of beams or other supports
in other cases.

Very often slabs are built without interior beams between the columns but with edge
beams running around the perimeter of the building. These beams are very helpful in stiffening
the slabs and reducing the deflections in the exterior slab panels. The stiffness of slabs with
edge beams is expressed as a function of αf , which follows.

Throughout this chapter, the letter αf is used to represent the ratio of the flexural stiffness
(Ecb Ib) of a beam section to the flexural stiffness of the slab (Ecs Is ) whose width equals the
distance between the centerlines of the panels on each side of the beam. If no beams are used,
as is the case for the flat plate, α will equal 0. For slabs with beams between columns along
exterior edges, α for the edge beams may not be < 0.8, as specified in a footnote to Table 16.1.

αf = Ecb Ib

Ecs Is
(ACI Equation 13-3)

where
Ecb = the modulus of elasticity of the beam concrete
Ecs = the modulus of elasticity of the column concrete

Ib = the gross moment of inertia about the centroidal axis of a section made up of the
beam and the slab on each side of the beam extending a distance equal to the
projection of the beam above or below the slab (whichever is greater) but not
exceeding four times the slab thickness (ACI 13.2.4)

Is = the moment of inertia of the gross section of the slab taken about the centroidal
axis and equal to h3/12 times the slab width, where the width is the same as
for α

Example 16.1

Using the ACI Code, determine the minimum permissible total thicknesses required for the slabs
in panels 3© and 2© for the floor system shown in Figure 16.6. Edge beams are used around the
building perimeter, and they are 12 in. wide and extend vertically for 8 in. below the slab, as
shown in Figure 16.7. They also extend 8 in. out into the slab as required by ACI Section 13.2.4.
No drop panels are used, and the concrete in the slab is the same as that used in the edge
beams. fy = 60,000 psi.

SOLUTION

For Interior Panel 3©

αf = 0 (since the interior panels have no perimeter beams)

ln = 20 ft − 16 in.
12 in/ft

= 18.67 ft (clear distance between columns)

Min h = ln

33
(from Table 16.1)

= 18.67 ft
33

= 0.566 ft = 6.79 in.

May not be less than 5 in., according to Section 9.5.3.2. Try 7 in.
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12 in.

16 in.

edge beam 12 in. wide and projects
vertically 8 in. below slab

all columns
same size

5 
@

 2
0 

ft
 =

 1
00

 f
t

6 @ 16 ft = 96 ft

FI GU RE 16.6 Flat-plate floor slab for Example 16.1.

For Exterior Panel 2©
Assume h = 7 in. and compute αf with reference made to Figure 16.7(a). Centroid of cross-
hatched beam section located by statics 6.55 in. from top.

Ib =
(

1
3

)
(20 in.) (6.55 in.)3 +

(
1
3

)
(12 in.) (8.45 in.)3 +

(
1
3

)
(8 in.) (0.45 in.)3

= 4287 in.4

Is =
(

1
12

)
(102 in.) (7 in.)3 = 2915.5 in.4 See Figure 16.7(b)

α = EIb
EIs

= (E) (4287 in.4)

(E) (2915.5 in.4)
= 1.47 > 0.8

∴ This is an edge beam as defined in the footnote of Table 16.1.

Min h = ln

33
=

20 ft − 16 in.
12 in/ft

33
= 0.566 ft = 6.79 in. Try 7 in.

12 in.

(a)  Edge beam dimensions

6 in.
columns 16 ft on center

hw ≤ 4h
use 8 in.

h = 7 in.

hw = 8 in.

(b)  Slab dimensions

6 in. + 16 ft
2

= 102 in.
centerline of panel

h = 7 in.

FI GU RE 16.7 Sections for edge beam and slab.
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Slabs with Interior Beams

To determine the minimum thickness of slabs with beams spanning between their supports on
all sides, Section 9.5.3.3 of the code must be followed. Involved in the expressions presented
there are span lengths, panel shapes, flexural stiffness of beams if they are used, steel yield
stresses, and so on. In these equations, the following terms are used:

ln = the clear span in the long direction, measured face to face, of (a) columns for
slabs without beams and (b) beams for slab with beams

β = the ratio of the long to the short clear spain
αfm = the average value of the ratios of beam-to-slab stiffness on all sides of a panel

The minimum thickness of slabs or other two-way construction may be obtained by
substituting into the equations to follow, which are given in Section 9.5.3.3 of the code. In the
equations, the quantity β is used to take into account the effect of the shape of the panel on
its deflection, while the effect of beams (if any) is represented by αfm . If there are no beams
present (as is the case for flat slabs), αfm will equal 0.

1. For αfm ≤ 0.2, the minimum thicknesses are obtained as they were for slabs without
interior beams spanning between their supports.

2. For 0.2 ≤ αfm ≤ 2.0, the thickness may not be less than 5 in. or

h =
ln

(
0.8 + fy

200,000

)
36 + 5β(αfm − 0.2)

(ACI Equation 9-12)

3. For αfm > 2.0, the thickness may not be less than 3.5 in. or

h =
ln

(
0.8 + fy

200,000

)
36 + 9β

(ACI Equation 9-13)

where ln and fy are in inches and psi, respectively.

For panels with discontinuous edges, the code (9.5.3.3d) requires that edge beams be
used, which have a minimum stiffness ratio αf equal to 0.8, or else that the minimum slab
thicknesses, as determined by ACI Equations 9-12 and 9-13, must be increased by 10%.

The designer may use slabs of lesser thicknesses than those required by the ACI Code,
as described in the preceding paragraphs, if deflections are computed and found to be equal to
or less than the limiting values given in Table 9.5(b) of the ACI Code (Table 6.1 in this text).

Should the various rules for minimum thickness be followed but the resulting slab be
insufficient to provide the shear capacity required for the particular column size, column capitals
will probably be required. Beams running between the columns may be used for some slabs
where partitions or heavy equipment loads are placed near column lines. A very common case
of this type occurs where exterior beams are used when the exterior walls are supported directly
by the slab. Another situation where beams may be used occurs where there is concern about
the magnitude of slab vibrations. Example 16.2 illustrates the application of the minimum slab
thickness rules for a two-way slab with beams.
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Example 16.2

The two-way slab shown in Figure 16.8 has been assumed to have a thickness of 7 in. Section
A–A in the figure shows the beam cross section. Check the ACI equations to determine if the slab
thickness is satisfactory for an interior panel. f ′

c = 3000 psi, fy = 60,000 psi, and normal-weight
concrete.

SOLUTION

(Using the Same Concrete for Beams and Slabs)

Computing α1 for Long (Horizontal) Span for Interior Beams

Is = gross moment of inertia of slab 20 ft wide

=
(

1
12

)
(12 in/ft × 20 in.) (7 in.)3 = 6860 in.4

Ib = gross I of T-beam cross section shown in Figure 16.8

about centroidal axis = 18,060 in.4

α1 = EIb
EIs

= (E)(18,060 in.4)

(E)(6860 in.4)
= 2.63

20 ft

20 ft

bw + 2hw ≤ b + 8h

all columns
12 in. × 12 in.

24 ft 24 ft 24 ft

7 in.

15 in.

42 in.

Section A–A

12 in.

FI GU RE 16.8 A two-way slab.
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Computing α2 for Long Interior Beams

Is for 24-ft-wide slab =
(

1
12

)
(12 in/ft × 24 in.) (7 in.)3 = 8232 in.4

Ib = 18,060 in.4

α2 = (E) (18,060 in.4)

(E) (8232 in.4)
= 2.19

αfm = α1 + α2

2
= 2.63 + 2.19

2
= 2.41

Determining Slab Thickness per ACI Section 9.5.3.3

αfm = 2.41 > 2 ∴ Use ACI Equation 9-13

h =
ln

(
0.8 + fy

200,000 psi

)
36 + 9β

ln long = 24 ft − 1 ft = 23 ft

ln short = 20 ft − 1 ft = 19 ft

β = 23 ft
19 ft

= 1.21

h =
(23 ft)

(
0.8 + 60,000 psi

200,000 psi

)
36 + (9) (1.21)

= 0.540 ft = 6.47 in.
Use 7-in. slab

Note that the interior panel will generally not control the required slab thickness. Usually it will
be an edge or corner panel. The interior panel was chosen here to illustrate the calculations and
to avoid excess complexity. Had a corner panel been selected, each edge of the panel would
have had a different αf .

16.7 Limitations of Direct Design Method
For the moment coefficients determined by the direct design method to be applicable, the code
(13.6.1) says that the following limitations must be met, unless a theoretical analysis shows
that the strength furnished after the appropriate capacity reduction or φ factors are applied is
sufficient to support the anticipated loads and provided that all serviceability conditions, such
as deflection limitations, are met:

1. There must be at least three continuous spans in each direction.

2. The panels must be rectangular, with the length of the longer side of any panel not
being more than two times the length of its shorter side lengths being measured c to c
of supports.

3. Span lengths of successive spans in each direction may not differ in length by more than
one-third of the longer span.

4. Columns may not be offset by more than 10% of the span length in the direction of the
offset from either axis between center lines of successive columns.

5. The unfactored live load must not be more than two times the unfactored dead load.
All loads must be the result of gravity and must be uniformly distributed over an entire
panel.
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6. If a panel is supported on all sides by beams, the relative stiffness of those beams in
the two perpendicular directions, as measured by the following expression, shall not be
less than 0.2 or greater than 5.0.

αf 1l
2
2

αf 2l
2
1

The terms l1 and l2 were shown in Figure 16.3.

16.8 Distribution of Moments in Slabs
The total moment, Mo , that is resisted by a slab equals the sum of the maximum positive
and negative moments in the span. It is the same as the total moment that occurs in a simply
supported beam. For a uniform load per unit area, qu , it is as follows:

Mo = (qul2) (l1)
2

8

In this expression, l1 is the span length, center to center, of supports in the direction in
which moments are being taken and l2 is the length of the span transverse to l1, measured
center to center of the supports.

The moment that actually occurs in such a slab has been shown by experience and tests
to be somewhat less than the value determined by the above Mo expression. For this reason,
l1 is replaced with ln , the clear span measured face to face of the supports in the direction
in which moments are taken. The code (13.6.2.5) states that ln may not be taken to be less
than 65% of the span l1 measured center to center of supports. If l1 is replaced with ln , the
expression for Mo , which is called the static moment, becomes

Mo = (qul2) (ln )2

8
(ACI Equation 13-4)

When the static moment is being calculated in the long direction, it is convenient to write it
as Mol , and in the short direction as Mos .

It is next necessary to know what proportions of these total moments are positive and
what proportions are negative. If a slab was completely fixed at the end of each panel, the
division would be as it is in a fixed-end beam, two-thirds negative and one-third positive, as
shown in Figure 16.9.

This division is reasonably accurate for interior panels where the slab is continuous for
several spans in each direction with equal span lengths and loads. In effect, the rotation of the

wu `2 k/ft

M0

(wu `2)(`n)2

24

`n

(wu `2)(`n)2

12

(wu `2)(`n)2

12

+
− −

FI GU RE 16.9 Distribution of positive and
negative moments.
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interior columns is assumed to be small, and moment values of 0.65Mo for negative moment
and 0.35Mo for positive moment are specified by the code (13.6.3.2). For cases where the span
lengths and loadings are different, the proportion of positive and negative moments may vary
appreciably, and the use of a more detailed method of analysis is desirable. The equivalent
frame method (Chapter 17) will provide rather good approximations for such situations.

The relative stiffnesses of the columns and slabs of exterior panels are of far greater
significance in their effect on the moments than is the case for interior panels. The magnitudes of
the moments are very sensitive to the amount of torsional restraint supplied at the discontinuous
edges. This restraint is provided both by the flexural stiffness of the slab and by the flexural
stiffness of the exterior column.

Should the stiffness of an exterior column be quite small, the end negative moment will
be very close to zero. If the stiffness of the exterior column is very large, the positive and
negative moments will still not be the same as those in an interior panel unless an edge beam
with a very large torsional stiffness is provided that will substantially prevent rotation of the
discontinuous edge of the slab.

If a 2-ft-wide beam were to be framed into a 2-ft-wide column of infinite flexural stiffness
in the plane of the beam, the joint would behave as would a perfectly fixed end, and the negative
beam moment would equal the fixed-end moment.

If a two-way slab 24 ft wide were to be framed into this same 2-ft-wide column of infinite
stiffness, the situation of no rotation would occur along the part of the slab at the column. For
the remaining 11 ft widths of slab on each side of the column, there would be rotation varying
from zero at the side face of the column to maximums 11 ft on each side of the column. As a
result of this rotation, the negative moment at the face of the column would be less than the
fixed-end moment. Thus, the stiffness of the exterior column is reduced by the rotation of the
attached transverse slab.

To take into account the fact that the rotation of the edge of the slab is different at
different distances from the column, the exterior columns and slab edge beam are replaced
with an equivalent column that has the same estimated flexibility as the column plus the edge
beam. It can be seen that this is quite an involved process; therefore, instead of requiring a
complicated analysis, the code (13.6.3.3) provides a set of percentages for dividing the total
factored static moment into its positive and negative parts in an end span. These divisions,
which are shown in Table 16.2, include values for unrestrained edges (where the slab is
simply supported on a masonry or concrete wall) and for restrained edges (where the slab is
constructed integrally with a very stiff reinforced concrete wall so that the little rotation occurs
at the slab-to-wall connection).

In Figure 16.10, the distribution of the total factored moment for the interior and exterior
spans of a flat-plate structure is shown. The plate is assumed to be constructed without beams
between interior supports and without edge beams.

TABLE 16.2 Distribution of Total Span Moment in an End Span (ACI Code 13.6.3.3)

(1) (2) (3) (4) (5)

Slab Without Beams
between Interior Supports

Exterior Edge Slab with Beams Without With Edge Exterior Edge
Unrestrained between All Supports Edge Beam Beam Fully Restrained

Interior negative
factored moment 0.75 0.70 0.70 0.70 0.65

Positive factored
moment 0.63 0.57 0.52 0.50 0.35

Exterior negative
factored moment 0 0.16 0.26 0.30 0.65
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`1

`2

`n

(a) Plan

wu `2 k/ft wu `2 k/ft

(b) Loading

(c) Moments

end span interior span

0.52Mo 0.35Mo

0.26Mo 0.70Mo 0.65Mo 0.65Mo

F I GU RE 16.10 Sample moments for a flat plate with no
edge beams.

The next problem is to estimate what proportion of these moments is taken by the
column strips and what proportion is taken by the middle strips. For this discussion, a flat-plate
structure is assumed, and the moment resisted by the column strip is estimated by considering
the tributary areas shown in Figure 16.11.

To simplify the mathematics, the load to be supported is assumed to fall within the
dashed lines shown in either part (a) or (b) of Figure 16.12. The corresponding load is placed
on the simple span, and its centerline moment is determined as an estimate of the portion of
the static moment taken by the column strip.2

In Figure 16.12(a), the load is spread uniformly over a length near the midspan of the
beam, thus causing the moment to be overestimated a little, while in Figure 16.12(b), the load
is spread uniformly from end to end, causing the moment to be underestimated. Based on these
approximations, the estimated moments in the column strips for square panels will vary from

2 White, R. N., Gergely, P., and Sexsmith, R. G., 1974, Structural Engineering, Vol. 3: Behavior of Members and Systems
(Hoboken, NJ: John Wiley & Sons), pp. 456–461.
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column strip

middle
strip

estimated part
of slab supported
by column strip

45°
0.25`1

0.25`1

`2

2

`2

2

`2

`2

2
`1 – `2

`1

column
strip

F I GU RE 16.11 Tributary areas for a flat plate.
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`2
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`1

`1

`1

=

F I GU RE 16.12 Load distribution.
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TABLE 16.3 Percentages of Interior Negative Design
Moments to Be Resisted by Column Strip

l2

l1
0.5 1.0 2.0

αf1l2

l1
= 0 75 75 75

αf1l2

l1
≥ 1.0 90 75 45

0.5Mo to 0.75Mo, where Mo equals the absolute sum of the positive and average negative
factored moments in each direction equals qul2 l 2

n /8. As l1 becomes larger than l2, the column
strip takes a larger proportion of the moment. For such cases, about 60% to 70% of Mo will
be resisted by the column strip.

If you sketch in the approximate deflected shape of a panel, you will see that a larger
portion of the positive moment is carried by the middle strip than by the column strip, and
vice versa for the negative moments. As a result, about 60% of the positive Mo and about 70%
of the negative Mo are expected to be resisted by the column strip.3

Section 13.6.4.1 of the code states that the column strip shall be proportioned to resist
the percentages of the total interior negative design moment given in Table 16.3.

In the table, α1 is again the ratio of the stiffness of a beam section to the stiffness of a
width of slab bounded laterally by the centerline of the adjacent panel, if any, on each side of
the beam and equals Ecb Ib/Ecs Is .

Section 13.6.4.2 of the code states that the column strip is to be assumed to resist
percentages of the exterior negative design moment, as given in Table 16.4. In this table, βt is
the ratio of the torsional stiffness of an edge beam section to the flexural stiffness of a width
of slab equal to the span length of the beam center to center of supports (βt = Ecb C /2Ecs Is).

The computation of the cross-sectional constant C is described in Section 16.11 of this chapter.
The column strip (Section 13.6.4.4 of the code) is to be proportioned to resist the portion

of the positive moments given in Table 16.5.
Equations can be used instead of the two-way interpolation sometimes required by

Tables 16.3, 16.4, and 16.5. Instead of Table 16.3, the percentage of interior negative moment
to be resisted by the column strip (%−

int col) can be determined by

%−
int col = 75 + 30

(
αf 1l2

l1

)(
1 − l2

l1

)

TABLE 16.4 Percentages of Exterior Negative Design Moment to Be
Resisted by Column Strip

l2

l1
0.5 1.0 2.0

αf1l2

l1
= 0

βt = 0 100 100 100

βt ≥ 2.5 75 75 75

αf1l2

l1
≥ 1.0

βt = 0 100 100 100

βt ≥ 2.5 90 75 75

3 Ibid.
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TABLE 16.5 Percentages of Positive Design Moment to
Be Resisted by Column Strip

l2

l1
0.5 1.0 2.0

αf1l2

l1
= 0 60 60 60

αf1l2

l1
≥ 1.0 90 75 45

The percentage of exterior negative design moment resisted by the column (%−
ext col) strip given

in Table 16.4 can be found by

%−
ext col = 100 − 10βt + 12

(
αf 1l2

l1

)(
1 − l2

l1

)

Finally, for positive design moment in either an interior or exterior span (Table 16.5), the
percentage resisted by the column strip (%+) is

%+ = 60 + 30

(
αf 1l2

l1

)(
1.5 − l2

l1

)

In the preceding three equations, if βt > 2.5, use 2.5, and if αf 1l2/l1 > 1, use 1.
In Section 13.6.5, the code requires that the beam be allotted 85% of the column strip

moment if αf 1(l2/l1) ≥ 1.0. Should αf 1(l2/l1) be between 1.0 and 0, the moment allotted to
the beam is determined by linear interpolation from 85% to 0%. The part of the moment not
given to the beam is allotted to the slab in the column strip.

Finally, the code (13.6.6) requires that the portion of the design moments not resisted by
the column strips, as previously described, is to be allotted to the corresponding half middle
strip. The middle strip will be designed to resist the total of the moments assigned to its two
half middle strips.

16.9 Design of an Interior Flat Plate
In this section, an interior flat plate is designed by the direct design method. The procedure
specified in Chapter 13 of the ACI Code is applicable not only to flat plates but also to flat
slabs, waffle slabs, and two-way slabs with beams. The steps necessary to perform the designs
are briefly summarized at the end of this paragraph. The order of the steps may have to be
varied somewhat for different types of slab designs. Either the direct design method or the
equivalent frame method may be used to determine the design moments. The design steps are
as follows:

1. Estimate the slab thickness to meet the code requirements.

2. Determine the depth required for shear.

3. Calculate the total static moments to be resisted in the two directions.

4. Estimate the percentages of the static moments that are positive and negative, and pro-
portion the resulting values between the column and middle strips.

5. Select the reinforcing.

Example 16.3 illustrates this method of design applied to a flat plate.
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Example 16.3

Design an interior flat plate for the structure considered in Example 16.1. This plate is shown
in Figure 16.13. Assume a service live load equal to 80 psf, a service dead load equal to 110
psf (including slab weight), fy = 60,000 psi, f ′

c = 3000 psi, normal-weight concrete, and column
heights of 12 ft.

SOLUTION

Estimate Slab Thickness

When shear is checked, the 7-in. slab estimated in Example 16.1 is not quite sufficient. One
alternative is to increase f ′

c from 3000 psi, which is a fairly low strength. However, we will increase
the slab thickness. The calculations for the 7-in. thick slab are the same as those that follow for
the 7.5-in. slab thickness with the exception of the slab thickness change.

∴ Try 7 1
2 -in. slab

Determine Depth Required for Shear

Using d for shear equal to the estimated average of the d values in the two directions, we obtain

d = 7.50 in. − 3 in.
4

cover − 0.50 in. = 6.25 in.

qu = (1.2) (110 psf) + (1.6) (80 psf) = 260 psf

Checking One-Way or Beam Shear (Seldom Controls in Two-Way Floor Systems)

Using the dimensions shown in Figure 16.14, we obtain

Vu1 = (8.81 ft) (260 psf) = 2291 lb for a 12 in. width

φVc = φ2λ
√

f ′
cbd

= (0.75) (1.0) (2
√

3000 psi) (12 in.) (6.25 in.)

= 6162 lb > 2291 lb OK

20 ft 0 in.

16 ft 0 in.
16 in.

12 in.

F I GU RE 16.13 Interior panel of flat-plate structure of
Example 16.1.
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8.81 ft

CL

8 in.
12 in.16 in.

d = 6.25 in.

20
2

8
12

6.25
12

of `1 or `2

F I GU RE 16.14 Dimensions for Example 16.3.

Checking Two-Way or Punching Shear around the Column

bo = (2) (16 in. + 6.25 in.) + (2) (12 in. + 6.25 in.) = 81 in.

Vu2 =
[
(20 ft) (16 ft) −

(
16 in. + 6.25 in.

12 in/ft

)(
12 in. + 6.25 in.

12 in/ft

)]
(0.260 ksf)

= 82.47 k = 82,470 lb

φVc = (0.75) (1.0) (4
√

3000 psi) (81 in.) (6.25 in.)

= 83,185 lb > 82,470 lb OK

Use h = 71
2 in.

Calculate Static Moments in the Long and Short Directions

Mol = qul2l 2
n

8
= (0.260 ksf) (16 ft)

(
20 ft − 16

12 ft
)2

8
= 181.2 ft-k (ACI Equation 13-4)

Mos = qul1l 2
n

8
= (0.260 ksf) (20 ft)

(
16 ft − 12

12 ft
)2

8
= 146.2 ft-k

Proportion the Static Moments to the Column and Middle Strips and Select the Reinforcing

The static moment is divided into positive and negative moments in accordance with ACI 13.6.2.
Since this is an interior span, 65% of the total static moment is negative and 35% is positive.
See also the right side of Figure 16.10(c). If this example were an end span, then the total static
moment would be divided into positive and negative values in accordance with Table 16.2.

The next step is to divide the moments determined in the previous paragraph into column
and middle strips. Again, since this is an interior span, Table 16.3 applies. Since αf1 = 0 (no
interior beams), 75% of the moment goes to the column strip. This value is independent of l2/l1
for the case where there are no interior beams. The remaining 25% of the moment is assigned
to the middle strip, half on each side of the column strip. Table 16.5 is used to determine how
much of the total positive moment is assigned to the column strip. In this case, since αf1 = 0,
60% goes to the column strip, and the remaining 40% is assigned to the middle strip, half on
each side of the column strip.

These calculations can be conveniently arranged, as in Table 16.6. This table is very
similar to the one used for the design of the continuous one-way slab in Chapter 14.
To assist in the interpretation of Table 16.6, the numbers in the first column will be dis-
cussed. The first is the determination of Mu. This calculation uses the 0.65 factor from ACI
13.6.3.2 and the 0.75 factor from Table 16.3, both applied to the total static moment of
181.2 ft-k. Dividing this value of Mu = −88.4 ft-k by φbd2 (φ = 0.9, b = 8 ft = 96 in., d = 6.5 in.)
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TABLE 16.6 Summary of Moments and Steel Selections for Example 16.3

Long Span (estimate d = 6.50 in.) Short Span (estimate d = 6.00 in.)

Column Strip (8 ft) Middle Strip (8 ft) Column Strip (8 ft) Middle Strip (12 ft)

− + − + − + − +
Mu (0.65)(0.75) (0.35)(0.60) (0.65)(181.2 ft-k) (0.35)(181.2 ft-k) (0.65)(0.75) (0.35)(0.60) (0.65)(146.2 ft-k) (0.35)(146.2ft-k)

(181.2 ft-k) (181.2 ft-k) −88.4 ft-k −38.1 ft-k (146.2 ft-k) (146.2 ft-k) −71.3 ft-k −30.7 ft-k

= −88.4 ft-k = +38.1 ft-k = −29.4 ft-k = +25.3 ft-k = −71.3 ft-k = +30.7 ft-k = −23.8 ft-k = +20.5 ft-k
Mu

φbd2 290.6 psi 125.2 psi 97.6 psi 83.2 psi 275.1 psi 118.4 psi 61.2 psi 52.7 psi

ρ ∗ 0.00516bd 0.00214bd 0.0018bh 0.0018bh 0.00486bd 0.00202bd 0.0018bh 0.0018bh

As 3.22 in.2 13.4 in.2 1.30 in.2 1.30 in.2 2.80 in.2 1.16 in.2 1.94 in.2 1.94 in.2

Bars

selected 17 #4 7 #4 7 #4 7 #4 15 #4 6 #4 10 #4 10 #4

∗Values may not be less than the temperature and shrinkage minimum 0.0018bh.

results in Mu/φbd2 = 290.6 psi. From Appendix A, Table A.12, ρ = 0.00516 (by interpolation).
The area of reinforcing steel in the column strip is As = ρbd = 0.00516(96 in.) (6.5 in.) = 3.22 in.2.

A bar selection of 17 #4 bars is chosen, having a total As = 3.34 in.2. The remaining entries in
Table 16.6 follow a similar procedure.

As the different percentages of moments are selected from the tables for the column and
middle strips of this slab, it will be noted that αf = 0.

In the solution to Example 16.3, it will be noted that the Mu/φbd2 values are sometimes
quite small, and thus most of the ρ values do not fall within Table A.12 (see Appendix A).
For such cases, the authors use the temperature and shrinkage minimum 0.0018bh.

Actually, the temperature reinforcing includes bars in the top and bottom of the slab.
In the negative moment region, some of the positive steel bars have been extended into the
support region and are also available for temperature and shrinkage steel. If desirable, these
positive bars can be lapped instead of being stopped in the support.

The selection of the reinforcing bars is the final step taken in the design of this flat
plate. The code Figure 13.3.8 (given as Figure 16.15 here) shows the minimum lengths of slab
reinforcing bars for flat plates and for flat slabs with drop panels. This figure shows that some
of the positive reinforcing must be run into the support area.

The bars selected for this flat plate are shown in Figure 16.16. Bent bars are used in this
example, but straight bars could have been used just as well. There seems to be a trend among
designers in the direction of using more straight bars in slabs and fewer bent bars.

16.10 Placing of Live Loads
The moments in a continuous floor slab are appreciably affected by different positions or
patterns of the live loads. The usual procedure, however, is to calculate the total static moments,
assuming that all panels are subjected to full live load. When different loading patterns are
used, the moments can be changed so much that overstressing may occur in the slab.

Section 13.7.6.2 of the code states that if a variable unfactored live load does not exceed
three-fourths of the unfactored dead load, or if it is of a type such that all panels will be loaded
simultaneously, it is permissible to assume that full live load placed over the entire area will
cause maximum moment values throughout the entire slab system.

For other loading conditions, it may be assumed (according to ACI Section 13.7.6.3) that
maximum positive moment at the midspan of a panel will occur when three-fourths of the full
factored live load is placed on the panel in question and on alternate spans. It may be further
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100 splices shall be
permitted in this region

continuous bars

6 in.

6 in.

6 in.6 in.

6 in.

at least two bars or wires shall
conform to ACI Section 13.3.8.5

face of support

center to center span—`

clear span—`n

exterior support
(no slab continuity)

interior support
(continuity provided)

exterior support
(no slab continuity)

clear span—`n

face of support

center to center span—`

max 0.15`max 0.15`

0.22`n0.22`n 0.22`n0.22`n

0.20`n 0.20`n 0.20`n 0.20`n

0.33`n0.33`n0.30`n0.30`n

CL CL CL

CL CL CL

F I GU RE 16.15 Minimum extensions for reinforcement in slabs without beams (see ACI Section 12.11.1 for reinforcement extension into supports).
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column strip (8 ft)

column strip (8 ft)

middle strip (8 ft)

4 #4 ST

4 #4 ST

4 #4 bent11 #4 ST

3 #4 bent

3 #4 bent

3 #4 bent

3 #4 ST

5 #4

5 #4 bent

5 #4 ST

9 #4 ST

3 #4 bent

(a) For 20-ft span

middle strip (12 ft) column linecolumn line

(b) For 16-ft span

F I GU RE 16.16 Bar details.

assumed that the maximum negative moment at a support will occur when three-fourths of the
full factored live load is placed only on the adjacent spans.

The code permits the use of the three-fourths factor because the absolute maximum
positive and negative moments cannot occur simultaneously under a single loading condition
and also because some redistribution of moments is possible before failure will occur. Although
some local overstress may be the result of this procedure, it is felt that the ultimate capacity of
the system after redistribution will be sufficient to resist the full factored dead and live loads
in every panel.

The moment determined as described in the last paragraph may not be less than moments
obtained when full factored live loads are placed in every panel (ACI 13.7.6.4).
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16.11 Analysis of Two-Way Slabs with Beams
In this section, the moments are determined by the direct design method for an exterior panel
of a two-way slab with beams. The example problem presented in this section is about as
complex as any that may arise in flat plates, flat slabs, or two-way slabs with beams, using the
direct design method.

The requirements of the code are so lengthy and complex that in Example 16.4, which
follows, the steps and appropriate code sections are spelled out in detail. The practicing designer
should obtain a copy of the CRSI Design Handbook, because the tables therein will be of
tremendous help in slab design.

Example 16.4

Determine the negative and positive moments required for the design of the exterior panel of the
two-way slab with beam structure shown in Figure 16.17. The slab is to support a live load of 120
psf and a dead load of 100 psf, including the slab weight. The columns are 15 in. × 15 in. and
12 ft long. The slab is supported by beams along the column line with the cross section shown.
Determine the slab thickness and check the shear stress if f ′

c = 3000 psi and fy = 60,000 psi.

SOLUTION

1. Check ACI Code limitations (13.6.1). These conditions, which are discussed in Section 16.7
of this text, are met. The first five of these criteria are easily satisfied by inspection. The sixth
requires calculations that follow.

20 in.

15 in. 15 in.

22 ft

18 ft

18 ft
this panel to
be designed

18 ft

22 ft

11.625 ft

F I GU RE 16.17 Two-way slab for Example 16.4.
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2. Minimum thickness as required by code (9.5.3)
(a) Assume h = 6 in.

(b) Effective flange projection of column line beam as specified by the code (13.2.4)

= 4hf = (4) (6 in.) = 24 in. or h − hf = 20 in. − 6 in. = 14 in.

(c) Gross moments of inertia of T beams. The following values are the gross moments of
inertia of the edge and interior beams computed, respectively, about their centroidal axes.
Many designers use approximate values for these moments of inertia, Is, with almost
identical results for slab thicknesses. One common practice is to use two times the gross
moment of inertia of the stem (using a depth of stem running from top of slab to bottom
of stem) for interior beams and one and a half times the stem gross moment of inertia for
edge beams.

I for edge beams = 13,468 in.4

I for interior beams = 15,781 in.4

(d) Calculating α values (where α is the ratio of the stiffness of the beam section to the
stiffness of a width of slab bounded laterally by the centerline of the adjacent panel, if any,
on each side of the beam).

For edge beam
(

width = 1
2

× 22 ft + 7.5 in.
12 in/ft

= 11.625 ft
)

Is =
(

1
12

)
(12 in/ft × 11.625 ft) (6 in.)3 = 2511 in.4

αf = 13,468 in.4

2511 in.4
= 5.36

For 18-ft interior beam (with 22-ft slab width)

Is =
(

1
12

)
(12 in/ft × 22 ft) (6 in.)3 = 4752 in.4

αf = 15,781 in.4

4752 in.4
= 3.32

For 22-ft interior beam (with 18-ft slab width)

Is =
(

1
12

)
(12 in/ft × 18 ft) (6 in.)3 = 3888 in.4

αf = 15,781 in.4

3888 in.4
= 4.06

Avg. αf = αfm = 5.36 + 3.32 + (2) (4.06)
4

= 4.20

β = ratio of long to short clear span =
22 ft − 15 in.

12 in/ft

18 ft − 15 in.
12 in/ft

= 1.24

(e) Now that we have determined the values of αf in the two perpendicular directions, the
sixth and final limitation for use of the direct design method (ACI 13.6.1.6) can be checked.

αf1l 2
2

αf2l 2
1

= 4.06(18 ft)2

3.32(22 ft)2
= 0.818
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Since this value is between 0.2 and 5.0, this condition is satisfied. Note that the directions
that are designated as l1 and l2 are arbitrary. Had the short direction been used as l1, the
preceding calculation would simply have been inverted, and the ratio would have been
1.22 instead of 0.818. This value would also have been between the limits of 0.2 and 5.0.

(f) Thickness limits by ACI Section 9.5.3

ln = 22.0 ft − 15 in.
12 in/ft

= 20.75 ft

As αfm > 2.0, use ACI Equation 9-13

h =
ln

(
0.8 + fy

200,000

)
36 + 9β

=
(12 in/ft) (20.75 ft)

(
0.8 + 60,000 psi

200,000 psi

)
36 + (9) (1.24)

= 5.81 in. ←

h not less than 3.5 in. as per ACI Section 9.5.3.3(c)

Try h = 6 in. (shear checked later)

3. Moments for the short-span direction centered on interior column line

qu = (1.2) (100 psf) + (1.6) (120 psf) = 312 psf

Mo = (qul2) (ln )2

8
= (0.312 ksf) (22 ft) (16.75 ft)2

8
= 241 ft-k

(a) Dividing this static design moment into negative and positive portions, per Section 13.6.3.2
of the code

Negative design moment = (0.65) (241 ft-k) = −157 ft-k

Positive design moment = (0.35) (241 ft-k) = +84 ft-k

(b) Allotting these interior moments to beam and column strips, per Section 13.6.4 of the
code

l2

l1
= 22 ft

18 ft
= 1.22

αf1 = αf in direction of short span = 3.32

αf1
l2

l1
= (3.32) (1.22) = 4.05

The portion of the interior negative moment to be resisted by the column strip, per
Table 16.3 of this chapter, by interpolation is (0.68) (−157) = −107 ft-k. This result can also
be obtained from the equation

%−
intcol = 75 + 30

(
αf1l2

l1

)(
1 − l2

l1

)
= 75 + 30(1)

(
1 − 22 ft

18 ft

)
= 68.3%

M−
int col = 0.683(157 ft-k) = 107 ft-k

Note that since αf1l2/l1 = 4.05 > 1, a value of 1 was used in the preceding equation.
This −107 ft-k is allotted 85% to the beam (ACI 13.6.5), or −91 ft-k, and 15% to the

slab, or −16 ft-k. The remaining negative moment, 157 ft-k − 107 ft-k = 50 ft-k, is allotted to
the middle strip.
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The portion of the interior positive moment to be resisted by the column strip, per
Table 16.5 of this chapter, by interpolation is (0.68) (+84 ft-k) = +57 ft-k. The 68% value can
also be obtained from the equation for Table 16.5. This 57 ft-k is allotted 85% to the beam
(ACI 13.6.5), or +48 ft-k, and 15% to the slab, or +9 ft-k. The remaining positive moment,
84 ft-k − 57 ft-k = 27 ft-k, goes to the middle strip.

4. Moments for the short-span direction centered on the edge beam

Mo = (qul2) (ln)2

8
= (0.312 ksf) (11.625 ft) (16.75 ft)2

8
= 127 ft-k

(a) Dividing this static design moment into negative and positive portions, per Section 13.6.3.2
of the code

Negative design moment = (0.65) (127 ft-k) = −83 ft-k

Positive design moment = (0.35) (127 ft-k) = +44 ft-k

(b) Allotting these exterior moments to beam and column strips, per Section 13.6.4 of the
code

l2

l1
= 22 ft

18 ft
= 1.22

αf1 = αf1 for edge beam = 5.36

αf1
l2

l1
= (5.36) (1.22) = 6.54

5. The portion of the exterior negative moment going to the column strip, from Table 16.4 of
this chapter, by interpolation is (0.68) (−83 ft-k) = −56 ft-k. This −56 ft-k is allotted 85% to
the beam (ACI 13.6.5), or −48 ft-k, and 15% to the slab, or −8 ft-k. The remaining negative
moment, 83 ft-k − 56 ft-k = −27 ft-k, is allotted to the middle strip.

The portion of the exterior positive moment to be resisted by the column strip, per
Table 16.5 or the equation for Table 16.5, is (0.68) (+44 ft-k) = +30 ft-k. This 30 ft-k is allotted
85% to the beam, or +26 ft-k, and 15% to the slab, or +5 ft-k. The remaining positive
moment, 44 ft-k − 30 ft-k = +14 ft-k, goes to the middle strip.

A summary of the short-span moments is presented in Table 16.7.

6. Moments for the long-span direction

Mo = (qul2) (ln )2

8
= (0.312 ksf) (18 ft) (20.75 ft)2

8
= 302.3 ft-k

(a) From Table 16.2 of this chapter (ACI 13.6.3.3) for an end span with beams between all
interior supports:

Interior negative factored moment = 0.70Mo = −(0.70) (302.3 ft-k) = −212 ft-k

Positive factored moment = 0.57Mo = +(0.57) (302.3 ft-k) = 172 ft-k

Exterior negative factored moment = 0.16Mo = −(0.16) (302.3 ft-k) = −48 ft-k

These factored moments may be modified by 10%, according to Section 13.6.7 of
the code, but this reduction is neglected here.

(b) Allotting these moments to beam and column strips

l2

l1
= 18 ft

22 ft
= 0.818

αf1 = αf1 (for the 22-ft beam) = 4.06

αf1
l2

l1
= (4.08) (0.818) = 3.32
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TABLE 16.7 Short-Span Moments (ft-k)

Middle StripColumn Strip Moments

Beam Slab Slab Moments

Interior slab-beam strip

Negative −91 −16 −50

Positive +48 +9 +30

Exterior slab-beam strip

Negative −48 −9 −27

Positive +26 +5 +16

Next an expression is given for βt. It is the ratio of the torsional stiffness of an edge
beam section to the flexural stiffness of a width of slab equal to the span length of the beam
measured center to center of supports.

βt = EcbC
2EcsIs

Involved in the equation is a term C, which is a property of the cross-sectional area of
the torsion arm estimating the resistance to twist.

C = �

(
1 − 0.63

x
y

)
x3y
3

where x is the length of the short side of each rectangle and y is the length of the long side
of each rectangle. The exterior beam considered here is described in ACI Section 13.2.4 and
is shown in Figure 16.18, together with the calculation of C. The beam cross section could
be divided into rectangles in other ways, but the configuration shown results in the greatest
value for C.

βt = EcbC
2EcsIs

= (Ec) (12,605 in.4)

(2) (Ec) (3888 in.4)
= 1.62

The portion of the interior negative design moment allotted to the column strip, from
Table 16.3, by interpolation or by equation is (0.80) (−212 ft-k) = −170 ft-k. This −170 ft-k is
allotted 85% to the beam (ACI 13.6.5), or −145 ft-k, and 15% to the slab, or −26 ft-k. The
remaining negative moment, −212 ft-k + 170 ft-k = −42 ft-k, is allotted to the middle strip.

The portion of the positive design moment to be resisted by the column strip, per
Table 16.5, is (0.80) (172 ft-k) = +138 ft-k. This 138 ft-k is allotted 85% to the beam, or
(0.85) (138 ft-k) = 177 ft-k, and 15% to the slab, or +21 ft-k. The remaining positive moment,
172 ft-k − 138 ft-k = 34 ft-k, goes to the middle strip.

15 in.

x

x

y

y

14 in.

14 in.

6 in.

20 in.

C =   1 – 0.63

=   12,605 in.4

⎡⎡ ⎡⎡( (15
20

(153)(20)
3

+   1 – 0.63⎡⎡ ⎡⎡( (6
14

(63)(14)
3

F I GU RE 16.18 Evaluation of C .
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TABLE 16.8 Long-Span Moments (ft-k)

Middle StripColumn Strip Moments

Beam Slab Slab Moments

Interior negative −145 −26 −42

Positive +117 +21 +34

Exterior negative −36 −6 −6

9 ft

15 in.

12 in.

d = 5 in.

22 ft

F I GU RE 16.19 Load distribution to beams.

The portion of the exterior negative moment allotted to the column strip is obtained
by double interpolation from Table 16.4 and is (0.86) (−48 ft-k) = −42 ft-k. This −42 ft-k is
allotted 85% to the beam, or −36 ft-k, and 15% to the slab, or −6 ft-k. The remaining negative
moment, −6 ft-k, is allotted to the middle strip.

A summary of the long-span moments is presented in Table 16.8.

7. Check shear strength in the slab at a distance d from the face of the beam. Shear is assumed
to be produced by the load on the tributary area shown in Figure 16.19, working with a
12-in.-wide strip as shown.

average d = h − cover − one bar diam. = 6.00 in. − 3
4

in. − 1
2

in. = 4.75 in.

Vu = (0.312 ksf)
(

9 ft − 7.5 in.
12 in/ft

− 4.75 in.
12 in/ft

)
= 2.49 k = 2490 lb

φVc = (0.75) (1.0) (2
√

3000 psi) (12 in.) (4.75 in.) = 4684 lb > 2490 lb OK

16.12 Transfer of Moments and Shears between
Slabs and Columns

On many occasions, the maximum load that a two-way slab can support is dependent upon
the strength of the joint between the column and the slab. Not only is the load transferred
by shear from the slab to the column along an area around the column, but also there may
be moments that have to be transferred. The moment situation is usually most critical at the
exterior columns.

If there are moments to be transferred, they will cause shear stresses of their own in the
slabs, as will be described in this section. Furthermore, shear forces resulting from moment
transfer must be considered in the design of the lateral column reinforcement (i.e., ties and
spirals), as stated in Section 11.10.1 of the code.

When columns are supporting slabs without beams (i.e., flat plates or flat slabs), the
load transfer situation between the slabs and columns is extremely critical. If we don’t have
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the exact areas and positions of the flexural reinforcing designed just right throughout the
slab, inelastic redistribution of moments (ACI 13.6.7) may still allow the system to perform
adequately; however, if we handle the shear strength situation incorrectly, the results may very
well be disastrous.

The serious nature of this problem is shown in Figure 16.20, where it can be seen that
if there is no spandrel beam, all of the total exterior slab moment has to be transferred to the
column. The transfer is made by both flexure and eccentric shear, the latter being located at a
distance of about d/2 from the column face.

Section 13.6.3.6 of the code states that for moment transfer between the slab and edge
column, the gravity load moment to be transferred shall be 0.3Mo (where Mo is the factored
statical moment).

When gravity loads, wind or earthquake loads, or other lateral forces cause a transfer
of an unbalanced moment between a slab and a column, a part of the moment equal to γf Mu
shall be transferred by flexure, according to ACI Section 13.5.3.2. Based on both tests and
experience, this transfer is to be considered to be made within an effective slab width between
lines that are located one and a half times the slab or drop panel thickness outside opposite
faces of the column or capital. The value γf is to be taken as

γf = 1

1 + 2

3

√
b1

b2

(ACI Equation 13-1)

In Figure 16.21, b1 is the length of the shear perimeter, which is perpendicular to the
axis of bending (c1 + d), and b2 is the length of the shear perimeter parallel to the axis of
bending (c2 + d). Also, c1 is the width of the column perpendicular to the axis of bending,
while c2 is the column width parallel to the axis of bending.

The remainder of the unbalanced moment, referred to as γv Mu by the code, is to be
transferred by eccentricity of shear about the centroid of the critical section.

γv = 1 − γf (ACI Equation 11-39)

From this information, the shear stresses due to moment transfer by eccentricity of shear
are assumed to vary linearly about the centroid of the critical section described in the last
paragraph and are to be added to the usual factored shear forces. (In other words, there is the
usual punching shear situation plus a twisting because of the moment transfer that increases
the shear.) The resulting shear stresses may not exceed φVn = φVc/bod for members without

F I GU RE 16.20 Illustration showing need
for transfer of moments to columns.



McCormac c16.tex V2 - January 9, 2013 3:40 P.M. Page 524

524 CHA P T E R 16 Two-Way Slabs, Direct Design Method

V

V

(a) Interior column

(b) Edge column

F I GU RE 16.21 Assumed distribution of shear stress
(ACI Figure R11.11.7.2).

shear reinforcement, and φVn = φ(Vc + Vs )/bod for members with shear reinforcement other
than shear heads. Vc in the two previous equations is the lesser of ACI Equations 11-33, 11-34,
or 11-35 (Section 12.6 of this text).

The combined stresses are calculated by the expressions to follow, with reference being
made to Figure 16.21 and ACI Commentary R11.11.7.2:

vu along AB = Vu

Ac
+ γv MucAB

Jc

vu along CD = Vu

Ac
− γv MucCD

Jc

In these expressions, Ac is the area of the concrete along the assumed critical section.
For instance, for the interior column of Figure 16.21(a), it would be equal to (2a + 2b)d, and
for the edge column of Figure 16.21(b), it would equal (2a + b)d.

Jc is a property analogous to the polar moment of inertia about the z–z axis of the shear
areas located around the periphery of the critical section. First, the centroid of the shear area
Af is located by taking moments. The centroid is shown with the distances cAB and cCD in
both parts (a) and (b) of Figure 16.21. The value of Jc is then computed for the shear areas.
For the interior column of part (a), it is

Jc = d

(
a3

6
+ ba2

2

)
+ ad3

6

and for the edge column of part (b), it is

Jc = d

[
2a3

3
− (2a + b) (cAB )2

]
+ ad3

6
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Example 16.5 shows the calculations involved for shear and moment transfer for an
exterior column.

The commentary (R11.11.7.3) states that the critical section described for two-way action
for slabs located at d/2 from the perimeter of the column is appropriate for the calculation of shear
stresses caused by moment transfer even when shearheads are used. Thus, the critical sections
for direct shear and shear resulting from moment transfer will be different from each other.

The total reinforcing that will be provided in the column strip must include additional
reinforcing concentrated over the column to resist the part of the bending moment transferred
by flexure = γf Mu .

Example 16.5

For the flat slab of Figure 16.22, compute the negative steel required in the column strip for the
exterior edge indicated. Also check the slab for moment and shear transfer at the exterior column;
f ′
c = 3000 psi, fy = 60,000 psi, and LL = 100 psf. An 8-in. slab has already been selected with

d = 6.75 in.

SOLUTION

1. Compute wu and Mol.

wd =
(

8 in.
12 in/ft

)
(150 pcf) = 100 psf

wl = 100 psf

wu = (1.2) (100 psf) + (1.6) (100 psf) = 280 psf

Mol = qul2l 2
n

8
= (0.280 ksf) (18 ft) (18.75 ft)2

8
= 221.5 ft-k

18 ft 0 in.

18 ft 0 in.

20 ft 0 in.20 ft 0 in.

all columns 15 in. × 15 in.

F I GU RE 16.22 Dimensions of flat slab
in Example 16.5.
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2. Determine the exterior negative moment as per ACI Section 13.6.3.3.

−0.26Mol = −(0.26) (221.5 ft-k) = 57.6 ft-k

Width of column strip = (0.50) (18 ft) = 9 ft − 0 in. = 108 in.

3. ACI Section 13.6.4.2 shows that 100% of the exterior negative moment is to be resisted by
the column strip.

4. Design of steel in column strip.

Mu

φbd2
= (12 in/ft) (57,600 ft-lb)

(0.9) (108 in.) (6.75 in.)2
= 156.1 psi

ρ = 0.0027 (from Appendix A, Table A.12)

As = ρbd = (0.0027) (108 in.) (6.75 in.) = 1.97 in.2 Use 10 #4

5. Moment transfer design.

(a) The code (13.5.3.2) states that additional bars must be added over the column in a
width = column width +(2) (1.5h) = 15 in. + (2) (1.5 × 8 in.) = 39 in.

(b) The additional reinforcing needed over the columns is to be designed for a moment =
γfMu. In ACI Equation 13-1 below, b1 and b2 are the side dimensions of the perimeter
bo in ACI Section 11.11.1.2 (see Figure 16.21). In this case, b1 = c1 + d/2 = 15 in. +
6.75 in./2 = 18.375 in. In the perpendicular direction, b2 = c2 + d = 15 in. + 6.75 in. =
21.75 in.

γf = 1

1 + 2
3

√
b1

b2

= 1

1 + 2
3

√
18.375 in.
21.75 in.

= 0.62 (ACI Equation 13-1)

γfMu = (0.62) (57.6 ft-k) = 35.7 ft-k

(c) Add four #4 bars in the 39 in. width and check to see whether the moment transfer
situation is satisfactory. To resist the 35.7 ft-k, we now have the four #4 bars just added
plus four #4. This number of bars is obtained by taking the ratio of 39 in./108 in. times
10 bars to get 3.6 bars and rounding to 4. The total number of bars put in for the column
strip design is eight #4 bars (1.60 in.2).

a = Asfy
0.85f ′

cb
= (1.57 in.2) (60 ksi)

(0.85) (3 ksi) (39 in.)
= 0.947 in.

φMn = Mu = φAsfy
(
d − a

2

)

=
(0.9) (1.57 in.2) (60 ksi)

(
6.75 in. − 0.947 in.

2

)
12

= 44.3 ft-k > 35.7 ft-k OK

6. Compute combined shear stress at exterior column due to shear and moment transfer.

(a) ACI Section 13.6.3.5 requires that a moment of (0.3Mo) (γv) be transferred from the
slab to the column by eccentricity of shear. The total moment to be transferred is
0.3(Mo) = 0.3(221.5 ft-k) = 66.45 ft-k.
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18.375 in.

21.75 in.

F I GU RE 16.23 Dimensions of critical section
for shear.

(b) Fraction of unbalanced moment carried by eccentricity of shear = γv(0.3Mo).

γv = 1 − 1

1 + 2
3

√
18.375 in.
21.75 in.

= 0.38

γvMn = (0.38) (66.45 ft-k) = 25.25 ft-k

(c) Compute properties of critical section for shear (Figure 16.23).

Ac = (2a + b)d = (2 × 18.375 in. + 21.75 in.) (6.75 in.) = 394.875 in.2

cAB =
(2) (18.375 in.) (6.75 in.)

(
18.375 in.

2

)
394.875 in.2

= 5.77 in.

Jc = d
[

2a3

3
− (2a + b) (cAB)2

]
+ ad3

6

= 6.75 in.
[

(2) (18.375 in.)3

3
− (2 × 18.375 in. + 21.75 in.) (5.77 in.)2

]

+ (18.375 in.) (6.75 in.)3

6

= 15,714 in.4

(d) Compute gravity load shear to be transferred at the exterior column.

Vu = qul1l2

2
= (0.280 ksf) (18 ft) (20 ft)

2
= 50.4 k

(e) Combined stresses.

vu = Vu

Ac
+ γvMncAB

Jc

= 50,400 lb

394.875 in.2
+ (12 in/ft × 25,250 ft-lb) (5.77 in.)

15,714 in.4

= 128 psi + 111 psi = 239 psi

> 4
√

3000 psi = 219 psi No good

∴ It is necessary to do one or more of the following: increase depth of slab, use
higher-strength concrete, use drop panel, or install shearhead reinforcing.
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Factored Moments in Columns and Walls

If there is an unbalanced loading of two adjoining spans, the result will be an additional moment
at the connection of walls and columns to slabs. The code (13.6.9.2) provides the approximate
equation listed at the end of this paragraph to consider the effects of such situations. This
particular equation was derived for two adjoining spans, one longer than the other. It was
assumed that the longer span was loaded with dead load plus one-half live load and that only
dead load was applied to the shorter span.

Mu = 0.07[(qdu + 0.5qlu)l2l
2
n − qDu′l ′

2(l
′
n)

2] (ACI Equation 13-7)

In this expression, q ′
du , l ′

2, and l ′
n are for the shorter spans. The resulting approximate

value should be used for unbalanced moment transfer by gravity loading at interior columns
unless a more theoretical analysis is used.

16.13 Openings in Slab Systems
According to the code (13.4), openings can be used in slab systems if adequate strength is
provided and if all serviceability conditions of the ACI, including deflections, are met.

1. If openings are located in the area common to intersecting middle strips, it will be
necessary to provide the same total amount of reinforcing in the slab that would have
been there without the opening.

2. For openings in intersecting column strips, the width of the openings may not be more
than one-eighth the width of the column strip in either span. An amount of reinforcing
equal to that interrupted by the opening must be placed on the sides of the opening.

3. Openings in an area common to one column strip and one middle strip may
not interrupt more than one-fourth of the reinforcing in either strip. An amount
of reinforcing equal to that interrupted shall be placed around the sides of the
opening.

4. The shear requirements of Section 11.11.6 of the code must be met.

16.14 Computer Example

Example 16.6

Use the Chapter 16 Excel spreadsheet to solve Example 16.4.

SOLUTION

Open the Excel spreadsheet provided for Chapter 16 and open the worksheet Two-Way Slabs.
Enter values only for cells highlighted in yellow (only in the Excel spreadsheets, not the printed
example). Note that values for βt and αf1 must be entered. To obtain βt, open the worksheet C
Torsional Constant. Enter values for cells highlighted in yellow.



McCormac c16.tex V2 - January 9, 2013 3:40 P.M. Page 529

16.14 Computer Example 529

torsional constant C and β1

x
15 20

6 14

0.0 0.0

12,605 = C
 2 (ft)

18 6
in.4

in.4

11,868.75

735.84

0.00

3888

x

y

x

y

1.621

y

t (in.)

C = (1 – 0.63x) (     )  =———
y

x3y
——

3

Is =         =
12

`2t3

βt =        = 
2Is

C

If there are flanges on both sides of the web, a third value of x and y can be entered. In
this case, their values are zero.

The value of αf is obtained from the worksheet Alpha T Beam. Results of the αf calculations
in step 2(d) of Example 16.4 are shown below.

Interior Beam (flange on both sides)

bE = 43 in. = 2.867

0.3
bW = 15 in.

t = 6 in.
h = in.20

`2 = 22 ft
k = 1.578

Ib = 15,781 in.4

Is = in.4

αf1 = 3.321

bE

bW

t

h4752

bE

bW

=t
h

t

h

bE

bW

Edge Beam

bE = 29 in. = 1.933
bW = 15 in.

t = 6 in.
h = in.20

`2 = 22 ft
k = 1.347

Ib = 13,468 in.4

Is = in.4

αf1 = 5.363
2511

bE

bW

0.3=t
h

The other αf values are obtained simply by changing l2 from 22 ft to 18 ft. Return to the
Example 16.6 worksheet and enter βt = 1.62 and αf1 = 3.32. Now determine from Table 16.2
which case (1 through 5) applies to your example. In this situation, case (2) applies since there
are beams between all supports. Enter 0.16, 0.57, and 0.70 in the highlighted cells in row 11.
In addition to the information determined in Example 16.4, the spreadsheet also determines the
required area of reinforcing steel throughout the slab.
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Two-way slab

`1 = ft. (centerline span)225432.54332.554width, in.
`2 = ft. (transverse span)18

c1 =

c2 =

in. column 15

in. dimension15
t = in. (slab thk.)6

ds = in. (slab d)4.75

`n = ft. (clear span)20.75

bw = in. (beam web width)15

h = in. (beam depth)20% of Mo from Table 16.2 16.00
beff = in.4348.36Total moment at …(ft-k)

y = in.7.487
42.24Column strip moment

Ig = 15781 in.4
35.90Beam portion

Is = 3888 in.4
6.34Column strip slab db = in. (beam d)17.5
6.13Middle strip moment

Beam   Rn = Mu⎜φbd2

As = ρbd in.2

ρ

ρ

ρ

f’c = ksi3
104.20 fy = ksi60
0.00177 m = 23.53

0.47 wD = psf100

Col. strip slab Rn = 57.60 wL = psf120

0.00097 wu = psf312

As-in.2 (half on each side 
of beam in col. strip slab)

As-in.2 (half in each
middle strip)

0.702 Mol =

βt =
αf1 =

αf121⎜̀ 1 =

ft-k302.3

not more than 2.51.62

Mid. strip slab Rn = 33.52
4.06

0.00056

35.0

105.79

85.11

72.35

12.77

20.68

73.25

0.00124

0.93

116.07

0.00198

0.702

113.14

0.00193

1.167

65.0

196.47

158.07

134.36

23.71

38.40

389.97

0.00709

1.86

215.56

0.00376

1.161

210.12

0.00366

1.877

70.00

211.58

170.22

144.69

25.53

41.35

419.96

0.00770

2.02

232.14

0.00406

1.255

226.28

0.00396

2.029

57.00

172.29

138.61

117.82

20.79

33.67

119.29

0.00204

1.53

189.03

0.00328

1.012

184.26

0.00319

1.6371.167
1.00

0.0018T & S %

Interior Span (ft-k)Exterior Span Moments (ft-k)

The edge span part of the spreadsheet is set up for edge spans (part 4 of Example 16.4).
Enter information the same way as for the upper part of the worksheet.

P R O B L E M S

Problem 16.1 Using the ACI Code, determine the minimum
thickness required for panels 1© and 3© of the flat plate floor
shown. Edge beams are not used along the exterior floor edges.
f ′

c = 3000 psi and fy = 60,000 psi. (Ans. 9.07 in., 8.12 in.)

20 ft 0 in.

20 ft 0 in.

20 ft 0 in.

24 ft 0 in.edge of
building

24 ft 0 in. 24 ft 0 in.

exterior columns
16 in. × 16 in.

interior columns
20 in. × 20 in.
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Problem 16.2 Assume that the floor system of Problem 16.1
is to support a service live load of 80 psf and a service dead
load of 60 psf in addition to its own weight. If the columns are
10 ft long, determine depth required for an interior flat plate for
panel 3©.

Problem 16.3 Repeat Problem 16.2 for panel 1© in the
structure of Problem 16.1. Include depth required for one-way
and two-way shear. (Ans. Use 10-in. slab)

Problem 16.4 Determine the required reinforcing in the
column strip and middle strips for column line B© in Problem
16.1. Use a slab thickness of 10 in. and #6 bars. Determine the-
oretical and practical spacings in the exterior span (from column
line 1© to 2©) and the interior span (from column line 2© to 3©).

Problem 16.5 Use the Flat Plate worksheet of Chapter 16
spreadsheet to work Problem 16.4. (Ans. As = 6.53 in.2 in
column strip at column line 2© ∴ use #6 @ 8 in. in top of slab)
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CHAPTER 17 Two-Way Slabs, Equivalent
Frame Method

17.1 Moment Distribution for Nonprismatic Members
Most of the moment distribution problems the student has previously faced have dealt with
prismatic members for which carryover factors of 1

2 , fixed-end moments for uniform loads
of wul

2/8, stiffness factors of I /l, and so on were used. Should nonprismatic members
be encountered, such as the continuous beam of Figure 17.1, none of the preceding values
applies.

Carryover factors, fixed-end moments, and so forth can be laboriously obtained by various
methods, such as the moment-area and column-analogy methods.1 There are various tables
available, however, from which many of these values can be obtained. The tables numbered
A.16 through A.20 of Appendix A cover most situations encountered with the equivalent frame
method.

Before the equivalent frame method is discussed, an assumed set of fixed-end moments
is balanced in Example 17.1 for the nonprismatic beam of Figure 17.1. The authors’ purpose
in presenting this example is to show the reader how moment distribution can be applied to
the analysis of structures consisting of nonprismatic members.

Example 17.1

The carryover factors (C.O.), stiffness factors (K), and fixed-end moments (FEM) shown in
Figure 17.2 have been assumed for the continuous nonprismatic member of Figure 17.1.
Balance these moments by moment distribution. It will be shown later, in Example 17.2, how to
determine these factors for two-way slab systems. The purpose of this example is to demonstrate
the moment distribution method when nonprismatic members are involved.

FI GU RE 17.1 Nonprismatic beam.

1 McCormac, J. C., 1984, Structural Analysis, 4th ed. (New York: Harper & Row), pp. 333–334, 567–582.

532
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FI GU RE 17.2 Moment distribution.

SOLUTION

0.43

0.75 0.78

0.57 0.57 0.43

0.750.78

FEM (ft-k) −260.6 +260.6

− 84.1 −112.1 −148.5 −115.8

+ 51.5 + 66.0 +49.8 +37.3

− 16.6 − 22.1 − 29.4 − 22.9

+ 10.2 + 13.1 + 9.8 + 7.4

− 3.3 − 4.4 − 5.8 − 4.5

+ 2.0 + 2.6 + 1.9 + 1.4

− 0.7 − 0.9 − 1.1 − 0.9

final + 0.5 + 0.4 + 0.3
moments (ft-k) −365.3 +121.1 −121.1 − 61.9 +61.9 +46.4

17.2 Introduction to the Equivalent Frame Method
With the preceding example, the authors hoped to provide the reader with a general idea of
the kinds of calculations he or she will face with the equivalent frame method. A part of a
two-way slab building will be taken out by itself and analyzed by moment distribution. The
slab-beam members of this part of the structure will be nonprismatic because of the columns,
beams, drop panels, and so on of which they consist. As a result, it will be quite similar to the
beam of Figure 17.1, and we will analyze it in the same manner.

The only difference between the direct design method and the equivalent frame method
is in the determination of the longitudinal moments in the spans of the equivalent rigid frame.
Whereas the direct design method involves a one-cycle moment distribution, the equivalent
frame method involves a normal moment distribution of several cycles. The design moments
obtained by either method are distributed to the column and middle strips in the same fashion.

It will be remembered that the range in which the direct design method can be applied is
limited by a maximum 2-to-1 ratio of live-to-dead load and a maximum ratio of the longitudinal
span length to the transverse span length of 2 to 1. In addition, the columns may not be
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FI GU RE 17.3 Slab beam.

offset by more than 10% of the span length in the direction of the offset from either axis
between centerlines of successive columns. There are no such limitations on the equivalent
frame method. This is a very important matter because so many floor systems do not meet the
limitations specified for the direct design method.

Analysis by either method will yield almost the same moments for those slabs that meet
the limitations required for application of the direct design method. For such cases, it is simpler
to use the direct design method.

The equivalent frame method involves the elastic analysis of a structural frame consisting
of a row of equivalent columns and horizontal slab members that are each one panel long and
have a transverse width equal to the distance between centerlines of the panels on each side
of the columns in question. For instance, the hatched strip of the floor system in Figure 17.3
can be extracted and the combined slab and beam analyzed to act as a beam element as part
of a structural frame (see also Figure 17.4). This assumption approximately models the actual
behavior of the structure. It is a reasonably accurate way of calculating moments in the overall
structural frame, which then may be distributed to the slab and beams. This process is carried
out in both directions. That is, it is done to the hatched strip in Figure 17.3 and all other strips
parallel to it. Then it is carried out on strips that are perpendicular to these strips, hence the
term two-way floor system.

FI GU RE 17.4 Equivalent frame for the crosshatched strip of
Figure 17.3 for vertical loading.
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For vertical loads, each floor, together with the columns above and below, is analyzed
separately. For such an analysis, the far ends of the columns are considered fixed. Figure 17.4
shows a typical equivalent slab beam as described in this chapter.

Should there be a large number of panels, the moment at a particular joint in a slab
beam can be satisfactorily obtained by assuming that the member is fixed two panels away.
This simplification is permissible because vertical loads in one panel only appreciably affect
the forces in that panel and in the one adjacent to it on each side.

For lateral loads, it is necessary to consider an equivalent frame that extends for the entire
height of the building, because the forces in a particular member are affected by the lateral
forces on all the stories above the floor being considered. When lateral loads are considered,
it will be necessary to analyze the frame for them and combine the results with analyses made
for gravity loads (ACI Code 13.5.1.3).

The equivalent frame is made up of the horizontal slab, any beams spanning in the
direction of the frame being considered, the columns or other members that provide vertical
support above and below the slab, and any parts of the structure that provide moment transfer
between the horizontal and vertical members. You can see there will be quite a difference in
moment transfer from the case where a column provides this transfer and where there is a
monolithic reinforced concrete wall extending over the full length of the frame. For cases in
between, the stiffnesses of the torsional members such as edge beams will be estimated.

The same minimum ACI slab thicknesses must be met as in the direct design method.
The depths should be checked for shear at columns and other supports, as specified in Section
11.12 of the code. Once the moments have been computed, it will also be necessary to check
for moment shear transfer at the supports.

The analysis of the frame is made for the full design live load applied to all spans, unless
the actual unfactored live load exceeds 0.75 times the unfactored dead load (ACI Code 13.7.6).
When the live load is greater than 0.75 times the dead load, a pattern loading with three-fourths
times the live load is used for calculating moments and shears.

The maximum positive moment in the middle of a span is assumed to occur when three-
fourths of the full design load is applied in that panel and in alternate spans. The maximum
negative moment in the slab at a support is assumed to occur when three-fourths of the full
design live load is applied only to the adjacent panels. The values so obtained may not be less
than those calculated, assuming full live loads in all spans.

17.3 Properties of Slab Beams
The parts of the frame are the slabs, beams, drop panels, columns, and so on. Our first objective
is to compute the properties of the slab beams and the columns (i.e., the stiffness factors,
distribution factors, carryover factors, and fixed-end moments). To simplify this work, the
properties of the members of the frame are permitted by the ACI Code (13.7.3.1) to be based
on their gross moments of inertia rather than their transformed or cracked sections. Despite the
use of the gross dimensions of members, the calculations involved in determining the properties
of nonprismatic members still represent a lengthy task, and we will find the use of available
tables very helpful.

Figures 17.5 and 17.6 present sketches of two-way slab structures, together with the
equivalent frames that will be used for their analysis. A flat slab with columns is shown in
Figure 17.5(a). Cross sections of the structure are shown through the slab in part (b) of the
figure and through the column in part (c). In part (d), the equivalent frame that will be used
for the actual numerical calculations is shown. In this figure, Ecs is the modulus of elasticity
of the concrete slab. With section 2-2, a fictitious section is shown that will have a stiffness
approximately equivalent to that of the actual slab and column. An expression for I for the
equivalent section is also given. In this expression, c2 is the width of the column in a direction
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I1 = (`2)(h)31
12( (

(1 –

(c2

`2

2

(a) Actual floor system

(b) Section 1–1

(c) Equivalent Section 2–2

(d) Equivalent slab beam stiffness diagram

`n

`n

`1

`2

I2 =
I1

h

FI GU RE 17.5 Slab system without beams.

perpendicular to the direction of the span, and l2 is the width of the slab beam. The gross
moment of inertia at the face of the support is calculated and is divided by (1 − c2/l2)

2. This
approximates the effect of the large increase in depth provided by the column for the distance
in which the slab and column are in contact.

In Figure 17.6, similar sketches and I values are shown for a slab with drop panels.
Figure 13.7.3 of the 1983 ACI Commentary showed such information for slab systems with
beams and for slab systems with column capitals.
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(b) Section 1–1

(c) Section 2–2

(d) Equivalent Section 3–3

(e) Equivalent slab beam stiffness diagram

I1 = (`2)(`n)31
12( (

I2 =
I1

(1 –

(c2

`2

2

I3 =
I2

(1 –

(c2

`2

2

1 2 3

1

(a) Actual floor system

h1

c1

c1

2

c1

2

c1

h1

h1

EcsI1 EcsI2 EcsI3

h2

`n

k`2

`2

`n

`n

2 3

FI GU RE 17.6 Slab systems with drop panels.

With the equivalent slab beam stiffness diagram, it is possible, using the conjugate beam
method, column analogy, or some other method, to compute stiffness factors, distribution
factors, carryover factors, and fixed-end moments for use in moment distribution. Tables A.16
through A.20 of Appendix A of this text provide tabulated values of these properties for various
slab systems. The numerical examples of this chapter make use of this information.
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17.4 Properties of Columns
The length of a column is assumed to run from the middepth of the slab on one floor to the
middepth of the slab on the next floor. For stiffness calculations, the moments of inertia of
columns are based on their gross dimensions. Thus, if capitals are present, the effect of their
dimensions must be used for those parts of the columns. Columns are assumed to be infinitely
stiff for the depth of the slabs.

Figure 17.7 shows a sample column, together with its column stiffness diagram. Sim-
ilar diagrams are shown for other columns (where there are drop panels, capitals, etc.) in
Figure 13.7.4 of the 1983 ACI Commentary.

With a column stiffness diagram, the column flexural stiffness, Kc , can be determined
by the conjugate beam procedure or other methods. Tabulated values of Kc are given in Table
A.20 of the Appendix A of this text for typical column situations.

In applying moment distribution to a particular frame, we need the stiffnesses of the slab
beam, the torsional members, and the equivalent column so that the distribution factors can be
calculated. For this purpose, the equivalent column, the equivalent slab beam, and the torsional
members are needed at a particular joint.

For this discussion, see Figure 17.8, where it is assumed that there is a column above
and below the joint in question. Thus, the column stiffness (Kc) here is assumed to include
the stiffness of the column above (Kct ) and the one below (Kcb ). Thus, �Kc = Kct + Kcb . In a
similar fashion, the total torsional stiffness is assumed to equal that of the torsional members
on both sides of the joint (�Kt = Kt1 + Kt2). For an exterior frame, the torsional member will
be located on one side only.

The following approximate expression for the stiffness (Kt) of the torsional member was
determined using a three-dimensional analysis for various slab configurations (ACI R13.7.5).

Kt = �
9Ecs C

l2

(
1 − c2

l2

)3

h h
2

h
EI = ∞

EI = ∞

EccIc

2

(a) Actual column and
slab, no beams

(b) Column stiffness
 diagram

h

`c

FI GU RE 17.7 Equivalent column.
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FI GU RE 17.8 Equivalent frame model.

In this formula, C is to be determined with the following expression by dividing the
cross section of the torsional member into rectangular parts and summing the C values for the
different parts.

C = �

(
1 − 0.63

x

y

)
x3y

3
(ACI Equation 13-6)

If there is no beam framing into the column in question, a part of the slab equal to the
width of the column or capital shall be used as the effective beam. If a beam frames into the
column, a T beam or L beam will be assumed, with flanges of widths equal to the projection
of the beam above or below the slab but not more than four times the slab thickness.

The flexibility of the equivalent column is equal to the reciprocal of its stiffness, as
follows:

1

Kec
= 1

�Kc
+ 1

�Kt

1

Kec
= 1

Kct + Kcb
+ 1

Kc + Kt

Solving this expression for the equivalent column stiffness and multiplying through by Kc

Kec = (Kct + kcb ) (kt + kt )

(kct + kcb ) + (kt + kt )

An examination of this brief derivation shows that the torsional flexibility of the slab
column joint reduces the joint’s ability to transfer moment.

After the value of Kec is obtained, the distribution factors can be computed as follows
(see Figure 17.8):

DF for beam 2–1 = Kb1

Kb1 + Kb2 + Kec

DF for beam 2–3 = Kb2

Kb1 + Kb2 + Kec

DF for column above = Kec/2

Kb1 + Kb2 + Kec
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17.5 Example Problem
Example 17.2 illustrates the determination of the moments in a flat-plate structure by the
equivalent frame method.

Example 17.2

Using the equivalent frame method, determine the design moments for the hatched strip of the
flat-plate structure shown in Figure 17.9 if f ′

c = 4000 psi, fy = 60,000 psi, and (unfactored dead
load) qD = 120 psf and (unfactored live load) qL = 82.5 psf. Column lengths = 9 ft 6 in.

SOLUTION

1. Determine the depth required for ACI depth limitations (9.5.3). Assume that this has been
done and that a preliminary slab h = 8 in. (d = 6.75 in.) has been selected.

2. Check beam shear for exterior column

qu = 1.2qD + 1.6qL = 1.2(120 psf) + 1.6(82.5 psf) = 276 psf

Vu for 12 in. width = (0.276 ksf)
(

11.0 ft − 7.5 in.
12 in/ft

− 6.75 in.
12 in/ft

)
= 2.708 k/ft

φVc = (0.75) (2) (1.0) (
√

4000 psi)(12 in.) (6.75 in.)
1000

= 7.684 k/ft > 2.708 k/ft OK

3. Check two-way shear around interior columns

Vu =
[
(18 ft) (22 ft) −

(
15 in. + 6.75 in.

12 in/ft

)2
]

(0.276 ksf) = 108.39 k

φVc = (0.75) (4) (1.0) (
√

4000 psi)(4) (15 in. + 6.75 in.) (6.75 in.)
1000

= 111.42k > 108.39k OK

design strip

all columns
15 in. × 15 in.

3 @ 22 ft 0 in. = 66 ft 0 in.

3 @ 18 ft 0 in.
= 54 ft 0 in.

FI GU RE 17.9 Flat plate for Example 17.2.
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4. Using tables in Appendix A, determine stiffness factor and fixed-end moments for the 22-foot
spans

Is = l2h3

12
= (12 in/ft × 18 ft) (8 in.)3

12
= 9216 in.4

Ecs = 3.64 × 106 psi (from Appendix A, Table A.1)

See Table A.16, notice that C values are column dimensions as shown in the figures
accompanying Tables A.16 to A.19. The tables are rather difficult to read.

C1A = C2A = C1B = C2B = 15 in. = 1.25 ft

C1A

l1
= 1.25 ft

22.0 ft
= 0.057

C1B

l1
= 1.25 ft

22.0 ft
= 0.057

By interpolation in the table (noting that A is for near end and B is for far end), the values from
the table are very rough.

kAB = 4.17

kAB = 4.17EcsIs
l1

= (4.17) (3.64 × 106 psi) (9216 in.4)
(12 in/ft) (22 ft)

= 529.9 × 106 in-lb

FEMAB = FEMBA = 0.084qul2l
2
1

= (0.084) (0.276 ksf) (18 ft) (22 ft)2 = 202 ft-k

CAB = CBA = carryover factor

= 0.503

5. Determine column stiffness

Ic =
(

1
12

)
(15 in.) (15 in.)3 = 4219 in.4

Ecc = 3.64 × 106 psi

Using Appendix A, Table A.20

ln = 9 ft 6 in. = 9.50 ft

lc = 9.50 ft − 8 in.
12 in/ft

= 8.833 ft

ln

lc
= 8.833 ft

9.50 ft
= 0.930 = lu

lc

With reference to the figure given with Table A.20,

a
b

= 4 in.
4 in.

= 1.00

kAB = 4.81 by interpolation
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x = 8 in.

15 in.

torsional
area

F I GU RE 17.10 Torsional member.

Kc = 4.81EccIc
H

= (4.81) (3.64 × 106 psi) (4219 in.4)
(9.5 ft) (12 in/ft)

= 648 × 106 in-lb

CAB = 0.55 by interpolation

6. Determine the torsional stiffness of the slab section (see Figure 17.10)

C = �

(
1 − 0.63

x
y

)(
x3y
3

)
=
(

1 − 0.63 × 8 in.
15 in.

)[
(8 in.)3 × 15 in.

3

]
= 1700 in.4

Kt = 9EcsC[
l2

(
1 − c2

l2

)3
] = (9) (3.64 × 106 in-lb) (1700 in.4){

(12 in/ft) (18 ft)
[

1 − 15 in.
(12 in/ft) (22 ft)

]3
} = 307.3 × 106 in-lb

7. Compute Kec, the stiffness of the equivalent column

Kec = �Kc�Kt

�Kc + �Kt
= (2 × 648.0) (2 × 307.3)

2 × 648.0 + 2 × 307.3

= 416.9 × 106 in-lb

A summary of the stiffness values is shown in Figure 17.11.

8. Computing distribution factors and balancing moments (see Figure 17.12): The authors do not
show moments at tops and bottoms of columns, but this could easily be done by multiplying
the balanced column moments at the joints with the slabs by the carryover factor for the
columns, which is 0.55.

416.9
2

416.9

529.9 529.9 529.9

2

416.9
2

416.9

529.9

2

529.9

416.9
2

416.9

529.9

2

416.9
2

416.9
2

F I GU RE 17.11 Equivalent frame with stiffnesses (in-lb).
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0.36

0.
14

0.
14

0.
22

0.
22

0.360.56

beam
C.O. factors
= 0.503

0.
22

0.
22

0.560.36

0.
14

0.
14

0.36

–    0.7
+235.8

+    0.8
–    5.4
+    2.9
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F I GU RE 17.12 Results of moment distribution (moments, ft-k).

A summary of the moment values for Example 17.2 is given in Figure 17.13. The positive
moments shown in each span are assumed to equal the simple beam centerline moments plus
the average of the end negative moments. This is correct if the end moments in a particular
span are equal and is approximately correct if the end moments are unequal. For span 1,

+M = (0.276 ksf) (18 ft) (22 ft)2

8
−
(

94.8 ft-k + 235.8 ft-k

2

)
= 135.3 ft-k

The negative moments shown in Figures 17.12 and 17.13 were calculated at the center-
lines of the supports. At these supports, the cross section of the slab beam is very large because
of the presence of the column. At the face of the column, however, the cross section is far
smaller, and the code (13.7.7) specifies that negative reinforcing be designed for the moment
there. (If the column is not rectangular, it is replaced with a square column of the same total
area and the moment is computed at the face of that fictitious column.) Because the ratio of
unfactored dead to live load is less than 0.75, ACI Section 13.7.6.2 permits a single analysis
with live load for all spans. No pattern load analysis is required.

The design moments shown in Figure 17.14 were determined by drawing the shear
diagram and computing the area of that diagram between the centerline of each support and
the face of the column.

F I GU RE 17.13 Results of Example 17.2.
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moments (ft-k)

shear (k)

F I GU RE 17.14 Final shear and moment diagrams for Example 17.2.

For interior columns, the critical section (for both column and middle strips) is to be
taken at the face of the supports, but not at a distance greater than 0.175l1 from the center
of the column. At exterior supports with brackets or capitals, the moment used in the span
perpendicular to the edge shall be computed at a distance from the face of the support element
not greater than one-half of the projection of the bracket or capital beyond the face of the
supporting element.

Sometimes the total of the design moments (i.e., the positive moment plus the average of
the negative end moments) obtained by the equivalent frame method for a particular span may
be greater than Mo = qul2l

2
n /8, as used in Chapter 16. Should this happen, the code (13.7.7.4)

permits a reduction in those moments proportionately, so their sum does equal Mo .

17.6 Computer Analysis
The equivalent frame method was developed with the intention that the moment distribution
method was to be used for the structural analysis. Truthfully, the method is so involved that it is
not satisfactory for hand calculations. It is possible, however, to use computers and plane frame
analysis programs if the structure is especially modeled. (In other words, we must establish
various nodal points in the structure so as to account for the changing moments of inertia along
the member axes.) There are also some computer programs on the market especially written
for these frames. One of the best known is called ADOSS (analysis and design of concrete
floor systems) and was prepared by the Portland Cement Association. The moments shown in
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Figure 17.14 can be entered in the Chapter 16 Excel spreadsheet, Two Way Slab, in cells 12C
to 12G for interior spans and 45C to 45G for edge spans.

17.7 Computer Example

Example 17.3

Use the Excel spreadsheet provided for Chapter 17 to solve Example 17.2.

SOLUTION

Open the Chapter 17 Excel spreadsheet, and open the worksheet Moment Distribution. Enter
values only for cells highlighted in yellow (only in the Excel spreadsheets, not the printed
example). Results of the moment distribution are shown at the bottom of each column. Note that
they are in agreement with those in Example 17.2.

Moment Distribution for User Input Distribution and Carryover Factors and Fixed-End Moments

A B C D

Joint Member AB BA BC CB CD DC

Distribution factor 0.56 0.36 0.36 0.36 0.36 0.56

Fixed-end moment −202 202 −202 202 −202 202

Carryover 0.503 0.503 0.503 0.503 0.503 0.503

Balance 113.12 0 0 0 0 −113.12

Carryover 0.000 56.899 0.000 0.000 −56.899 0.000

Balance 0.000 −20.484 −20.484 20.484 20.484 0.000

Carryover −10.303 0.000 10.303 −10.303 0.000 10.303

Balance 5.770 −3.709 −3.709 3.709 3.709 −5.770

Carryover −1.866 2.902 1.866 −1.866 −2.902 1.866

Balance 1.045 −1.716 −1.716 1.716 1.716 −1.045

Carryover −0.863 0.526 0.863 −0.863 −0.526 0.863

Balance 0.483 −0.500 −0.500 0.500 0.500 −0.483

Carryover −0.252 0.243 0.252 −0.252 −0.243 0.252

Balance 0.141 −0.178 −0.178 0.178 0.178 −0.141

Carryover −0.090 0.071 0.090 −0.090 −0.071 0.090

Balance 0.050 −0.058 −0.058 0.058 0.058 −0.050

Carryover −0.029 0.025 0.029 −0.029 −0.025 0.029

Balance 0.016 −0.020 −0.020 0.020 0.020 −0.016

Final moments, ft-k −94.78 236.00 −215.26 215.26 −236.00 94.78
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P R O B L E M S
Problem 17.1 Determine the end moments for the beams and columns of the frame shown for which the fixed-end moments,
carryover factors, and distribution factors (circled) have been computed. Use the moment distribution method. (Ans. 44.9 ft-k,
21.0 ft-k at column bases)

Problem 17.2 Repeat Problem 16.4 using the equivalent frame
method instead of the direct design method.

Problem 17.3 Use Chapter 17 spreadsheet to determine the
end moments in member AB and BC of Problem 17.1. (Ans.
MAB = −163.6 ft-k, MBA = 307.2 ft-k, MBC = −229.7 ft-k,
MCB = 48.1 ft-k)
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CHAPTER 18Walls

18.1 Introduction
Before the advent of frame construction during the nineteenth century, most walls were of a
load-bearing type. Since the late 1800s, however, the non–load-bearing wall has become quite
common because other members of the structural frame can be used to provide stability. As a
result, today we have walls that serve all sorts of purposes, such as retaining walls, basement
walls, partition walls, fire walls, and so on. These walls may or may not be of a load-bearing
type.

In this chapter, the following kinds of concrete walls will be considered: non–load-
bearing, load-bearing, and shear walls (the latter being either load-bearing or non–load-bearing).

18.2 Non–Load-Bearing Walls
Non–load-bearing walls are those that support only their own weight and perhaps some lateral
loads. Falling into this class are retaining walls, façade-type walls, and some basement walls.
For Non–load-bearing walls, the ACI Code provides several specific limitations, which are
listed at the end of this paragraph. The values given for minimum reinforcing quantities and
wall thicknesses do not have to be met if lesser values can be proved satisfactory by structural
analysis (14.2.7). The numbers given in parentheses are ACI section numbers.

1. The thickness of a Non–load-bearing wall cannot be less than 4 in. or 1
30 times the least

distance between members that provide lateral support (14.6.1).

2. The minimum amount of vertical reinforcement as a percentage of gross concrete area
is 0.0012 for deformed bars #5 or smaller with fy = at least 60,000 psi, 0.0015 for other
deformed bars, and 0.0012 for plain or deformed welded wire fabric not larger than
W 31 or D31—that is, 5

8 in. in diameter (14.3.2).

3. The vertical reinforcement does not have to be enclosed by ties unless the percentage
of vertical reinforcing is greater than 0.01 times the gross concrete area or where the
vertical reinforcing is not required as compression reinforcing (14.3.6).

4. The minimum amount of horizontal reinforcing as a percentage of gross concrete area is
0.0020 for deformed bars #5 or smaller with fy ≥ 60,000 psi, 0.0025 for other deformed
bars, and 0.0020 for plain or deformed welded wire fabric not larger than W31 or D31
(14.3.3).

5. The spacing of vertical and horizontal reinforcement may not exceed three times the
wall thickness, or 18 in. (14.3.5).

6. Reinforcing for walls more than 10 in. thick (not including basement walls) must be
placed in two layers as follows: one layer containing from one-half to two-thirds of the
total reinforcing placed in the exterior surface not less than 2 in. nor more than one-third

547
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Retaining wall with stepped wall thickness.

times the wall thickness from the exterior surface; the other layer placed not less than
3
4 in. nor more than one-third times the wall thickness from the interior surface (14.3.4).

7. For walls less than 10 in. thick, the code does not specify two layers of steel, but to
control shrinkage, it is probably a good practice to put one layer on the face of walls
exposed to view and one on the nonstressed side of foundation walls 10 ft or more in
height.

8. In addition to the reinforcing specified in the preceding paragraphs, at least two #5 bars
in walls having two layers of reinforcement in both directions, and one #5 bar in walls
having a single layer of reinforcement in both directions, must be provided around all
window, door, and similar-sized openings. These bars must be anchored to develop fy
in tension at the corners of the openings (14.3.7).

9. For cast-in-place walls, the area of reinforcing across the interface between a wall and
a footing must be no less than the minimum vertical wall reinforcing given in 14.3.2
(15.8.2.2).

10. For precast, nonprestressed walls, the reinforcement must be designed in accordance
with the preceding requirements on this list, as well as the requirements of Chapter 10
or 14 of the code, except that the area of the horizontal and vertical reinforcing must
not be less than 0.001 times the gross cross-sectional area of the wall. In addition, the
spacing of the reinforcing may not be greater than five times the wall thickness or 30 in.
for interior walls, or 18 in. for exterior ones (16.4.2).



McCormac c18.tex V2 - January 10, 2013 10:20 P.M. Page 549

18.3 Load-Bearing Concrete Walls—Empirical Design Method 549

18.3 Load-Bearing Concrete Walls—Empirical
Design Method

Most of the concrete walls in buildings are load-bearing walls that support not only vertical
loads but also some lateral moments. As a result of their considerable in-plane stiffnesses, they
are quite important in resisting wind and earthquake forces.

Load-bearing walls with solid rectangular cross sections may be designed as were
columns subject to axial load and bending, or they may be designed by an empirical method
given in Section 14.5 of the code. The empirical method may be used only if the resultant of
all the factored loads falls within the middle third of the wall (i.e., the eccentricity must be
equal to or less than one-sixth the thickness of the wall). Whichever of the two methods is
used, the design must meet the minimum requirements given in the preceding section of this
chapter for non–load-bearing walls.

This section is devoted to the empirical design method, which is applicable to rela-
tively short vertical walls with approximately concentric loads. The code (14.5.2) provides
an empirical formula for calculating the design axial load strength of solid rectangular cross-
sectional walls with e less than one-sixth of wall thicknesses. Should walls have nonrectangular
cross sections (such as ribbed wall panels) and/or should e be greater than one-sixth of wall
thicknesses, the rational design procedure for columns subject to axial load and bending
(Section 14.4) must be followed.

The practical use of the empirical wall formula, which is given at the end of this para-
graph, is for relatively short walls with small moments. When lateral loads are involved,
e will quickly exceed one-sixth of wall thicknesses. The number 0.55 in the equation is an
eccentricity factor that causes the equation to yield a strength approximately equal to that which

C
o

ur
te

sy
 o

f 
E

FC
O

 C
o

rp
.

Thirty-two-foot-tall foundation walls for the MCI Mid-Continent Data Center in
Omaha, Nebraska.
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TABLE 18.1 Effective Length Factors for Load-Bearing Walls (14.5.2)

1. Walls braced top and bottom against lateral translation and

(a) Restrained against rotation at one or both ends (top and/or bottom) 0.80

(b) Not restrained against rotation at either end 1.0

2. For walls not braced against lateral translation 2.0

would be obtained by the axial load and bending procedure of Chapter 10 of the code if the
eccentricity is h/6.

φPnw = 0.55φf ′
cAg

[
1 −

(
klc

32h

)2
]

(ACI Equation 14-1)

where
φ = 0.65

Ag = gross area of the wall section (in.2)
lc = vertical distance between supports (in.)
h = overall thickness of member (in.)
k = effective length factor determined in accordance with the values given in

Table 18.1

Other ACI requirements for load-bearing concrete walls designed by the empirical formula
follow.

1. The thickness of the walls may not be less than 1
25 the supported height or length,

whichever is smaller, or less than 4 in. (14.5.3.1).

2. The thickness of exterior basement walls and foundation walls may not be less than 7 1
2

in. (14.5.3.2).

3. The horizontal length of a wall that can be considered effective for each concentrated
load may not exceed the smaller of the center-to-center distance between loads or the
bearing width plus four times the wall thickness. This provision may be waived if a
larger value can be proved satisfactory by a detailed analysis (14.2.4).

4. Load-bearing walls must be anchored to intersecting elements, such as floors or roofs,
or they should be anchored to columns, pilasters, footings, buttresses, and intersecting
walls (14.2.6).

The empirical method is quite easy to apply because only one calculation has to be made
to determine the design axial strength of a wall. Example 18.1, which follows, illustrates the
design of a bearing wall with a small moment.1

Example 18.1

Design a concrete-bearing wall using the ACI empirical equation 14–1 to support a set of precast
concrete roof beams 7 ft 0 in. on center, as shown in Figure 18.1. The bearing width of each
beam is 10 in. The wall is considered to be laterally restrained top and bottom and is further
assumed to be restrained against rotation at the footing; thus k = 0.8. Neglect wall weight. Other
data: f ′

c = 3000 psi, fy = 60,000 psi, beam reaction, D = 30 k, L = 18 k.

1 For the example problems presented in this chapter, the authors have followed the general procedures used in B. G. Rabbat,
et al., ed., Notes on ACI 318–08 Building Code Requirements for Structural Concrete, 2008 (Skokie, IL: Portland Cement
Association), pp. 21-17 to 21-18.
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footing

beams
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FI GU RE 18.1 Empirically designed wall for
Example 18.1.

SOLUTION

1. Determine minimum wall thickness (14.5.3.1)

(a) h = ( 1
25

)
(12 in/ft × 16 ft) = 7.68 in. ←

(b) h = 4 in. Try 8 in.

Compute factored beam reactions

Pu = (1.2) (30 k) + (1.6) (18 k) = 64.8 k

2. Is the bearing strength of wall concrete satisfactory under beam reactions (10.17.1)?

φ(0.85f ′
cA1) = (0.65) (0.85) (3 ksi) (8 in. × 10 in.)

= 132.6 k > 64.8 k OK

3. Horizontal length of wall to be considered as effective in supporting each concentrated load
(14.2.4)

(a) Center-to-center spacing of beams 7 ft 0 in. = 84 in.

(b) Width of bearing + 4h = 10 in. + (4) (8 in.) = 42 in. ←
4. Design strength of wall

φPnw = 0.55φf ′
cAg

[
1 −

(
klc

32h

)2
]

(ACI Equation 14-1)

= (0.55) (0.65) (3 ksi) (8 in. × 42 in.)

[
1 −

(
0.80 × 12 in/ft × 16 ft

32 × 8 in.

)2
]

= 230.6 k > 64.8 k OK

5. Select reinforcing (14.3.5, 14.3.2, and 14.3.3)

Maximum spacing = (3) (8 in.) = 24 in. or 18 in.

Vertical As = (0.0012) (12 in.) (8 in.) = 0.115 in2/ft #4 @ 18 in.

Horizontal As = (0.0020) (12 in.) (8 in.) = 0.192 in2/ft #4 @ 12 in.

Although the code is not specific on this issue, it would be prudent to provide continuity of the
vertical wall reinforcement into the footing. This is usually accomplished by using a hooked bar
embedded in the wall footing that is lap spliced with the vertical wall bars. If a value of k = 1
had been used in this example, there would have been no assumption of continuity at the base
of the wall. It would still be necessary to ensure that adequate shear capacity is provided at the
base of the wall.
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18.4 Load-Bearing Concrete Walls—Rational Design
Reinforced concrete-bearing walls may be designed as columns by the rational method of
Chapter 10 of the code whether the eccentricity is smaller or larger than h/6 (they must be
designed rationally if e > h/6). The minimum vertical and horizontal reinforcing requirements
of Section 14.3 of the code must be met.

The design of walls as columns is difficult unless design aids are available. Various wall
design aids are available from the Portland Cement Association, but the designer can prepare
his or her own aids, such as axial load and bending interaction diagrams. The designs may be
complicated by the fact that walls often will be classified as “long columns” with the result that
the slenderness requirements of Section 10.10 of the code will have to be met. An alternative
procedure for slender walls is presented in ACI Section 14.8.

Very slender walls are rather common, particularly in tilt-up wall construction. The
Portland Cement Association has available a design aid that is particularly useful for such
cases.2

The interaction diagrams discussed in Section 10.6 of this text can be used to design
walls with steel in two layers and subject to out-of-plane bending combined with axial loads.
However, the reinforcement ratio is limited to 0.01, unless the compression reinforcement is
laterally tied (ACI Section 14.3.6), which is impractical in many cases. Graphs 2 through 5 in
Appendix A are applicable to walls that have two layers of steel. The values of γ for these
graphs may be too large, however, especially for thinner walls. Example 18.2 illustrates how
to use these design aids when designing walls.

Example 18.2

Design the reinforced concrete foundation wall shown in Figure 18.2 that has the following
conditions: l = 15 ft between lateral supports, backfill height is also 15 ft, PD = 520 plf at
e = 2 in., and PL = 250 plf at e = 2 in. Assume the base is pinned.

f ′
c = 4000 psi, normal-weight aggregate concrete, Grade 60 reinforcing steel

Soil properties, ka = 0.40, γ = 100 pcf

SOLUTION

Assuming that the wall is simply supported at both the top and bottom, the soil pressure exerted
on the wall increases linearly from zero at the top of backfill to kaγ l at the base. The maximum
bending moment3 is

MH = 0.064kaγ l3 = (0.064) (0.4) (100 pcf) (15 ft)3

= 8640 ft-lb/ft = 103,680 in-lb/ft

Maximum moment occurs at 0.577l = 8.66 ft from top of wall or 6.34 ft from the bottom.
Note that the eccentric axial loads cause a reduction in the moment. In the case of dead axial
load, the moment at the top of the wall is P × e = 520 plf(2 in.) = 1040 in-lb/ft. This moment
varies linearly to zero at the base of the wall, so at the location of maximum soil moment, its
value is 1040 in-lb(6.34 ft)/15 ft = 440 in-lb/ft. The same analysis applied to the live load results
in a moment of 212 in-lb/ft. In this case, the reduction in moment from eccentric axial load is

2 Portland Cement Association, 2005. The Tilt-up Construction and Engineering Manual, 6th ed. (Skokie, IL), 28 pages.
3 McCormac, J. C., 2006, Structural Analysis: Using Classical and Matrix Methods, 4th ed. (Hoboken, NJ: John Wiley & Sons),
pp. 104–106.
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soil

γ  = 100 pcf
ka = 0.40

reinforced
concrete
foundation
wall

dead and live loads

15 ft

FI GU RE 18.2 Foundation wall for Example 18.2.

small (less than 3%) and could be ignored. At the location of maximum bending moment, the
axial loads are

PD = 520 plf + (8.66 ft) (150 pcf) (8 in.) (12 in.)/144 in2/ft2

= 1386 plf (assuming an 8-in. wall thickness)

PL = 250 plf

Three load combinations applicable to this situation are shown in the table below along with Kn

and Rn values used in conjunction with Graph 2 in Appendix A.

PD PL PH MD ML MH PU MU Kn = PU
φf′cAg

Rn = MU
φf′cAgh

ρt

Unfactored 1386 250 0 600 288 103,680

U = 1.4D 1.4 1.4 1940 840 0.0056 0.0003 < 0.01

U = 1.2D + 1.6L + 1.6H 1.2 1.6 1.6 1.2 1.6 1.6 2063 166,877 0.0060 0.0604 0.01

U = 0.9D + 1.6H 0.9 1.6 0.9 1.6 1247 166,284 0.0036 0.0602 0.01

There is so little difference between the second and third load case that the difference
in ρt is indistinguishable when reading the graph. Also, a value of φ = 0.9 was used because
when reading the graph, it is obvious that the controlling points are below the line for εt = 0.005.
Using the resulting value of ρt, Ast = ρtbh = 0.010(12 in.) (8 in.) = 0.96 in2/ft, half in each face
(0.48 in2/ft). From Appendix A, Table A.6, select #5 at 7 1

2 in. o.c. vertically in both faces. The
#5 bar size was picked because the required cover increases for larger bars from 1 1

2 to 2
in. Horizontal reinforcing must be provided in accordance with ACI 14.3.3(b), As ≥ 0.0025bh =
0.0025(12 in.) (8 in.) = 0.24 in2/ft. Choose #4 at 18 in. o.c. horizontally in both faces. Since this
wall is less than 10 in. thick, ACI 14.3.4 permits the reinforcement to be placed in a single
layer. However, Graph 2 is based on having steel in two layers separated by a distance of
γ h = 0.6(8) = 4.8 in. Actually, a value of γ = 0.5 would have been a better choice in this problem
in order to provide sufficient cover, but it is not available.

Because the axial load is so small in this case, the wall could have been designed as a
vertical beam with compression steel. The beam width would be 12 in., h = 8 in., d = 6.4 in., and
the moment taken as 167 in-k. The authors carried out this design approach using the Chapter
5 spreadsheet and calculated a required area of reinforcing steel of 0.98 in2/ft (compared with
0.96 in2/ft from Graph 2).

The wall exerts reactions at the bottom against the footing and at the top against the floor.
The floor system must be designed to resist this horizontal force, which is called a ‘‘diaphragm
force.’’ At the bottom, the interface of the wall and the footing must be designed for shear
transfer between these elements. Shear friction (Section 8.12 of this text) is the best way to
accommodate this transfer.

Note that this wall has a slenderness ratio of klu/r = 1.0(15 ft)12 in/ft/(0.3) (8 in.) = 75 >

34 − 12(0/M2) = 34, so slenderness must be considered. However, since the axial loads are so
small, the moment magnifier is not greater than 1.0; hence the moment is not magnified.
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If this wall were not laterally supported at the top by the floor shown in Figure 18.2, it
would be a retaining wall. The bending moment from soil pressure on the retaining wall would
be MH = kaγ l3/6, which is 260% of the moment in Example 18.2. Be sure to use the correct
moment for the boundary conditions that apply to your type of construction.

If the reinforcement ratio had exceeded 0.01, this method of solution would not have been
valid. It would have been necessary to use mechanics to determine the wall capacity without
using steel in compression. The design aids used in this example use the compression force in
the reinforcing steel, hence the steel has to be laterally tied for this solution to be valid.

18.5 Shear Walls
For tall buildings, it is necessary to provide adequate stiffness to resist the lateral forces caused
by wind and earthquake. When such buildings are not properly designed for these forces, there
may be very high stresses, vibrations, and sidesway when the forces occur. The results may
include not only severe damages to the buildings but also considerable discomfort for their
occupants.

When reinforced concrete walls with their very large in-plane stiffnesses are placed at
certain convenient and strategic locations, often they can be economically used to provide the
needed resistance to horizontal loads. Such walls, called shear walls, are in effect deep vertical
cantilever beams that provide lateral stability to structures by resisting the in-plane shears and
bending moments caused by the lateral forces.

As the strength of shear walls is almost always controlled by their flexural resistance,
their name is something of a misnomer. It is true, however, that on some occasions they may
require some shear reinforcing to prevent diagonal tension failures. Indeed, one of the basic
requirements of shear walls designed for high seismic forces is to ensure flexure rather than
shear-controlled design.
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Shear wall with integral end columns—Rhodes Annex.
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A

B

C Dshear walls

FI GU RE 18.3 Plan view of a floor supported by
shear walls.

The usual practice is to assume that the lateral forces act at the floor levels. The stiffnesses
of the floor slabs horizontally are quite large as compared to the stiffnesses of the walls and
columns. Thus, it is assumed that each floor is displaced in its horizontal plane as a rigid body.

Figure 18.3 shows the plan of a building that is subjected to horizontal forces. The lateral
forces, usually from wind or earthquake loads, are applied to the floor and roof slabs of the
building, and those slabs, acting as large beams lying on their sides or diaphragms, transfer
the loads primarily to the shear walls A and B. Should the lateral forces be coming from the
other (perpendicular) direction, they would be resisted primarily by the shear walls C and D.

The walls must be sufficiently stiff so as to limit deflections to reasonable values.
Shear walls are commonly used for buildings with flat-plate floor slabs. In fact, this

combination of slabs and walls is the most common type of construction used today for tall
apartment buildings and other residential buildings.
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Buttress shear wall, New York Hilton, New York, New York.
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columns

FI GU RE 18.4 Shear walls around elevators and stairwells.

Shear walls span the entire vertical distances between floors. If the walls are carefully
and symmetrically placed in plan, they will efficiently resist both vertical and lateral loads and
do so without interfering substantially with the architectural requirements. Reinforced concrete
buildings of up to 70 stories have been constructed with shear walls as their primary source
of lateral stiffness. In the horizontal direction, full shear walls may be used—that is, they will
run for the full panel or bay lengths. When forces are smaller, they need only run for partial
bay lengths.

Shear walls may be used to resist lateral forces only, or they may be used in addition
as bearing walls. Furthermore, they may be used to enclose elevators, stairwells, and perhaps
restrooms, as shown in Figure 18.4. These box-type structures are very satisfactory for resisting
horizontal forces.

Another possible arrangement of shear walls is shown in Figure 18.5. Although shear
walls may be also be needed in the long direction of this building, they are not included in
this figure.

On most occasions, it is not possible to use shear walls without some openings in them
for doors, windows, and penetrations for mechanical services. Usually it is possible, however,
with careful planning to place these openings so they do not seriously affect stiffnesses or
stresses in the walls. When the openings are small, their overall effect is minor, but this is not
the case when large openings are present.

Usually the openings (windows, doors, etc.) are placed in vertical and symmetrical rows in
the walls throughout the height of the structure. The wall sections on the sides of these openings

shear walls

columns

FI GU RE 18.5 Building plan having shear walls in only one direction.
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are tied together by beams enclosed in the walls, by the floor slabs, or by a combination of both.
As you can see, the structural analysis for such a situation is extremely complicated. Although
shear wall designs are often handled with empirical equations, they can be appreciably affected
by the designer’s previous experience.

When earthquake-resistant construction is being considered, note that the relatively stiff
parts of a structure will attract much larger forces than will the more flexible parts. A structure
with reinforced concrete shear walls is going to be quite stiff and, thus, will attract large seismic
forces. If the shear walls are brittle and fail, the rest of the structure may not be able to take
the shock. If the shear walls are ductile, however (and they will be if properly reinforced),
they will be very effective in resisting seismic forces.

Tall reinforced concrete buildings are often designed with shear walls to resist seismic
forces, and such buildings have performed quite well in recent earthquakes. During an earth-
quake, properly designed shear walls will decidedly limit the amount of damage to the structural
frame. They will also minimize damages to the nonstructural parts of a building, such as the
windows, doors, ceilings, and partitions.

Figure 18.6 shows a shear wall subjected to a lateral force, Vu . The wall is in actuality
a cantilever beam of width h and overall depth lw . In part (a) of the figure, the wall is being
bent from left to right by Vu , with the result that tensile bars are needed on the left or tensile
side. If Vu is applied from the right side as shown in part (b) of the figure, tensile bars will
be needed on the right-hand end of the wall. Thus, it can be seen that a shear wall needs
tensile reinforcing on both sides because Vu can come from either direction. For horizontal
shear calculations, the depth of the beam from the compression end of the wall to the center
of gravity of the tensile bars is estimated to be about 0.8 times the wall length, lw , as per ACI
Section 11.10.4. (If a larger value of d is obtained by a proper strain compatibility analysis, it
may be used.)

The shear wall acts as a vertical cantilever beam. In providing lateral support, it is
subjected to both bending and shear forces. For such a wall, the maximum shear, Vu , and the
maximum moment, Mu , can be calculated at the base. If flexural stresses are calculated, their
magnitude will be affected by the design axial load, Nu , and thus its effect should be included
in the analysis.

Shear is more important in walls with small height-to-length ratios. Moments will be
more important for higher walls, particularly those with uniformly distributed reinforcing.

It is necessary to provide both horizontal and vertical shear reinforcing for shear walls.
The commentary (R11.9.9) says that in low walls, the horizontal shear reinforcing is less effec-
tive, and the vertical shear reinforcing is more effective. For high walls, the situation is reversed.
This situation is reflected in ACI Equation 11-32, which is presented in the next section. The
vertical shear reinforcing contributes to the shear strength of a wall by shear friction.

vertical
reinforcing

vertical
reinforcing

d = 0.8`w d = 0.8`w

`w`w

FI GU RE 18.6 Shear wall loaded in opposite directions.
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Reinforcing bars are placed around all openings, whether or not structural analysis indi-
cates a need for them. Such a practice is deemed necessary to prevent diagonal tension cracks,
which tend to develop radiating from the corners of openings.

18.6 ACI Provisions for Shear Walls

1. The factored beam shear must be equal to or less than the design shear strength of the
wall.

Vu ≤ φVn

2. The design shear strength of a wall is equal to the design shear strength of the concrete
plus that of the shear reinforcing.

Vu ≤ φVc + φVs

3. The nominal shear strength, Vn , at any horizontal section in the plane of the wall
may not be taken greater than 10

√
f ′

chd (11.9.3).

4. In designing for the horizontal shear forces in the plane of a wall, d is to be taken as
equal to 0.8lw , where lw is the horizontal wall length between faces of the supports,
unless it can be proved to be larger by a strain compatibility analysis (11.9.4).

5. ACI Section 11.10.5 states that unless a more detailed calculation is made (as described
in the next paragraph), the value of the nominal shear strength, Vc , used may not be
larger than 2λ

√
f ′

chd for walls subject to a factored axial compressive load, Nu . Should
a wall be subject to a tensile load, Nu , the value of Vc may not be larger than the value
obtained with the following equation:

Vc = 2

(
1 + Nu

500Ag

)
λ
√

f ′
cbw d ≥ 0 (ACI Equation 11-8)

6. Using a more detailed analysis, the value of Vc is to be taken as the smaller value
obtained by substituting into the two equations that follow, in which Nu is the factored
axial load normal to the cross section occurring simultaneously with Vu . Nu is to be
considered positive for compression and negative for tension (11.10.6).

Vc = 3.3λ
√

f ′
chd + Nud

4lw
(ACI Equation 11-29)

or

Vc =
[

0.6λ
√

f ′
c + lw

(
1.25λ

√
f ′

c + 0.2Nu/lw h
)

(Mu/Vu ) − (lw/2)

]
hd (ACI Equation 11-30)

The first of these equations was developed to predict the inclined cracking strength at
any section through a shear wall corresponding to a principal tensile stress of about
4λ
√

f ′
c at the centroid of the wall cross section. The second equation was developed to

correspond to an occurrence of a flexural tensile stress of 6λ
√

f ′
c at a section lw/2 above

the section being investigated. Should Mu/Vu − lw/2 be negative, the second equation
will have no significance and will not be used.
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In SI units, these last three equations are as follows:

Vc =
(

1 + 0.3Nu

Ag

)
λ
√

f ′
c

6
bw d ≥ 0 (ACI Equation 11-8)

Vc = 1

4
λ
√

f ′
chd + Nud

4lw
(ACI Equation 11-29)

Vc =
[

1

2
λ
√

f ′
c + lw

(
λ
√

f ′
c + 2Nu/lw h

)
(Mu/Vu) − (lw/2)

]
hd

10
(ACI Equation 11-30)

7. The values of Vc computed by the two preceding equations at a distance from the base
equal to lw/2 or hw/2 (whichever is less) are applicable for all sections between this
section and one at the wall base (11.9.7).

8. Should the factored shear, Vu , be less than φVc/2 computed as described in the preceding
two paragraphs, it will not be necessary to provide a minimum amount of both horizontal
and vertical reinforcing, as described in Section 11.9.9 or Chapter 14 of the code.

9. Should Vu be greater than φVc , shear wall reinforcing must be designed as described in
Section 11.9.9 of the code.

10. If the factored shear force, Vu , exceeds the shear strength, φVc , the value of Vs is to be
determined from the following expression, in which Av is the area of the horizontal shear
reinforcement and s is the spacing of the shear or torsional reinforcing in a direction
perpendicular to the horizontal reinforcing (11.9.9.1).

Vs = Av fyd

s
(ACI Equation 11-31)

11. The amount of horizontal shear reinforcing, ρt (as a percentage of the gross vertical
concrete area) shall not be less than 0.0025 (11.9.9.2).

12. The maximum spacing of horizontal shear reinforcing, s2, shall not be greater than lw/5,
3h, or 18 in. (11.9.9.3).

13. The amount of vertical shear reinforcing, ρn (as a percentage of the gross horizontal
concrete area) shall not be less than the value given by the following equation, in which
hw is the total height of the wall (11.9.9.4).

ρl = 0.0025 + 0.5

(
2.5 − hw

lw

)
(ρh − 0.0025) (ACI Equation 11-32)

It shall not be less than 0.0025 but need not be greater than the required horizontal
shear reinforcing, ρt .

For high walls, the vertical reinforcing is much less effective than it is in low walls.
This fact is reflected in the preceding equation, where for walls with a height/length
ratio less than half, the amount of vertical reinforcing required equals the horizontal
reinforcing required. If the ratio is larger than 2.5, only a minimum amount of vertical
reinforcing is required (i.e., 0.0025sh).

14. The maximum spacing of vertical shear reinforcing shall not be greater than lw/3, 3h,
or 18 in. (11.9.9.5).
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Example 18.3

Design the reinforced concrete shear wall shown in Figure 18.7 if f ′
c = 3000 psi and fy =

60,000 psi.

SOLUTION

1. Is the wall thickness satisfactory?

Vu = φ10
√

f ′
chd (ACI Section 11.9.3)

d = 0.8lw = (0.8) (12 × 10 ft) = 96 in. (ACI Section 11.9.4)

Vu = (0.75) (10) (
√

3000 psi) (8 in.) (96 in.)

Vu = 315,488 lb = 315.5 k > 240 k OK

2. Compute Vc for wall (lesser of two values)

(a) Vc = 3.3λ
√

f ′
chd + Nud

4lw
= (3.3) (1.0) (

√
3000 psi) (8 in.) (96 in.) + 0

= 138,815 lb = 138.8 k ← controls (ACI Equation 11-27)

(b) Vc =
⎡
⎣0.6λ

√
f ′
c +

lw

(
1.25λ

√
f ′
c + 0.2Nu/lwh

)
(Mu/Vu) − (lw/2)

⎤
⎦hd (ACI Equation 11-28)

Computing Vu and Mu at the lesser of lw/2 = 10/2 = 5 ft or hw/2 = 14/2 = 7 ft from base (ACI
11.9.7):

Vu = 240 k

Mu = 240 k(14 ft − 5 ft) = 2160 ft-k = 25,920 in-k

Vc =

⎡
⎢⎣(0.6) (1.0) (

√
3000 psi) + (12 in/ft × 10 ft) (1.25) (1.0) (

√
3000 psi) + 0

25,920 in-k
240 k

− (12 in/ft) (10 ft)
2

⎤
⎥⎦(8 in.) (96 in.)

= 156,692 lb = 156.7 k

h = 8 in.

hw = 14 ft

Vu = 240 k

w = 10 ft
FI GU RE 18.7 Shear wall for
Example 18.3.
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3. Is shear reinforcing needed?

φVc

2
= (0.75) (1.0) (138.8 k)

2
= 52.05 k < 240 k Yes

4. Select horizontal shear reinforcing

Vu = φVc + φVs

Vu = φVc + φ
Avfyd

s

Av

s
= Vu − φVc

φfyd
= 240 k − (0.75) (138.8 k)

(0.75) (60 ksi) (96 in.)
= 0.0315 in.

Try different-sized horizontal bars with Av = two-bar cross sectional areas. Two layers of
horizontal bars will be placed at the calculated spacing, hence Av = twice the bar area.
Compute s2 = vertical spacing of horizontal shear reinforcing.

Try #3 bars: s = (2) (0.11 in.2)
0.0315 in.

= 6.98 in.

Try #4 bars: s = (2) (0.20 in.2)
0.0315 in.

= 12.70 in.

Maximum vertical spacing of horizontal stirrups

lw

5
= (12 in/ft) (10 ft)

5
= 24 in.

3h = (3) (8 in.) = 24 in.

18 in. = 18 in. ← Use #4 @ 12 in.

ρt = Av

As

where Ag = wall thickness times the vertical spacing of the horizontal stirrups

ρt = (2) (0.20)
(8) (12)

= 0.00417

which is greater than the minimum ρn of 0.0025 required by code (11.9.9.2).

Use 2 #4 horizontal bars 12 in. o.c. vertically

5. Design vertical shear reinforcing

min ρl = 0.0025 + 0.5
(

2.5 − hw

lw

)
(ρh − 0.0025) (ACI Equation 11-30)

= 0.0025 + 0.5
(

2.5 − 12 in/ft × 14 ft
12 in/ft × 10 ft

)
(0.00417 − 0.0025)

= 0.00342

Assume #4 vertical bars with Av = two-bar cross-sectional areas and with s = horizontal
spacing of vertical bars.

s = (2) (0.20 in.2)
(8 in.) (0.00342)

= 14.62 in.
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#4 horizontal bars
12 in. o.c.

8 in.

10 ft

#4 vertical bars
14 in. o.c.

10 #8 vertical
flexural bars

10 #8 vertical
flexural bars

FI GU RE 18.8 Final reinforcing details for Example 18.3.

Maximum horizontal spacing of vertical stirrups

lw

3
= (12 in/ft) (10 ft)

3
= 40 in.

3h = (3) (8 in.) = 24 in.

18 in. = 18 in. ←

Use 2 #4 vertical bars 14 in. o.c. horizontally

6. Design vertical flexural reinforcing

Mu = (240 k) (14 ft) = 3360 ft-k at base of wall

Mu

φbd2
= (12 in/ft) (3360 ft-k) (1000)

(0.9) (8 in.) (96 in.)2
= 607.6 psi

ρ = 0.0118 (from Appendix A, Table A.12)

As = ρbd

where b is wall thickness and d is approximated by 0.80lw = (0.8) (12 in/ft × 10 ft) = 96 in.

As = (0.0118) (8 in.) (96 in.) = 9.06 in.2

Use 10 #9 bars each end (assuming Vu could come from either direction)

7. A sketch of the wall cross section is given in Figure 18.8. If this same wall were subjected to
significant axial load, the method used to calculate As for flexure would have to be revised to
include its effect. Spreadsheets to calculate the coordinates of the interaction diagram using
the assumptions in Chapter 10 can be developed for this purpose.

The centroid of the bar group at either end of the wall is approximately 7 in. from the
wall end. Assuming all of the tension bars are yielding, the resultant tension force is also
located at 7 in. from the wall end. The assumed value of d = 0.8lw was overly conservative. It
can be taken as 120 − 7 = 113 in. Revising the calculation for As using this value of d results
in a new As = 7.32 in.2 As a result, the bar size can be reduced to #8 with the same number
of bars (10 #8 bars at each end).



McCormac c18.tex V2 - January 10, 2013 10:20 P.M. Page 563

18.7 Economy in Wall Construction 563

18.7 Economy in Wall Construction
To achieve economical reinforced concrete walls, it is necessary to consider such items as wall
thicknesses, openings, footing elevations, and so on.

The thicknesses of walls should be sufficient to permit the proper placement and vibration
of the concrete. All of the walls in a building should have the same thickness if practical. Such
a practice will permit the reuse of forms, ties, and other items. Furthermore, it will reduce the
possibilities of field mistakes.

As few openings as possible should be placed in concrete walls. Where openings are
necessary, it is desirable to repeat the sizes and positions of openings in different walls rather
than using different sizes and positions. Furthermore, a few large openings are more economical
than a larger number of smaller ones.

Much money can be saved if a footing elevation can be kept constant for any given
wall. Such a practice will appreciably simplify the use of wall forms. If steps are required in
a footing, their number should be kept to the minimum possible.4
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South Point water facility, Durham, North Carolina.

4 Neville, G. B., ed., 1984, Simplified Design Reinforced Concrete Buildings of Moderate Size (Skokie, IL: Portland Cement
Association), pp. 9-12 to 9-13.
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18.8 Computer Example
Concrete walls can be designed using the Excel spreadsheet provided for Chapters 9 and 10
with appropriate input values and interpretation of results. A value of b = 12 in. is used for
walls loaded out-of-plane; thus, the loads per foot of wall length are simply the input loads.
Only a value of As1 is input, as it is uncommon to have more than two layers of steel in a wall.
If only one layer is used, then input a value of γ = 0. In order to avoid having to laterally tie
the compression reinforcement, the total vertical reinforcement area is limited to 0.01 times
the gross concrete area. The spreadsheet could easily be modified to neglect the contribution
of the compression steel, and if this were done, the 0.01 limit would not have to be applied.

Example 18.4

Work Example 18.2 using the spreadsheets for Chapters 9 and 10.

SOLUTION

Open the Excel spreadsheet for Chapters 9 and 10, and the Rect Col Worksheet. Enter one load
case at a time. Refer to the table of load combinations in Example 18.2, and look under the heading
Pu and Mu. Only the values of Pu and Mu for loading combination U = 0.9D + 1.6H are shown
in the screenshot below. It is not possible in this example to distinguish between the value of
As1 required for load cases U = 0.9D + 1.6H and U = 1.2D + 1.6L + 1.6H, so only the former is
shown. Once values are entered for Pu, Mu, b (always 12 in. for walls loaded out-of-plane), h,
f ′
c, and fy, enter trial values for As1 (As2 is always zero for walls loaded out-of-plane). Look at the

interaction diagram and see if the loading ‘‘dot’’ is within the contour of the interaction diagram.
Use the smaller diagram that has been reduced by the φ factor. If the dot falls well outside the
contour, you may need to increase the wall thickness. In working this problem with the interaction
diagrams in Appendix A, it was necessary to use γ = 0.6. For walls with two steel layers, γ = 0.5 is
more realistic, and this example could be easily worked using this value. The value of As1 obtained
by trial and error is the total area of steel per foot of wall length. Half goes in each layer, so enter
Appendix A, Table A.6, seeking a value close to and exceeding 0.48 in2/ft. Select #5 at 71

2 in.
(As = 0.49 in2/ft). If the steel is in only one layer, enter a value of γ = 0. Steel placed in this
fashion is less efficient, and often a thicker wall is needed. Refer to Example 18.2 for horizontal
steel requirements.

Rectangular Column Capacity

Pu = 1.247 k

Mu = 13.8667 ft-k = 166.4 in-k
b =
h =

12 in.
in.8

f'c =
0.6

psi

fy =
4000

psi

As1 =

As2 =

60,000
in.2

Ag =

0.96
in.2

in.2

in.2

0.00
Ast = 0.96

96.0

0.0100

Es =

0.85

cbal =

0.00207

c0.005 =

29,000 ksi
3.79

γ  in cell C6 may be too large to meet
cover requirementsin.

2.4 in.

d5

d4

d3

d2
d1

h

b
²y
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P R O B L E M S

Problem 18.1 Design a reinforced concrete bearing wall using
the ACI empirical formula to support a set of precast concrete
roof beams 6 ft 0 in. on center as shown. The bearing width of
each beam is 8 in. The wall is considered to be laterally
supported at top and bottom and is further assumed to be
restrained against rotation at the footing. Neglect wall weight.
Other data: f ′

c = 3000 psi, fy = 60,000 psi, beam reaction,
D = 35 k, and L = 25 k. (Ans. 7 1

2 -in. wall with #3 bars @
12-in. vertical steel)

beams 6 ft 0 in. o.c.

footing

15 ft 0 in.w
al

l

Problem 18.2 Repeat Problem 18.1 if the wall is not
restrained against rotation at top or bottom, is 8 ft 0 in. in
height, and has an f ′

c = 4000 psi.

Problem 18.3 Design the reinforced concrete wall shown if
f ′

c = 4000 psi and fy = 60,000 psi. (One ans. 10-in. wall with
8 #9 flexural bars at each end)

10 in.

hw = 12 ft 0 in.

Vu = 300 k

w = 12 ft 0 in.

Problem 18.4 Repeat Problem 18.3 if hw = 15 ft 0 in. and
f ′

c = 3000 psi.



McCormac c18.tex V2 - January 9, 2013 4:00 P.M. Page 566

566 CHA P T E R 18 Walls

Problem 18.5 Design the wall in Problem 18.1 using the
column interaction diagrams (see Example 18.2). Change the
15-ft wall height to 20 ft. Replace the beams with a solid,
one-way slab. The slab exerts a dead load of 6 k/ft and a live
load of 4 k/ft, both at a 3-in. eccentricity measured from the
center of the wall toward the left. Soil backfill is placed to a
depth of 20 ft on the right-hand side of the wall. γs = 100 pcf
and ka = 0.33. (Ans. 8-in. wall with #7 bars @ 5 in., 2 layers)

Problem 18.6 Repeat Problem 18.5 using Chapters 8 and 9
Excel spreadsheets.

Problem 18.7 Repeat Problem 18.6 using steel in one layer.
(Ans. 12-in. wall with #9 @ 3 in.)

Problem in SI Units

Problem 18.8 Design a reinforced concrete
bearing wall using the ACI empirical formula to support a set
of precast roof beams 2 m on center as shown. The bearing
width of each beam is 200 mm. The wall is considered to be
laterally restrained at top and bottom and is further assumed
to be restrained against rotation at the footing. Neglect
wall weight. Other data: f ′

c = 21 MPa, fy = 420 MPa, beam
reaction, D = 120 kN, and L = 100 kN. (Ans. 160-mm-thick
wall with #10 bars @ 200 mm o.c. horizontal reinforcing) footing

beams 2 m  o.c.

w
al

l

4 m
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19.1 Introduction
Prestressing can be defined as the imposition of internal stresses into a structure that are of
opposite character to those that will be caused by the service or working loads. A common
method used to describe prestressing is shown in Figure 19.1, where a row of books has
been squeezed together by a person’s hands. The resulting “beam” can carry a downward
load as long as the compressive stress from squeezing at the bottom of the “beam” is greater
than the tensile stress there from the moment produced by the weight of the books and the
superimposed loads. Such a beam has no tensile strength and, thus, no moment resistance until
it is squeezed together or prestressed. You might very logically now expand your thoughts to
a beam consisting of a row of concrete blocks squeezed together and then to a plain concrete
beam with its negligible tensile strength similarly prestressed.

The theory of prestressing is quite simple and has been used for many years in various
kinds of structures. For instance, wooden barrels have long been made by putting tightened
metal bands around them, thus compressing the staves together and making a tight container
with resistance to the outward pressures of the enclosed liquids. For concrete beams, prestress-
ing is primarily used to counteract tension stresses caused by the weight of the members and
the superimposed loads. Should these loads cause a positive moment in a beam, it is possible
by prestressing to introduce a negative moment that can counteract part or all of the positive
moment. An ordinary beam has to have sufficient strength to support itself as well as the other
loads, but it is possible with prestressing to produce a negative loading that will eliminate the
effect of the beam’s weight, thus producing a “weightless beam.”

From the preceding discussion, it is easy to see why prestressing has captured the imag-
ination of so many persons and why it has all sorts of possibilities now and in the future.

In the earlier chapters of this book, only a portion of the concrete cross sections of
members in bending could be considered effective in resisting loads because a large part of
those cross sections were in tension, and thus the concrete cracked. If, however, concrete
flexural members can be prestressed so that their entire cross sections are kept in compression,
then the properties of the entire sections are available to resist the applied forces.

FI GU RE 19.1 Prestressing.

567



McCormac c19.tex V2 - January 9, 2013 4:07 P.M. Page 568

568 CHA P T E R 19 Prestressed Concrete

(a) Cables stretched and
 concrete placed

(b) Cables cut after concrete
 gains sufficient strength

(c) Negative moment
 produced

−

+

FI GU RE 19.2 Sequence showing effect of prestressing force at
different stages.

For a more detailed illustration of prestressing, see Figure 19.2. It is assumed that the
following steps have been taken with regard to this beam:

1. Steel strands (represented by the dashed lines) were placed in the lower part of the beam
form.

2. The strands were tensioned to a very high stress.

3. The concrete was placed in the form and allowed to gain sufficient strength for the
prestressed strands to be cut.

4. The strands were cut.
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Prestressed concrete channels, John A. Denies Son Company Warehouse #4,
Memphis, Tennessee.
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The cut strands tend to resume their original length, thus compressing the lower part of the
beam and causing a negative bending moment. The positive moment caused by the beam weight
and any superimposed gravity loads is directly opposed by the negative moment. Another way
of explaining this is to say that a compression stress has been produced in the bottom of the
beam opposite in character to the tensile stress that is caused there by the working loads.

19.2 Advantages and Disadvantages of
Prestressed Concrete

Advantages

As described in Section 19.1, it is possible with prestressing to utilize the entire cross sections
of members to resist loads. Thus, smaller members can be used to support the same loads, or the
same-size members can be used for longer spans. This is a particularly important advantage
because member weights make up a substantial part of the total design loads of concrete
structures.

Prestressed members are crack-free under working loads and, as a result, look better and
are more watertight, providing better corrosion protection for the steel. Furthermore, crack-
free prestressed members require less maintenance and last longer than cracked reinforced
concrete members. Therefore, for a large number of structures, prestressed concrete provides
the lowest first-cost solution, and when its reduced maintenance is considered, prestressed
concrete provides the lowest overall cost for many additional cases.

The negative moments caused by prestressing produce camber in the members, with
the result that total deflections are reduced. Other advantages of prestressed concrete include
the following: reduction in diagonal tension stresses, sections with greater stiffnesses under
working loads, and increased fatigue and impact resistance compared to ordinary reinforced
concrete.

Disadvantages

Prestressed concrete requires the use of higher-strength concretes and steels and the use of
more complicated formwork, with resulting higher labor costs. Other disadvantages include
the following:

1. Closer quality control required in manufacture.

2. Losses in the initial prestressing forces. When the compressive forces from prestressing
are applied to the concrete, it will shorten somewhat, partially relaxing the cables. The
result is some reduction in cable tension with a resulting loss in prestressing forces.
Shrinkage and creep of the concrete add to this effect.

3. Additional stress conditions must be checked in design, such as the stresses occurring
when prestress forces are first applied and then after prestress losses have taken place,
as well as the stresses occurring for different loading conditions.

4. Cost of end anchorage devices and end-beam plates that may be required.

19.3 Pretensioning and Posttensioning
The two general methods of prestressing are pretensioning and posttensioning. Pretensioning
was illustrated in Section 19.1, where the prestress tendons were tensioned before the concrete
was placed. After the concrete had hardened sufficiently, the tendons were cut and the prestress
force was transmitted to the concrete by bond. This method is particularly well suited for mass
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FI GU RE 19.3 Prestress bed.

FI GU RE 19.4 Posttensioned beam.

production because the casting beds can be constructed several hundred feet long. The tendons
can be run for the entire bed lengths and used for casting several beams in a line at the same
time, as shown in Figure 19.3.

In posttensioned construction (see Figure 19.4), the tendons are stressed after the concrete
is placed and has gained the desired strength. Plastic or metal tubes, conduits, sleeves, or
similar devices with unstressed tendons inside (or later inserted) are located in the form and
the concrete is placed. After the concrete has sufficiently hardened, the tendons are stretched
and mechanically attached to end anchorage devices to keep the tendons in their stretched
positions. Thus, by posttensioning, the prestress forces are transferred to the concrete not by
bond but by end bearing.

It is actually possible in posttensioning to have either bonded or unbonded tendons. If
bonded, the conduits are often made of aluminum, steel, or other metal sheathing. In addition, it
is possible to use steel tubing or rods or rubber cores that are cast in the concrete and removed
a few hours after the concrete is placed. After the steel is tensioned, cement grout is injected
into the duct for bonding. The grout is also useful in protecting the steel from corrosion. If
the tendons are to be unbonded, they should be greased to facilitate tensioning and to protect
them from corrosion.1

19.4 Materials Used for Prestressed Concrete
The materials ordinarily used for prestressed concrete are concrete and high-strength steels. The
concrete used is normally of a higher strength than that used for reinforced concrete members,
for several reasons, including the following:

1. The modulus of elasticity of such concretes is higher, with the result that the elastic
strains in the concrete are smaller when the tendons are cut. Thus, the relaxations or
losses in the tendon stresses are smaller.

2. In prestressed concrete, the entire members are kept in compression, and thus all the con-
crete is effective in resisting forces. Hence, it is reasonable to pay for a more expensive
but stronger concrete if all of it is going to be used. (In ordinary reinforced concrete
beams, more than half of the cross sections are in tension and, thus, assumed to be
cracked. As a result, more than half of a higher-strength concrete used there would
be wasted.)

1 Nawy, E. G., 2005, Prestressed Concrete, 5th ed. (Upper Saddle River, NJ: Prentice Hall), pp. 62–69.
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Prestressed concrete segmental bridge over the River Trent near Scunthorpe,
Lincolnshire, England.

3. Most prestressed work in the United States is of the precast, pretensioned type done at
the prestress yard, where the work can be carefully controlled. Consequently, dependable
higher-strength concrete can readily be obtained.

4. For pretensioned work, the higher-strength concretes permit the use of higher bond
stresses between the cables and the concrete.

High-strength steels are necessary to produce and keep satisfactory prestress forces in
members. The strains that occur in these steels during stressing are much greater than those
that can be obtained with ordinary reinforcing steels. As a result, when the concrete elastically
shortens in compression and also shortens because of creep and shrinkage, the losses in strain
in the steel (and thus stress) represent a smaller percentage of the total stress. Another reason
for using high-strength steels is that a large prestress force can be developed in a small area.

Early work with prestressed concrete using ordinary-strength bars to induce the pre-
stressing forces in the concrete resulted in failure because the low stresses that could be
put into the bars were completely lost due to the concrete’s shrinkage and creep. Should
a prestress of 20,000 psi be put into such rods, the resulting strains would be equal to
20,000/(29 × 106) = 0.00069. This value is less than the long-term creep and shrinkage strain
normally occurring in concrete, roughly 0.0008, which would completely relieve the stress in
the steel. Should a high-strength steel be stressed to about 150,000 psi and have the same creep
and shrinkage, the stress reduction will be of the order of (0.0008) (29 × 106) = 23,000 psi,
leaving 150,000 − 23,200 = 126,800 psi in the steel (a loss of only 15.47% of the steel stress).2

Three forms of prestressing steel are used: single wires, wire strands, and bars. The
greater the diameter of the wires, the smaller become their strengths and bond to the concrete.
As a result, wires are manufactured with diameters from 0.192 in. up to a maximum of 0.276
in. (about 9

32 in.). In posttensioning work, large numbers of wires are grouped in parallel into
tendons. Strands that are made by twisting wires together are used for most pretensioned work.
They are of the seven-wire type, where a center wire is tightly surrounded by twisting the
other six wires helically around it. Strands are manufactured with diameters from 1

4 in. to
1
2 in. Sometimes large, high-strength, heat-treated alloy steel bars are used for posttensioned
sections. They are available with diameters running from 3

4 in. to 1 3
8 in.

High-strength prestressing steels do not have distinct yield points (see Figure 19.10) as
do the structural carbon reinforcing steels. The practice of considering yield points, however,

2 Winter, G., and Nilson, A. H., 1991, Design of Concrete Structures, 11th ed. (New York: McGraw-Hill), pp. 759–760.
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Precast prestressed highway bridge girders at production facility in central Florida.

is so firmly embedded in the average designer’s mind that high-strength steels are normally
given an arbitrary yield point anyway. The yield stress for wires and strands is usually assumed
to be the stress that causes a total elongation of 1% to occur in the steel. For high-strength
bars, the yield stress is assumed to occur when a 0.2% permanent strain occurs.

19.5 Stress Calculations
For a consideration of stresses in a prestressed rectangular beam, refer to Figure 19.5. For this
example, the prestress tendons are assumed to be straight, although it will later be shown that
a curved shape is more practical for most beams. The tendons are assumed to be located an
eccentric distance, e, below the centroidal axis of the beam. As a result, the beam is subjected to
a combination of direct compression and a moment because of the eccentricity of the prestress.
In addition, there will be a moment from the external load, including the beam’s own weight.
The resulting stress at any point in the beam caused by these three factors can be written as
follows, where P is the prestressing force:

f = −P

A
± Pec

I
± Mc

I

In this expression, P is the prestress force, e is the eccentricity of the prestress force
with respect to the centroid of the cross section, c is the distance from the centroidal axis to
the extreme fiber (top or bottom depending on where the stresses are being determined), M is
the applied moment from unfactored loads at the stage at which stresses are being calculated,
A is the uncracked concrete cross-sectional area, and I is the moment of inertia of the gross
concrete cross section. In Figure 19.5, a stress diagram is drawn for each of these three items,
and all three are combined to give the final stress diagram.

The usual practice is to base the stress calculations in the elastic range on the properties
of the gross concrete section. The gross section consists of the concrete external dimensions
with no additions made for the transformed area of the steel tendons or subtractions made
for the duct areas in posttensioning. This method is considered to give satisfactory results
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FI GU RE 19.5 Concrete stress distribution from eccentric prestress force and
superimposed loads.

because the changes in stresses obtained if net or transformed properties are used are usually
not significant.

Example 19.1 illustrates the calculations needed to determine the stresses at various
points in a simple-span prestressed rectangular beam. It will be noted that, as there are no
moments at the ends of a simple beam from the external loads or to the beam’s own weight,
the Mc/I part of the stress equation is zero there and the equation reduces to

f = −P

A
± Pec

I

Example 19.1

Calculate the stresses in the top and bottom fibers at the centerline and ends of the beam shown
in Figure 19.6.

SOLUTION

Section Properties

I =
(

1
12

)
(12 in.) (24 in.)3 = 13,824 in.4

A = (12 in.) (24 in.) = 288 in.2

M = (3 klf) (20 ft)
8

2

= 150 ft-k
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24 in.

12 in.

e = 9 in.

20 ft

3 k/ft (including beam weight)

FI GU RE 19.6 Information for Example 19.1.

Stresses at Beam Centerline

ftop = −P
A

+ Pec
I

− Mc
I

= − 250 k

288 in.2
+ (250 k) (9 in.) (12 in.)

13,824 in.4
− (12 in/ft) (150 ft-k) (12 in.)

13,824 in.4

= −0.868 ksi + 1.953 ksi − 1.562 ksi = −0.477 ksi

fbottom = −P
A

− Pec
I

+ Mc
I

= −0.868 ksi − 1.953 ksi + 1.562 ksi = −1.259 ksi

Stresses at Beam Ends

ftop = −P
A

+ Pec
I

= −0.868 ksi + 1.953 ksi = +1.085 ksi

fbottom = −P
A

− Pec
I

= −0.868 ksi − 1.953 ksi = −2.821 ksi

In Example 19.1, it was shown that when the prestress tendons are straight, the tensile
stress at the top of the beam at the ends will be quite high. If, however, the tendons are draped,
as shown in Figure 19.7, it is possible to reduce or even eliminate the tensile stresses. Out in
the span, the centroid of the strands may be below the lower kern point (see Example 19.2 for
determination of the kern point for this section), but if at the ends of the beam, where there is
no stress due to dead-load moment, it is below the kern point, tensile stresses in the top will
be the result. If the tendons are draped so that at the ends they are located at or above this
point, tension will not occur in the top of the beam.

FI GU RE 19.7 Draped tendons.
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In posttensioning, the sleeve or conduit is placed in the forms in the curved position
desired. The tendons in pretensioned members can be placed at or above the lower kern points
and then can be pushed down to the desired depth at the centerline or at other points. In
Figure 19.7, the tendons are shown held down at the one-third points. Two alternatives to
draped tendons that have been used are to use straight tendons, located below the lower kern
point but that are encased in tubes at their ends or that have their ends greased. Both methods
are used to prevent the development of negative moments at the beam ends.

In ACI Section 18.3.3, bonded and unbonded prestressed members are designated as
being Class U, T, or C members. These classifications are based on computed tensile stresses
in members subject to service loads. Class U members are those that are assumed to be
uncracked and have maximum tensile stresses ft ≤ 7.5

√
f ′

c . Class C members are those that are
assumed to be cracked and have ft > 12

√
f ′

c. Class T members are assumed to be in transition
between cracked and uncracked members and have maximum tensile stresses > 7.5

√
f ′

c ≤
12
√

f ′
c . Prestressed two-way slabs must be designed as Class U sections with ft ≤ 6

√
f ′

c .
ACI Section 18.3.4 states that for Class U and T members, flexural stresses may be com-

puted using the uncracked section properties. For Class C sections, however, it is necessary to
use cracked section properties.

Example 19.2 shows the calculations necessary to locate the kern point for the beam of
Example 19.1. In addition, the stresses at the top and bottom of the beam ends are computed.
It will be noted that, according to these calculations, the kern point is 4 in. below the middepth
of the beam, and it would thus appear that the prestress tendons should be located at the
kern point at the beam ends and pushed down to the desired depth farther out in the beam.
Actually, however, the tendons at the beam ends do not have to be as high as the kern points
because the ACI Code (18.4.1) permits some tension in the top of the beam when the tendons
are cut. This value is 3

√
f ′

ci , where f ′
ci is the strength of the concrete at the time the

tendons are cut, as determined by testing concrete cylinders. The subscript i denotes “initial,”
meaning at initial release of the prestressing tendon, before the concrete gains its full 28-day
strength. This permissible value equals about 40% of the cracking strength or modulus of
rupture of the concrete

(
7.5
√

f ′
ci

)
at that time. The stress at the bottom of the beam, which is

compressive, is permitted to go as high as 0.60f ′
ci .

The code actually permits tensile stresses at the ends of simple beams to go as high
as 6

√
f ′

ci . These allowable tensile values are applicable to the stresses that occur immediately
after the transfer of the prestressing forces and after the losses occur from elastic shortening
of the concrete and relaxation of the tendons and anchorage seats. It is further assumed that
the time-dependent losses of creep and shrinkage have not occurred. A discussion of these
various losses is presented in Section 19.7 of this chapter. If the calculated tensile stresses are
greater than the permissible values, it is necessary to use some additional bonded reinforcing
(prestressed or unprestressed) to resist the total tensile force in the concrete computed on the
basis of an uncracked section.

Section 18.4.2 of the code provides allowable stresses at service loads for Class U and
Class T members after all prestress losses have occurred. An extreme fiber compression stress
equal to 0.60f ′

c is permitted for prestress plus sustained loads. The allowable compression
stress for prestress plus total loads is 0.70f ′

c . In effect, the ACI here provides a one-third
increase in allowable compression stress when a large percentage of the service loads are
deemed to be transient or of short duration.

The allowable tensile stress at ends of simply supported members immediately after
prestress transfer is 6

√
f ′

ci . Section 18.4.3 of the code allows higher permissible stresses than
those here under certain conditions. The commentary on this section of the code states that it is
the intent of the code’s writers to permit higher stress values when justified by the development
of newer and better products, materials, and prestress techniques. Approval of such increases
must be in accordance with the procedures of Section 1.4 of the code.
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Only compressive stresses should be allowed in prestressed sections that are to be used
in severe corrosive conditions. If tension cracks occur, the result may very well be increased
cable corrosion.

Example 19.2

Determine the location of the lower kern point at the ends of the beam of Example 19.1. Calculate
the stresses at the top and bottom of the beam ends, assuming the tendons are placed at the
kern point.

SOLUTION

Locating the Kern Point

ftop = −P
A

+ Pec
I

= 0

− 250 k

288 in.2
+ (250 k) (e) (12 in.)

13,824 in.4
= 0

−0.868 ksi + 0.217e = 0

e = 4 in.

Computing Stresses

ftop = −P
A

− Pec
I

= − 250 k

288 in.2
+ (250 k) (4 in.) (12 in.)

13,824 in.4

= −0.868 ksi + 0.868 ksi = 0

fbottom = −P
A

− Pec
I

= −0.868 ksi − 0.868 ksi = −1.736 ksi

19.6 Shapes of Prestressed Sections
For simplicity in introducing prestressing theory, rectangular sections are used for most of
the examples of this chapter. From the viewpoint of formwork alone, rectangular sections are
the most economical, but more complicated shapes, such as I’s and T’s, will require smaller
quantities of concrete and prestressing steel to carry the same loads and, as a result, they
frequently have the lowest overall costs.

If a member is to be made only one time, a cross section requiring simple formwork (thus,
often rectangular) will probably be used. For instance, simple formwork is essential for most
cast-in-place work. Should, however, the forms be used a large number of times to make many
identical members, more complicated cross sections, such as I’s and T’s, channels, or boxes,
will be used. For such sections, the cost of the formwork as a percentage of each member’s
total cost will be greatly reduced. Several types of commonly used prestressed sections are
shown in Figure 19.8. The same general theory used for the determination of stresses and
flexural strengths applies to shapes such as these, as it does to rectangular sections.

The usefulness of a particular section depends on the simplicity and reusability of the
formwork, the appearance of the sections, the degree of difficulty of placing the concrete, and
the theoretical properties of the cross section. The greater the amount of concrete located near
the extreme fibers of a beam, the greater will be the lever arm between the C and T forces
and, thus, the greater the resisting moment. Of course, there are some limitations on the widths
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(a) Single T

(e) Unsymmetrical I

(f) Inverted T

cast-in-place slab cast-in-place slab

(b) Double T

(c) I section (d) Box section

(g) Channel section

FI GU RE 19.8 Commonly used prestressed sections.
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Prestressed bridge girders during erection.
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Posttensioned segmental precast concrete for East Moors Viaduct, Lanbury Way,
Cardiff, South Wales.
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and thicknesses of the flanges. In addition, the webs must be sufficiently large to resist shear
and to allow the proper placement of the concrete and at the same time be sufficiently thick
to avoid buckling.

A prestressed single T, such as the one shown in Figure 19.8(a), is often a very economical
section because a large proportion of the concrete is placed in the compression flange, where it
is quite effective in resisting compressive forces. The double T shown in Figure 19.8(b) is used
for schools, office buildings, stores, and so on and is probably the most used prestressed section
in the United States today. The total width of the flange provided by a double T is in the range of
about 5 ft to 8 ft, and spans of 30 ft to 50 ft are common. You can see that a floor or roof system
can be erected easily and quickly by placing a series of precast double T’s side by side 

 




. The sections serve as both the beams and slabs for the floor or roof system. Single T’s are
normally used for heavier loads and longer spans up to as high as 100 ft or 120 ft. Double T’s
for such spans would be very heavy and difficult to handle. The single T is not used as much
today as it was in the recent past because of stability difficulties in both shipping and erection.

The I and box sections, shown in parts (c) and (d) of Figure 19.8, have a larger proportion
of their concrete placed in their flanges, with the result that larger moments of inertia are pos-
sible (as compared to rectangular sections with the same amounts of concrete and prestressing
tendons). The formwork, however, is complicated, and the placing of concrete is difficult. Box
girders are frequently used for bridge spans. Unsymmetrical I’s [Figure 19.8(e)], with large
bottom flanges to contain the tendons and small top flanges, may be economical for certain
composite sections where they are used together with a slab poured in place to provide the
compression flange. A similar situation is shown in Figure 19.8(f), where an inverted T is used
with a cast-in-place slab.

Many variations of these sections are used, such as the channel section shown in
Figure 19.8(g). Such a section might be made by blocking out the flanges of a double-T form
as shown, and the resulting members might be used for stadium seats or similar applications.

19.7 Prestress Losses
The flexural stresses calculated for the beams of Examples 19.1 and 19.2 were based on initial
stresses in the prestress tendons. These stresses, however, become smaller with time (over a
period of roughly five years) because of several factors. These factors, which are discussed in
the paragraphs to follow, include:

1. Elastic shortening of the concrete

2. Shrinkage and creep of the concrete

3. Relaxation or creep in the tendons

4. Slippage in posttensioning end anchorage systems

5. Friction along the ducts used in posttensioning

Although it is possible to calculate prestress losses individually for each of the factors
listed, it is usually more practical and often just as satisfactory to use single lump-sum estimates
for all the items together. There are just too many interrelated factors affecting the estimates
to achieve accuracy.

Such lump-sum estimates of total prestress losses are applicable only to average pre-
stressed members made with normal concrete, construction procedures, and quality control.
Should conditions be decidedly different from these and/or if the project is extremely signifi-
cant, it would be well to consider making detailed loss estimates such as those introduced in
the next few paragraphs.

The ultimate strength of a prestressed member is almost completely controlled by the
tensile strength and cross-sectional area of the cables. Consequently, losses in prestress will
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have very little effect on its ultimate flexural strength. However, losses in prestress will cause
more cracking to occur under working loads, with the result that deflections will be larger.
Furthermore, the member’s shear and fatigue strength will be somewhat reduced.

Elastic Shortening of the Concrete

When the tendons are cut for a pretensioned member, the prestress force is transferred to the
concrete, with the result that the concrete is put in compression and shortens, thus permitting
some relaxation or shortening of the tendons. The stress in the concrete adjacent to the tendons
can be computed as described in the preceding examples. The strain in the concrete, εc , which
equals fc/Ec , is assumed due to bond to equal the steel strain, εs . Thus, the loss in prestress
can be computed as εsEs . An average value of prestress loss in pretensioned members because
of elastic shortening is about 3% of the initial value.

An expression for the loss of prestress because of elastic shortening of the concrete can
be derived as shown in the paragraphs to follow.

It can be seen that the compressive strain in the concrete from prestress must equal the
lessening of the steel strain

εc = �εs

These values can be written in terms of stresses as follows:
fc

Ec
= �fs

Es

thus, we can write

�fs = Es fc

Ec
= nfc

where fc is the stress in the concrete at the level of the tendon centroid after transfer of stresses
from the cables.

If we express �fs as being the initial tendon stress, fsi , minus the tendon stress after
transfer, we can write

fsi − fs = nfc

Then, letting P0 be the initial total cable stress and Pf the stress afterward, we obtain

P0 − Pf = n
Pf

Ac
Aps

P0 = n
Pf

Ac
Aps + Pf

P0 = Pf

(
nAps

Ac
+ 1

)
= Pf

Ac
(nAps + Ac)

Then

fc = P0

Ac + Aps
= approximately

P0

Ag

and finally

�fs = nfc = nP0

Ag

a value that can easily be calculated.
For posttensioned members, the situation is a little more involved because it is rather

common to stress a few of the strands at a time and connect them to the end plates. As a
result, the losses vary, with the greatest losses occurring in the first strands stressed and the
least losses occurring in the last strands stressed. For this reason, an average loss may be
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calculated for the different strands. Losses from elastic shortening average about 0.5% for
posttensioned members. It is, by the way, often possible to calculate the expected losses in
each set of tendons and overstress them by that amount so the net losses will be close to zero.

Shrinkage and Creep of the Concrete

The losses in prestressing because of the shrinkage and creep in the concrete are quite variable.
For one thing, the amount of shrinkage that occurs in concrete varies from almost zero up to
about 0.0005 in./in. (depending on dampness and on the age of the concrete when it is loaded),
with an average value of about 0.0003 in./in. being the usual approximation.

The loss in prestress from shrinkage can be said to equal εshEs , where εsh is the shrinkage
strain of the concrete. A recommended value of εsh is given in Zia et al.; it is to be determined
by taking the basic shrinkage strain times a correction factor based on the volume (V)-to-surface
(S) ratio times a relative humidity correction (H).3

εsh = (0.00055)

(
1 − 0.06

V

S

)
(1.5 − 0.15H )

Should the member be posttensioned, an additional multiplier is provided in Zia et al.
to take into account the time between the end of the moist curing until the prestressing forces
are applied.

The amount of creep in the concrete depends on several factors, which have been pre-
viously discussed in this text and can vary from one to five times the instantaneous elastic
shortening. Prestress forces are usually applied to pretensioned members much earlier in the
age of the concrete than for posttensioned members. Pretensioned members are normally cast
in a bed at the prestress yard, where the speed of production of members is an important eco-
nomic matter. The owner wants to tension the steel, place the concrete, and take the members
out of the prestress bed as quickly as the concrete gains sufficient strength so that work can
start on the next set of members. As a result, creep and shrinkage are larger, as are the resulting
losses. Average losses are about 6% for pretensioned members and about 5% for posttensioned
members.

The losses in cable stresses due to concrete creep strain can be determined by multiplying
an experimentally determined creep coefficient Ct by nfc.

�fs = Ct nfc

In Zia et al., a value of Ct = 2.0 is recommended for pretensioned sections, while 1.6 is
recommended for posttensioned ones. These values should be reduced by 20% if lightweight
concrete is used. The value fc is defined as the stress in the concrete adjacent to the centroid
of the tendons due to the initial prestress (−P/A) and due to the permanent dead loads that
are applied to the member after prestressing (−Pec/I ), where e is measured from the centroid
of the section to the centroid of the tendons.

Relaxation or Creep in the Tendons

The plastic flow or relaxation of steel tendons is quite small when the stresses are low, but the
percentage of relaxation increases as stresses become higher. In general, the estimated losses
run from about 2% to 3% of the initial stresses. The amount of these losses actually varies
quite a bit for different steels and should be determined from test data available from the steel
manufacturer in question. A formula is available with which this loss can be computed.

3 Zia, P., Preston, H. K., Scott, N. L., and Workman, E. B., 1979, “Estimating Prestress Losses,” Concrete International:
Design & Construction, Vol. 1, No. 6 (Detroit, MI: American Concrete Institute), pp. 32–38.
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Slippage in Posttensioning End Anchorage Systems

When the jacks are released and the prestress forces are transferred to the end anchorage
system, a little slippage of the tendons occurs. The amount of the slippage depends on the
system used and tends to vary from about 0.10 in. to 0.20 in. Such deformations are quite
important if the members and thus the tendons are short, but if they are long, the percentage
is much less important.

Friction along the Ducts Used in Posttensioning

There are losses in posttensioning because of friction between the tendons and the surrounding
ducts. In other words, the stress in the tendons gradually falls off as the distance from the
tension points increases because of friction between the tendons and the surrounding material.
These losses are the result of the so-called length and curvature effects.

The length effect is the friction that would have existed if the cable had been straight
and not curved. Actually, it is impossible to have a perfectly straight duct in posttensioned
construction, and the result is friction, called the length effect or sometimes the wobble effect.
The magnitude of this friction is dependent on the stress in the tendons, their length, the
workmanship for the particular member in question, and the coefficient of friction between the
materials.

The curvature effect is the amount of friction that occurs in addition to the unplanned
wobble effect. The resulting loss is due to the coefficient of friction between the materials
caused by the pressure on the concrete from the tendons, which is dependent on the stress and
the angle change in the curved tendons.

It is possible to reduce frictional losses substantially in prestressing by several meth-
ods. These include jacking from both ends, overstressing the tendons initially, and lubricating
unbonded cables.

The ACI Code (18.6.2.2) requires that frictional losses for posttensioned members be
computed with wobble and curvature coefficients experimentally obtained and verified during
the prestressing operation. Furthermore, the code provides Equations 18-1 and 18-2 (in Section
18.6.2.1) for making the calculations. The ACI Commentary (R18.6.2) provides values of the
friction coefficients for use in the equations.

19.8 Ultimate Strength of Prestressed Sections
Considerable emphasis is given to the ultimate strength of prestressed sections, the objective
being to obtain a satisfactory factor of safety against collapse. You might wonder why it is
necessary in prestress work to consider both working-stress and ultimate-strength situations.
The answer lies in the tremendous change that occurs in a prestressed member’s behavior after
tensile cracks occur. Before the cracks begin to form, the entire cross section of a prestressed
member is effective in resisting forces, but after the tensile cracks begin to develop, the
cracked part is not effective in resisting tensile forces. Cracking is usually assumed to occur
when calculated tensile stresses equal the modulus of rupture of the concrete (about 7.5

√
f ′

c).
Another question that might enter your mind at this time is this: What effect do the

prestress forces have on the ultimate strength of a section? The answer to the question is quite
simple. An ultimate-strength analysis is based on the assumption that the prestressing strands
are stressed above their yield point. If the strands have yielded, the tensile side of the section
has cracked and the theoretical ultimate resisting moment is the same as for a nonprestressed
beam constructed with the same concrete and reinforcing.

The theoretical calculation of ultimate capacities for prestressed sections is not as routine
as it is for ordinary reinforced concrete members. The high-strength steels from which prestress
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tendons are manufactured do not have distinct yield points. Despite this fact, the strength
method for determining the ultimate moment capacities of sections checks rather well with
load tests as long as the steel percentage is sufficiently small as to ensure a tensile failure and
as long as bonded strands are being considered.

In the expressions used here, fps is the average stress in the prestressing steel at the
design load. This stress is used in the calculations because the prestressing steels usually used
in prestressed beams do not have well-defined yield points (i.e., the flat portions that are
common to stress–strain curves for ordinary structural steels). Unless the yield points of these
steels are determined from detailed studies, their values are normally specified. For instance, the
ACI Code (18.7.2) states that the following approximate expression may be used for calculating
fps . In this expression, fpu is the ultimate strength of the prestressing steel, ρp is the percentage
of prestress reinforcing Aps/bdp, and fse is the effective stress in the prestressing steel after
losses. If more accurate stress values are available, they may be used instead of the specified
values. In no case may the resulting values be taken as more than the specified yield strength
fpy , or fse + 60,000. For bonded members,

fps = fpu

(
1 − γp

β1

[
ρp

fpu

f ′
c

+ d

dp

(
ω − ω′)]) if fse ≥ 0.5fpu (ACI Equation 18-3)

where γp is a factor for the type of prestress tendon whose values are specified in ACI Section
18.0 (γp = 0.55 for fpy/fpu not less than 0.80, 0.40 for fpy/fpu not less than 0.85, and 0.28 for
fpy/fpu not less than 0.90), dp = distance from the extreme compression fiber to the centroid
of the prestress reinforcement, ω = ρfy/f ′

c , and ω′ = ρ′fy/f ′
c .

If any compression reinforcing is considered in calculating fps , the terms in brackets may
not be taken as less than 0.17 (see Commentary R18.7.2). Should compression reinforcing be
taken into account and if the term in brackets is small, the depth to the neutral axis will be
small, and thus the compression reinforcing will not reach its yield stress. For this situation,
the results obtained with ACI Equation 18-3 are not conservative, thus explaining why the ACI
provides the 0.17 limit.

Should the compression reinforcing be neglected in using the equation, ω′ will equal zero
and the term in brackets may be less than 0.17. Should d′ be large, the strain in the compression
steel may be considerably less than the yield strain, and as a result the compression steel will
not influence fps as favorably as implied by the equation. As a result, ACI Equation 18-3 may
be used only for beams in which d ′ ≤ 0.15dp.

For unbonded members with span to depth ≤ 35,

fps = fse + 10,000 + f ′
c

100ρp
but not greater than fpy or (fse + 60,000)

(ACI Equation 18-4)
For unbonded members with span to depth > 35,

fps = fse + 10,000 + f ′
c

300ρp
(ACI Equation 18-5)

However, fps may not exceed fpy , or fse + 30,000.
As in reinforced concrete members, the amount of steel in prestressed sections is limited

to ensure tensile failures. The limitation rarely presents a problem except in members with
very small amounts of prestressing or in members that have not only prestress strands but also
some regular reinforcing bars.

Example 19.3 illustrates the calculations involved in determining the permissible ultimate
capacity of a rectangular prestressed beam. Some important comments about the solution and
about ultimate-moment calculations in general are made at the end of the example.
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Example 19.3

Determine the permissible ultimate moment capacity, φMn, of the prestressed bonded beam of
Figure 19.9 if fpy is 240,000 psi, fpu is 275,000 psi, and f ′

c is 5000 psi.

SOLUTION

Approximate Value of fps from ACI Code

ρp = Aps

bdp
= 1.40 in.2

(12 in.) (21.5 in.)
= 0.00543

fpy

fpu
= 240,000 psi

275,000 psi
= 0.873

∴ γp = 0.40, as given immediately after the presentation of ACI Equation 18-3 earlier in
this section.

fps = estimated stress in prestressed reinforcement at nominal strength. Note that β1 = 0.80
for 5000 psi concrete and d, the distance from the extreme compression fiber of the beam to
the centroid of any nonprestressed tension reinforcement, is zero since there is no such
reinforcement in this beam.

fps = fpu

{
1 − γp

β1

[
ρp

fpu

f ′
c

+ d
dp

(
ω − ω′)]} (ACI Equation 18-3)

= 275 ksi
{

1 − 0.40
0.80

[
0.00543

(
275 ksi

5 ksi

)
+ 0
]}

= 233.9 ksi

Moment Capacity

a = Apsfps

0.85f ′
cb

= (1.40 in.2) (233.9 ksi)
(0.85) (5 ksi) (12 in.)

= 6.42 in.

c = a
β1

= 6.42 in.
0.80

= 8.03 in.

εt = dp − c

c
0.003 = 21.5 in. − 8.03 in.

8.03 in.
(0.003) = 0.0050

∴ The member is tension controlled and φ = 0.9.

φMn = φApsfps

(
d − a

2

)
= (0.9) (1.40 in.2) (233.9 ksi)

(
21.5 in. − 6.42 in.

2

)
= 5390 in-k = 449.2 ft-k

24 in.

12 in.
in.2 1

2

in.21 1
2

FI GU RE 19.9 Beam cross section for Example 19.3.
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Discussion

The approximate value of fps obtained by the ACI formula is very satisfactory for all practical
purposes. Actually, a slightly more accurate value of fps and, thus, of the moment capacity of
the section can be obtained by calculating the strain in the prestress strands because of the
prestressing and adding to it the strain from the ultimate moment. This latter strain can be
determined from the values of a and the strain diagram, as frequently used in earlier chapters
for checking to see if tensile failures control in reinforced concrete beams. With the total
strain, a more accurate cable stress can be obtained by referring to the stress–strain curve for
the prestressing steel being used. Such a curve is shown in Figure 19.10.

The analysis described herein is satisfactory for pretensioned beams or for bonded post-
tensioned beams but is not so good for unbonded posttensioned members. In these latter beams,
the steel can slip with respect to the concrete; as a result, the steel stress is almost constant
throughout the member. The calculations for Mu for such members are less accurate than for
bonded members. Unless some ordinary reinforcing bars are added to these members, large
cracks may form, which are not attractive and which can lead to some corrosion of the prestress
strands.

If a prestressed beam is satisfactorily designed with service loads, then checked by
strength methods and found to have insufficient strength to resist the factored loads (Mu =
1.2MD + 1.6ML), nonprestressed reinforcement may be added to increase the factor of safety.
The increase in T from these bars is assumed to equal Asfy (ACI 18.7.3). The code (18.8.2)
further states that the total amount of prestressed and nonprestressed reinforcement shall be
sufficient to develop an ultimate moment equal to at least 1.2 times the cracking moment of the
section. This cracking moment is calculated with the modulus of rupture of the concrete, except
for flexural members with a shear and flexural strength equal to at least twice that required to
support the factored loads and for two-way, unbonded posttensioned slabs. This additional steel
also will serve to reduce cracks. (The 1.2 requirement may be waived for two-way unbonded
posttensioned slabs and for flexural members with shear and flexural strength at least equal to
twice that required by ACI Section 9.2.)

U
ni

t s
tr

es
s,

 k

Unit strain, %
F I GU RE 19.10 Typical stress–strain curve for
high-tensile steel wire.
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19.9 Deflections
The deflections of prestressed concrete beams must be calculated very carefully. Some members
that are completely satisfactory in all other respects are not satisfactory for practical use because
of the magnitudes of their deflections.

In previous chapters, one method used for limiting deflections was to specify minimum
depths for various types of members (see Table 4.1 in Chapter 4). These minimum depths,
however, are applicable only to nonprestressed sections. The actual deflection calculations are
made as they are for members made of other materials, such as structural steel, reinforced
concrete, and so on. However, the same problem exists for reinforced concrete members, and
that is the difficulty of determining the modulus of elasticity to be used in the calculations. The
modulus varies with age, with different stress levels, and with other factors. Usually the gross
moments of inertia are used for immediate deflection calculations for members whose calculated
extreme fiber stresses at service loads in the precompressed tensile zone are ≤ 7.5

√
f ′

c (ACI
18.3.3). Transformed I values may be used for other situations, as described in ACI Sections
18.3.3, 18.3.4, and 18.3.5.

The deflection from the force in a set of straight tendons is considered first in this section,
with reference being made to Figure 19.11(a). The prestress forces cause a negative moment
equal to Pe and, thus, an upward deflection or camber of the beam. The centerline deflection
can be calculated by taking moments at the point desired when the conjugate beam is loaded
with the M/EI diagram. At the centerline the deflection equals

−
(

Pel

2EI

)(
l

2
− l

4

)
= −Pel2

8EI
↑

Should the cables not be straight, the deflection will be different because of the different
negative moment diagram produced by the cable force. If the cables are bent down or curved,
as shown in parts (b) and (c) of Figure 19.11, the conjugate beam can again be applied to
compute the deflections. The resulting values are shown in the figure.

©
 Y

A
O

 M
E

N
G

 P
E

N
G

/i
St

o
ck

p
ho

to
.

Segmental prestressed concrete bridge construction.
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c.g.
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e

a a� – 2a
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EI

δ = –

(a)

Pe�2

8EI

Pe�
2EI

Pe�
2EI
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EI

M
EI
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conjugate beam

M
EI

diagram on

conjugate beam

(b)

Pe�
2EI

Pea
2EI

–
Pe�
2EI

Pea
2EI

–

δ CL
= – Pe

24EI
(3�2 – 4a2)

–

CL

F I GU RE 19.11 Deflections in prestressed beams.

(continues)

The deflections from the tendon stresses will change with time. First of all, the losses
in stress in the prestress tendons will reduce the negative moments they produce and, thus,
the upward deflections. The long-term compressive stresses in the bottom of the beam
from the prestress negative moments will cause creep and, therefore, increase the upward
deflections.

In addition to the deflections caused by the tendon stresses, there are deflections from
the beam’s own weight and from the additional dead and live loads subsequently applied to
the beam. These deflections can be computed and superimposed on the ones caused by the
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Pe
EI

P P

e

(c)

(d)

parabolic tendons

c.g.

w k/ft

δ = – 5Pe�2

48EI
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Pe�
3EI

w�2
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w�3

24EI
w�3

24EI

M
EI

diagram on

conjugate beam

M
EI

diagram on

conjugate beam

CL

δ = + 5w�4

384EICL

F I GU RE 19.11 (continued)

tendons. Figure 19.11(d) shows the centerline deflection of a uniformly loaded simple beam
obtained by taking moments at the centerline when the conjugate beam is loaded with the
M/EI diagram.

Example 19.4 shows the initial and long-term deflection calculations for a rectangular
pretensioned beam.

Example 19.4

The pretensioned rectangular beam shown in Figure 19.12 has straight cables with initial
stresses of 175 ksi and final stresses after losses of 140 ksi. Determine the deflection at the
beam centerline immediately after the cables are cut. Ec = 4 × 106 psi. Assume the concrete is
uncracked.
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12 in.

16 in.
20 in.

4 in.
30 ft

DL = (beam weight only)
LL = 0.8 k/ft

F I GU RE 19.12 Information for Example 19.4.

SOLUTION

Ig =
(

1
12

)
(12 in.) (20 in.)3 = 8000 in.4

e = 6 in.

Bm weight = (12 in.) (20 in.)

144 in2/ft2
(150 pcf) = 250 lb/ft

Deflection Immediately After Cables Are Cut

δ due to cable = −Pel2

8EI
= − (1.2 in.2 × 175,000 psi) (6 in.) (12 in/ft × 30 ft)2

(8) (4 × 106 psi) (8000 in.4)
= −0.638 in. ↑

δ due to beam weight = + 5wl4

384EI
=

(5)
(

250 lb/ft
12 in/ft

)
(12 in/ft × 30 ft)4

(384) (4 × 106 psi) (8000 in.4)
= +0.142 in. ↓

Total deflection = −0.496 in. ↑

Additional Deflection Comments

Long-term deflections can be computed as previously described in Chapter 6. From the pre-
ceding example, it can be seen that, not counting external loads, the beam is initially cambered
upward by 0.496 in.; as time goes by, this camber increases because of creep in the concrete.
Such a camber is often advantageous in offsetting deflections caused by the superimposed
loads. In some members, however, the camber can be quite large, particularly for long spans
and where lightweight aggregates are used. If this camber is too large, the results can be quite
detrimental to the structure (warping of floors, damage to roofing, cracking and warping of
partitions, etc.).

To illustrate one problem that can occur, it is assumed that the roof of a school is being
constructed by placing 50-ft double T’s made with a lightweight aggregate side by side over
a classroom. The resulting cambers may be rather large, and, worse, they may not be equal
in the different sections. It then becomes necessary to force the different sections to the same
deflection and tie them together in some fashion so that a smooth surface is provided for
roofing. Once the surface is even, the members may be connected by welding together metal
inserts, such as angles that were cast in the edges of the different sections for this purpose.

Both reinforced concrete members and prestressed members with overhanging or can-
tilevered ends often have rather large deflections. The total deflections at the free end of these
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members are the result of the sum of the normal deflections plus the effect of support rotations.
This latter effect may frequently be the larger of the two, and, as a result, the sum of the two
deflections may be so large as to affect the appearance of the structure detrimentally. For this
reason, many designers try to avoid cantilevered members in prestressed construction.

19.10 Shear in Prestressed Sections
Web reinforcement for prestressed sections is handled in a manner similar to that used for a
conventional reinforced concrete beam. In the expressions that follow, bw is the web width or
the diameter of a circular section and dp is the distance from the extreme fiber in compression
to the centroid of the tensile reinforcement. Should the reaction introduce compression into the
end region of a prestressed member, sections of the beam located at distances less than h/2
from the face of the support may be designed for the shear computed at h/2, where h is the
overall thickness of the member.

vu = Vu

φbw dp

The code (11.3) provides two methods for estimating the shear strength that the concrete
of a prestressed section can resist. There is an approximate method, which can be used only
when the effective prestress force is equal to at least 40% of the tensile strength of the flexural
reinforcement, fpu , and a more detailed analysis, which can be used regardless of the magnitude
of the effective prestress force. These methods are discussed in the paragraphs to follow.

Approximate Method

With this method, the nominal shear capacity of a prestressed section can be taken as

Vc =
(

0.6λ
√

f ′
c + 700Vudp

Mu

)
bw d (ACI Equation 11-9)

The code (11.3.2) states that regardless of the value given by this equation, Vc need not
be taken as less than 2λ

√
f ′

cbw d , nor may it be larger than 5λ
√

f ′
cbw d . In this expression, Vu

is the maximum design shear at the section being considered, Mu is the design moment at
the same section occurring simultaneously with Vu , and d is the distance from the extreme
compression fiber to the centroid of the prestressed tendons. The value of Vudp/Mu is limited
to a maximum value of 1.0.

More Detailed Analysis

If a more detailed analysis is desired (it will have to be used if the effective prestressing force
is less than 40% of the tensile strength of the flexural reinforcement), the nominal shear force
carried by the concrete is considered to equal the smaller of Vci or Vcw , to be defined here.
The term Vci represents the nominal shear strength of a member provided by the concrete
when diagonal cracking results from combined shear and moment. The term Vcw represents
the nominal shear strength of the member provided by the concrete when diagonal cracking
results from excessive principal tensile stress in the concrete. In both expressions to follow, d
is the distance from the extreme compression fiber to the centroid of the prestressed tendons
or is 0.8h, whichever is greater (ACI 11.3.3.2).

The estimated shear capacity, Vci , can be computed by the following expression, given
by the ACI Code (11.3.3.1):

Vci = 0.6λ
√

f ′
cbw dp + Vd + Vi Mcr

Mmax
but need not be taken as less than 1.7λ

√
f ′

cbw d

(ACI Equation 11-10)
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In this expression, Vd is the shear at the section in question due to service dead load, Mmax
is the factored maximum bending moment at the section from externally applied design loads,
Vi is the shear that occurs simultaneously with Mmax, and Mcr is the cracking moment, which
is to be determined as follows:

Mcr =
(

I

yt

)(
6λ
√

f ′
c + fpe − fd

)
(ACI Equation 11-11)

where
I = the moment of inertia of the section that resists the externally applied loads
yt = the distance from the centroidal axis of the gross section (neglecting the

reinforcing) to the extreme fiber in tension
fpe = the compressive stress in the concrete from prestressing after all losses at the

extreme fiber of the section where the applied loads cause tension
fd = the stress from unfactored dead load at the extreme fiber where the applied

loads cause tension
From a somewhat simplified principal tension theory, the shear capacity of a beam is

equal to the value given by the following expression but need not be less than 1.7λ
√

f ′
cbw d.

Vcw =
(

3.5λ
√

f ′
c + 0.3fpc

)
bw dp + Vp (ACI Equation 11-12)

In this expression, fpc is the calculated compressive stress (in pounds per square inch) in the
concrete at the centroid of the section resisting the applied loads due to the effective prestress
after all losses have occurred. (Should the centroid be in the flange, fpc is to be computed at
the junction of the web and flange.) Vp is the vertical component of the effective prestress at
the section under consideration. Alternately, the code (11.3.3.2) states that Vcw may be taken
as the shear force that corresponds to a multiple of dead load plus live load, which results in
a calculated principal tensile stress equal to 4λ

√
f ′

c at the centroid of the member or at the
intersection of the flange and web if the centroid falls in the web.

A further comment should be made here about the computation of fpc for pretensioned
members, since it is affected by the transfer length. The code (11.3.4) states that the transfer
length can be taken as 50 diameters for strand tendons and 100 diameters for wire tendons.
The prestress force may be assumed to vary linearly from zero at the end of the tendon to a
maximum at the aforesaid transfer distance. If the value of h/2 is less than the transfer length,
it is necessary to consider the reduced prestress when Vcw is calculated (ACI 11.3.4).

19.11 Design of Shear Reinforcement
Should the computed value of Vu exceed φVc , the area of vertical stirrups (the code does not
permit inclined stirrups or bent-up bars in prestressed members) must not be less than Av as
determined by the following expression from the code (11.4.7.2):

Vs = Av fyd

s
(ACI Equation 11-15)

As in conventional reinforced concrete design, a minimum area of shear reinforcing is
required at all points where Vu is greater than 1

2φVc . This minimum area is to be determined
from the expression to follow if the effective prestress is less than 40% of the tensile strength
of the flexural reinforcement (ACI Code 11.4.6.4):

Av min = 0.75
√

f ′
c

bw s

fyt
but shall not be less than

50bw s

fyt
(ACI Equation 11-13)

where bw and s are in inches.
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Prestressed concrete Runnymede Bridge over Thames River near Egham, Surrey, England.

If the effective prestress is equal to or greater than 40% of the tensile strength of the
flexural reinforcement, the following expression, in which Aps is the area of prestressed rein-
forcement in the tensile zone, is to be used to calculate Av :

Av min =
(

Aps

80

)(
fpu

fyt

)( s

d

)√( d

bw

)
(ACI Equation 11-14)

Section 11.4.5.1 of the ACI Code states that in no case may the maximum spacing exceed
0.75h or 24 in. Examples 19.5 and 19.6 illustrate the calculations necessary for determining
the shear strength and for selecting the stirrups for a prestressed beam.

Example 19.5

Calculate the shearing strength of the section shown in Figure 19.13 at 4 ft from the supports,
using both the approximate method and the more detailed method allowed by the ACI Code.
Assume that the area of the prestressing steel is 1.0 in.2, the effective prestress force is 250 k,
and f ′

c = 4000 psi, normal weight.

SOLUTION

Approximate Method

Beam weight = (12 in.) (24 in.)

144 in2/ft2
(150 lb/ft3) = 300 plf

wu = (1.2) (0.9 klf + 0.3 klf) + (1.6) (2.1 klf) = 4.8 k/ft

Vu = (10 ft) (4.8 klf) − (4 ft) (4.8 klf) = 28.8 k
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3 in.

6 ft 6 ft8 ft

20 ft

12 in.

12 in.

12 in.

24 in.

wD = 0.9 k/ft (plus beam weight)
wL = 2.1 k/ft

F I GU RE 19.13 Information for Example 19.5.

Mu = (10 ft) (4.8 klf) (4 ft) − (4 ft) (4.8 klf) (2 ft) = 153.6 ft-k

Vud
Mu

= (28.8 k) (24 in. − 3 in. − 3 in.)
(12) (153.6 ft-k)

= 0.281 < 1.0 OK

Vc =
(

0.6λ
√

f ′
c + 700

Vudp

Mu

)
bwd (ACI Equation 11-9)

= [ (0.6) (1.0) (
√

4000 psi) + (700) (0.281) ] (12 in.) (18 in.) = 50,684 lb

Minimum Vc = (2) (1.0) (
√

4000 psi) (12 in.) (18 in.) = 27,322 lb < 50,684 lb

Maximum Vc = (5) (1.0) (
√

4000 psi) (12 in.) (18 in.) = 68,305 lb > 50,684 lb

Vc = 50,684 lb

More Detailed Method

I =
(

1
12

)
(12 in.) (24 in.)3 = 13,824 in.4

yt = 12 in.

fpe = compressive stress in concrete due to prestress after all losses

= P
A

+ Pec
I

fpe = 250,000 lb
(12 in.) (24 in.)

+ (250,000 lb) (6 in.) (12 in.)

13,824 in.4
= 2170 psi

Md = dead load moment at 4-ft point = (10 ft) (1.2 klf) (4 ft) − (4 ft) (1.2 klf) (2 ft)

= 38.4 ft-k

fd = Mdyt

I
= stress due to the dead load moment = (12 in/ft) (38,400 ft-lb) (12 in.)

13,824 in.4

= 400 psi

Mcr = cracking moment =
(

I
yt

)(
6λ
√

f ′
c + fpe − fd

)
(ACI Equation 11-11)

=
(

13,824 in.4

12 in.

)
[ (6) (1.0) (

√
4000 psi + 2170 psi − 400 psi) ] = 2,476,193 in-lb

= 206,349 ft-lb



McCormac c19.tex V2 - January 9, 2013 4:07 P.M. Page 594

594 CHA P T E R 19 Prestressed Concrete

wu not counting beam weight = (1.2) (1.2 klf − 0.3 klf) + (1.6) (2.1 klf) = 4.44 k/ft

Mmax = (10 ft) (4.44 klf) (4 ft) − (4 ft) (4.44 klf) (2 ft) = 142.08 ft-k = 142,080 ft-lb

Vi because of wu occurring same time as Mmax = (10 ft) (4.44 klf) − (4 ft) (4.44 klf)

= 26.64 k = 26,640 lb

Vd = dead load shear = (10 ft) (1.2 klf) − (4 ft) (1.2 klf) = 7.2 k = 7200 lb

d = 24 in. − 3 in. − 3 in. = 18 in. or (0.8) (24) = 19.2 in.

Vci = 0.6λ
√

f ′
cbwdp + Vd + ViMcr

Mmax
(ACI Equation 11-10)

= (0.6) (1.0) (
√

4000 psi)(12 in.) (19.2 in.) + 7200 lb + (26,640 lb) (206,349 ft-lb)
142,080 ft-lb

= 54,634 lb ←
but need not be less than (1.7) (1.0) (

√
4000 psi)(12 in.) (19.2 in.) = 24,772 lb

Computing Vcw

fpc = calculated compressive stress in psi at the centroid of the concrete because
of the effective prestress

= 250,000 lb
(12 in.) (24 in.)

= 868 psi

Vp = vertical component of effective prestress at section = 9 in.√
9 in.2 + 72 in.2

(250,000 lb)

=
(

9 in.
72.56 in.

)
(250,000 lb) = 31,009 lb

Vcw = (3.5λ
√

f ′
c + 0.3fpc)bwd + Vp (ACI Equation 11-12)

= (3.5) (1.0) (
√

4000 psi + 0.3 × 868 psi) (12 in.) (19.2 in.) + 31,009 lb = 142,006 lb

Using Lesser of Vci or Vcw
Vc = 54,634 lb

Example 19.6

Determine the spacing of #3  stirrups required for the beam of Example 19.5 at 4 ft from the
end support if fpu is 250 ksi for the prestressing steel and fy for the stirrups is 40 ksi. Use the
value of Vc obtained by the approximate method, 54,634 lb.

SOLUTION

wu = (1.2) (1.2 klf) + (1.6) (2.1 klf) = 4.8 k/ft

Vu = (10 ft) (4.8 klf) − (4 ft) (4.8 klf) = 28.8 k

φVc = (0.75) (54,634 lb) = 40,976 lb

> Vu = 28,800 lb

Vu >
φVc

2
= 20,488 lb < φVc

A minimum amount of reinforcement is needed.
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Since effective prestress is greater than 40% of tensile strength of reinforcing,

Av =
(

Aps

80

)(
fpu

fyt

)( s
d

)√( d
bw

)
(ACI Equation 11-14)

(2) (0.11) =
(

1.0 in.2

80

)(
250,000 psi
40,000 psi

)( s
18 in.

)√18 in.
12 in.

s = 41.38 in., but maximum s =
(

3
4

)
(24 in.) = 18 in. Use 18 in.

19.12 Additional Topics
This chapter has presented a brief discussion of prestressed concrete. A number of other
important topics have been omitted from this introductory material. Several of these items are
briefly mentioned in the paragraphs that follow.

Stresses in End Blocks

The part of a prestressed member around the end anchorages of the steel tendons is called the
end block. In this region, the prestress forces are transferred from very concentrated areas out
into the whole beam cross section. It has been found that the length of transfer for posttensioned
members is less than the height of the beam and in fact is probably much less.

For posttensioned members, there is direct-bearing compression at the end anchorage;
therefore, solid end blocks are usually used there to spread out the concentrated prestress
forces. To prevent bursting of the block, either wire mesh or a grid of vertical and horizontal
reinforcing bars is placed near the end face of the beam. In addition, both vertical and horizontal
reinforcing is placed throughout the block.

For pretensioned members where the prestress is transferred to the concrete by bond over
a distance approximately equal to the beam depth, a solid end block is probably not necessary,
but spaced stirrups are needed. A great deal of information on the subject of end block stresses
for posttensioned and pretensioned members is available.4

Composite Construction

Precast prestressed sections are frequently used in buildings and bridges in combination with
cast-in-place concrete. Should such members be properly designed for shear transfer so the two
parts will act together as a unit, they are called composite sections. Examples of such members
were previously shown in parts (e) and (f) of Figure 19.8. In composite construction, the parts
that are difficult to form and that contain most of the reinforcing are precast, whereas the slabs
and perhaps the top of the beams, which are relatively easy to form, are cast in place.

The precast sections are normally designed to support their own weights plus the green
cast-in-place concrete in the slabs plus any other loads applied during construction. The dead
and live loads applied after the slab hardens are supported by the composite section. The
combination of the two parts will yield a composite section that has a very large moment
of inertia and thus a very large resisting moment. It is usually quite economical to use (a)
a precast prestressed beam made with a high-strength concrete and (b) a slab made with an
ordinary grade of concrete. If this practice is followed, it will be necessary to account for the
different moduli of elasticity of the two materials in calculating the composite properties (thus
it becomes a transformed area problem).

4 Nawy, Prestressed Concrete, p. 173.
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Continuous Members

Continuous prestressed sections may be cast in place completely with their tendons running
continuously from one end to the other. It should be realized for such members that where the
service loads tend to cause positive moments, the tendons should produce negative moments
and vice versa. This means that the tendons should be below the member’s center of gravity in
normally positive moment regions and above the center of gravity in normally negative moment
regions. To produce the desired stress distributions, it is possible to use curved tendons and
members of constant cross section or straight tendons with members of variable cross section.
In Figure 19.14, several continuous beams of these types are shown.

Another type of continuous section that has been used very successfully in the United
States, particularly for bridge construction, involves the use of precast prestressed mem-
bers made into continuous sections with cast-in-place concrete and regular reinforcing steel.
Figure 19.14(d) shows such a case. For such construction, the precast section resists a portion
of the dead load, while the live load and the dead load that is applied after the cast-in-place
concrete hardens are resisted by the continuous member.

Partial Prestressing

During the early days of prestressed concrete, the objective of the designer was to proportion
members that could never be subject to tension when service loads were applied. Such members
are said to be fully prestressed. Subsequent investigations of fully prestressed members have
shown that they often have an appreciable amount of extra strength. As a result, many designers
now believe that certain amounts of tensile stresses can be permitted under service loads.
Members that are permitted to have some tensile stresses are said to be partially prestressed.

A major advantage of a partially prestressed beam is a decrease in camber. This is
particularly important when the beam load or the dead load is quite low compared to the total
design load.

To provide additional safety for partially prestressed beams, it is common practice to
add some conventional reinforcement. This reinforcement will increase the ultimate flexural
strength of the members as well as help to carry the tensile stresses in the beam.5

(a) Curved tendons, member
 with constant corss section

(b) Straight tendons, member
 with variable cross section

(c) Straight tendons, haunched section (d) Precast sections made into
 continuous sections

cast-in-place joints

F I GU RE 19.14 Continuous beams.

5 Lin, T. Y., and Burns, N. H., 1981, Design of Prestressed Concrete Structures, 3rd ed. (Hoboken, NJ: John Wiley & Sons),
pp. 325–344.
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19.13 Computer Example

Example 19.7

Use the Excel spreadsheet provided for Chapter 19 to solve Example 19.2.

SOLUTION

Open the Chapter 19 Excel spreadsheet, and open the worksheet Stress Calculations. Enter
values only for cells highlighted in yellow (only in the Excel spreadsheets, not the printed
example). Results are shown below. This spreadsheet does many more calculations. The ones
to be compared to Example 19.2 are circled.

Stresses in prestressed Pi = 294.118 kips
concrete beams R = 0.85

emidspan =    9 in.
esupport =    9 in.

tendon dia. = 0.5 in.
S1 = 1152 in.3

S2 = 1152 in.3

A = 288 in.2

f'ci = 3500 psi fti = 177 psi

f'c = 5000 psi fts = 849 psi
γc = 145 pcf 0.8

20 ft
wD =

` =
1700 plf

wL = 1000 plf

% of wL sustained 50.00

e0.4l = 9 in.

e50 diam 9.00 in.
wo = 300.00 plf
M0 = 180 in-k
Ms = 1500 in-k
MT = 1800 in-k

Stress calculation at release f1 =

–Pi⏐A

–Pi⏐A +Pie⏐S1 –Mo⏐S1 at midspan at x = 0.4 at 50 dia. at support 

–1021 2298 –156.25 1120 1127 1277 1277 177 = fti midspan

355 = fti ends

f2 = –Pie⏐S2 +Mo⏐S2

–1021 –2298 156 –3163 –3169 –3319 –3319 –2100 = fci

Loaded (Mt) f1 = –Pe⏐A +Pee⏐S1 –MT⏐S1

–868 1953 –1562.5 –477 –415 1085 1085 –3000 = fcs (for Mt)

Loaded (Ms) f1 = –Pe⏐A +Pee⏐S1 –Ms⏐S1

–868 1953 –1302.1 –217 –165 1085 1085 –2250 = fcs (for Ms)

f2 = –Pe⏐A –Pee⏐S2 +MT⏐S1

–868 –1953 1563 –1259 –1321 –2821 –2821 849

stress

allowable
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P R O B L E M S
For all problems, assume concrete is normal weight unless otherwise stated.

Problem 19.1 The beam shown has an effective total prestress of 240 k. Calculate the fiber stresses at top and bottom of the
beam shown at the ends and centerline. The tendons are assumed to be straight. (Ans. ftop = −1.024 ksi, fbot = −0.118 ksi at the
centerline)

25 in.
28 in.

3 in.

15 in.

28 ft

3 k/ft (including beam weight)

Problem 19.2 Compute the stresses at top and bottom of the beam shown at the ends and centerline immediately after the cables
are cut. Assume straight cable and 10% losses. Initial prestress is 170 ksi.

0.9 in.2

5 in.

22 in.
27 in.

14 in.

1 k/ft (not including beam weight)

32 ft

Problem 19.3 The beam shown has a 30-ft simple span,
f ′

c = 5000 psi, fpu = 250,000 psi, and the initial prestress is
160,000 psi, fpy = 0.85fpu , and 10% losses.

(a) Calculate the concrete stresses at top and bottom of the
beam at midspan immediately after the tendons are cut.
(Ans . ftop = +0.183 ksi, fbot = −1.041 ksi)

(b) Recalculate the stresses at midspan after assumed prestress
losses in the tendons of 20%. (Ans . ftop = +0.076 ksi,
fbot = −0.762 ksi)

(c) What maximum service live load can this beam support in
addition to its own weight if allowable stresses of 0.6f ′

c in
compression and 12

√
f ′

c in tension are permitted?
(Ans. 1.605 k/ft)

21 in.
24 in.

3 in.

14 in.

0.9 in.2

Problem 19.4 Using the same allowable stresses permitted in
Problem 19.3, what total uniform load can the beam shown
support for a 50-ft simple span in addition to its own weight?
Assume 20% prestress loss.

26 in.

12 in.

30 in.

4 in.
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Problem 19.5 Compute the cracking moment and the
permissible ultimate moment capacity of the beam of
Problem 19.3 if f ′

c = 5000 psi and fpy = 200,000 psi.
(Ans. Mcr = 144.74 ft-k, φMn = 300 ft-k)

Problem 19.6 Compute the stresses at top and bottom of the
beam of Problem 19.1 at the centerline if it is picked up at the
centerline. Assume 100% impact. Concrete weighs 150 lb-ft3.

Problem 19.7 Determine the stresses at the one-third points of
the beam of Problem 19.6 if the beam is picked up at those
points. (Ans . ftop = +1.009 ksi, fbot = −2.151 ksi)

Problem 19.8 Calculate the design moment capacity of a
12-in. × 20-in. pretensioned beam that is prestressed with
1.2 in.2 of steel tendons stressed to an initial stress of 160 ksi.
The center of gravity of the tendons is 3 in. above the bottom
of the beam. f ′

c = 5000 psi, fpy = 200,000 psi, and
fpu = 250,000 psi.

Problem 19.9 Compute the design moment capacity of the
pretensioned beam of Problem 19.2 if f ′

c = 5000 psi,
fpy = 200,000 psi, and fpu = 225 ksi. Assume fpy/fpu > 0.85.
(Ans. 293.1 ft-k)

Problem 19.10 Compute the design moment capacity of the bonded T beam shown if f ′
c = 5000 psi, fpu = 250,000 psi, and the

initial stress in the cables is 160,000 psi. Also, fpy = 200,000 psi.

30 in.

3 in.

3 in.

3 in.

15 in. 21 in.

Problem 19.11 Calculate the deflection at the centerline of the

beam of Problem 19.3 immediately after the cables are cut.

Assume cable stress = 160,000 psi. (Ans. –0.225 in. ↑)

Problem 19.12 Calculate the deflection at the centerline of the
beam of Problem 19.1 immediately after the cables are cut.
Assume P initial = 240 k and P after losses = 190 k. Repeat
the calculation after losses if 20-k concentrated live loads are
located at the one-third points of the beam and f ′

c = 5000 psi.
Assume that cables are straight and no loads are present other
than the beam weight and the two 20-k loads. Use Ig for all
calculations.
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Problem 19.13 Determine the shearing strength of the beam shown 3 ft from the supports using the approximate method allowed
by the ACI Code. Determine the required spacing of #3  stirrups at the same section if f ′

c = 5000 psi, fpu = 250,000 psi, fy for
stirrups = 50,000 psi, and fse = 200,000 psi. (Ans. s = 21.73 in.)

10 ft 10 ft15 ft

35 ft

15 in.

12 in.

2.4 in.2

30 in.

15 in.

4 in.

wu = 4.52 k/ft

Problem 19.14 Repeat Problem 19.1 using Chapter 19
spreadsheet.

Problem 19.15 Repeat Problem 19.3 using Chapter 19
spreadsheet. (Ans. same as Problem 19.3)

Problems in SI Units

Problem 19.16 Immediately after cutting the cables in the beam shown, they have an effective prestress of 1.260 GPa.
Determine the stresses at top and bottom of the beam at the ends and centerline. The concrete weighs 23.5 kN/m3, cables are
straight, E = 27,800 MPa, and fpy = 0.8fpu .
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Problem 19.17 The beam shown has a 12-m simple span:
f ′

c = 35 MPa, fpu = 1.725 GPa, and the initial prestress is
1.10 GPa.

(a) Calculate the concrete stresses at top and bottom of the
beam at midspan immediately after the tendons are cut.
(Ans. ftop = +1.766 MPa, fbot = −12,086 MPa)

(b) Recalculate the stresses after assumed losses in the
tendons of 18%. (Ans. ftop = +0.618 MPa,
fbot = −9.08 MPa)

(c) What maximum service uniform live load can the beam
support in addition to its own weight if allowable stresses
of 0.45f ′

c in compression and 0.5
√

f ′
c in tension are

permitted? (Ans. 10.095 kN/m)

Problem 19.18 Using the same allowable stresses permitted
and cable stresses as in Problem 19.17, what total uniform
load, including beam weight, can the beam shown support for
a 15-m simple span?

Problem 19.19 Compute the cracking moment and the
design moment capacity of the bonded beam of Problem
19.17 if fpy = 0.8fpu . (Ans. 181.68 kN •m, 438.07 kN •m)

Problem 19.20 Compute the stresses at top and bottom of
the beam of Problem 19.16 if it is picked up at its one-third
points. Assume an impact of 100%.

Problem 19.21 Compute the design moment capacity of the bonded T beam shown if f ′
c = 35 MPa, fpu = 1.725 GPa,

fpy = 0.8fpu , and the initial stress in the cables is 1.100 GPa. (Ans. 843.6 kN •m)

Problem 19.22 Calculate the deflection at the centerline of
the beam of Problem 19.16 immediately after the cables
are cut. Use Ig .
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20.1 Introduction
Masonry is the assemblage of masonry units (brick or concrete block), mortar, and some-
times grout (sort of a soupy concrete) and, if the masonry is reinforced, reinforcing. Concrete
masonry is masonry constructed with concrete block or, more accurately, concrete masonry
units, or CMUs. Masonry can be either reinforced or unreinforced, but this chapter is limited
to reinforced masonry. It can also be designed by allowable stress design or strength design,
but this chapter is limited to strength design. Masonry design and construction is governed by
Building Code Requirements and Specification for Masonry Structures (ACI 530/ACI 530.1)1

and, in many jurisdictions, the International Building Code (IBC).2 These codes change every
three years on a similar schedule to that of the ACI 318 code.

20.2 Masonry Materials

Concrete Masonry Units

Properties of concrete masonry units are governed by ASTM C90. This specification applies to
hollow and solid load-bearing CMUs ordinarily used in the construction of concrete masonry.
The standard limits the thickness of face shells and webs according to the wall thickness of the
units. A good source of information on CMUs is published by the National Concrete Masonry
Association3 (ncma.org) in the NCMA TEK series. See NCMA TEK 1-1E (2007) for more
on CMU standards. Other requirements for CMUs are unit compressive strength (1900 psi
average for three units, 1700 psi minimum for a single unit). For example, if three CMUs are
tested for net area compressive strength and the results are 1750 psi, 1920 psi, and 2010 psi,
the test would fail. Although no test value falls below 1700 psi, the average of these values
is 1893 psi, which is below 1900 psi. Rarely is it necessary to specify a compressive strength
greater than the minimum value, and cost and availability of units with higher strengths are
sometimes a problem if a higher strength is specified.

face shells

webs

wall thickness

1 Building Code Requirements and Specification for Masonry Structures (ACI 530/ACI 530.1) (Farmington Hills, MI: American
Concrete Institute).
2 International Building Code, 2012 (Country Club Hills, IL: International Codes Council [ICC]).
3 National Concrete Masonry Association, NCMA, 13750 Sunrise Valley Drive, Herndon, Virginia.

602
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ASTM C904 also limits the maximum water absorption of units. Absorption is a measure
of the total water required to fill all voids within the net volume of concrete. It is determined
from the weight-per-unit-volume difference between saturated and oven-dry concrete masonry
units. Lightweight units are permitted higher absorption values than medium- or normal-weight
units because their aggregates absorb more water.

Unit dimensions are given in terms of nominal values. That is, a CMU with nominal
dimensions of 8 in. × 8 in. × 16 in. is actually 7 5

8 in. × 75
8 in. × 155

8 in. When a 3
8 -in.

mortar-joint thickness is added to the actual dimension, the result is the nominal dimension.
Finally, the drying shrinkage of CMUs is limited to 0.065%, according to ASTM C426,

Test Method for Linear Drying Shrinkage of Concrete Masonry Units. If CMUs shrink too
much when they dry, walls constructed from them will be more likely to undergo shrinkage
cracks.

Mortar

The question is often asked, Does mortar hold masonry units apart or hold them together?
Actually, mortar does both. It allows the mason to lay irregular masonry units into a wall that
has character, texture, and longevity. Mortar joints are usually 3

8 in. thick, but the bricklayer
can vary their thickness to accommodate variations of unit dimensions. So in this sense, mortar
holds units apart. Mortar also holds units together by bonding units to each other, resulting in
both flexural and direct tensile strength. For reinforced masonry, such tensile strength is not
as important as it is for unreinforced masonry, but it is still important. Mortar is placed on
the masonry units with a hand trowel. The horizontal joints, called bed joints, are usually laid
in “face-shell” bedding. This means that the mortar is placed only on the face shells, not the
webs. The vertical joints in masonry construction are called head joints. These joints are not
usually filled completely with mortar either. They are usually filled only to a depth about equal
to the thickness of the face shells on both faces of the wall.

Running bond construction
masonry wall. Note that the
cells will align vertically to
permit placement of vertical
bars and grout.
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Concrete masonry wall using running bond construction.

4 Standard Specification for Loadbearing Concrete Masonry Units, 201la (West Conshocken, PA: American Society for
Testing and Materials).
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Bottom course of CMU wall.
Large openings called cells
can be reinforced with
vertical bars and grouted.
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Bottom course of concrete masonry wall.
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n.View from top of corner cell. Note that

reinforcing and grout can be placed in the
continuous vertical cell. Mortar projections,
called fins, are the result of mortar in
horizontal joints (bed joints) extruding
laterally during placement of units.

Concrete masonry wall with mortar extrusions into the cell.

Mortar is specified under ASTM C270.5 There are three cementitious systems included
in this standard: cement and lime, masonry cement, and mortar cement. Cement lime mortar
consists of a mixture of cement (e.g., portland cement, blended cement), hydrated lime (soft,
white powder, Ca(OH)2, obtained by the action of water on lime), sand, water, and sometimes
admixtures. Masonry cements are a blend of portland or other cements, plasticizing agents,
fillers, and other materials that are intended to enhance the performance of the mortar. Limits are
placed on its air content, especially when it is used in reinforced masonry. Mortar cement is a
superior masonry cement that is required to meet additional flexural bond strength requirements
not expected of masonry cement. As a result, mortar cement is permitted in high seismic areas
(seismic design categories D and higher), unlike masonry cement.

5 Ibid.
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Mortar is classified into types. The mortar types are designated M, S, N, O, and K. This
odd set of letters actually comes from every second letter of the words MASON WORK. Type
M mortar is the strongest, followed by Type S and Type N. Type O and Type K mortars are
not included in the ACI 530 Code. Type M mortar, while being the strongest, is not the best
choice for most masonry construction. The vast majority of masonry is constructed from Type
S or Type N mortar. Type S or Type M is required for seismic design categories D (SDC D)
and higher.

Mortar is specified either by proportion or by property, but not both. If the designer
does not specify which of these he or she is using, the default is by proportion. Specifying by
proportion is analogous to baking a cake from a recipe. The type and quantity of ingredients
are specified, but the end result (such as how it tastes) is not. ASTM C270 gives the type and
quantity of ingredients for each type of mortar. For example, Type N cement lime mortar has
one part cement, one part lime, and from 21

4 to 3 times the volume of cementitious materials
of sand. The sand is specified under ASTM C144. If the upper limit of three parts of sand is
chosen, then an acceptable “recipe” for Type N mortar is 1 ft3 of cement, 1 ft3 of hydrated
lime, and 6 ft3 of sand. An experienced mason would call this a 1:1:6 mix. NCMA TEK 9-1A
gives more detail on mortar, including how to select, specify, and construct with it.

Grout

Masonry grout is specified under ASTM C476. Grout consists of cement, sand, and water and
may also include lime, coarse aggregates, or admixtures. The most common application of
masonry grout is in reinforced masonry to bond the masonry to the reinforcing steel. Hollow
CMUs have large cells (approximately 4-in. square) into which reinforcing bars can be placed
and the remaining void space subsequently filled with grout. Because the masonry unit is
absorptive, the grout must have a higher slump than concrete. The grout that is placed in the
cells experiences suction from the walls of the units, and water is lost from the grout mix.
If the grout is not “soupy” to start with, then it will not fill the void spaces properly. If you
visit a construction site just after the grout is placed in a masonry wall, the moisture that is
absorbed into the masonry units will be clearly visible on the outside of the wall. The units
will be a darker gray because of the absorption of the water. Cases have been reported where
this observation resulted in the realization that grout was not flowing to the bottom of the grout
pour because of the absence of the change in CMU coloration.

Most concrete is placed with a slump of 3 in. to 5 in. Masonry grout, however, is placed
with a slump of 8 in. to 11 in. Keep in mind that the slump test is performed with a cone that
is only 12 in. tall, so an 11-in. slump is quite high (wet). Many engineers are alarmed by this
because of their experience with concrete. It is important that the engineer realize that grout
must have a high slump in order to be placed and consolidated properly. The water–cement
ratio will be reduced when the units absorb some of the water from the grout, and the grout
will be much stronger as a result. After grout is placed in the cells to the grout lift height, an
immersible vibrator is used to consolidate it. Often, when grout is placed to its final height
to the top of a wall, the top surface of the grout will recede as much as 1 in. after it is
vibrated. This is caused by a combination of the vibration consolidating the grout and the
CMUs absorbing a portion of the water in the grout.

Reinforcing

The reinforcing bars used in reinforced masonry construction are the same as those used in
reinforced concrete. See Section 1.16 of this text for a discussion of reinforcing bars. However,
joint reinforcing is unique to masonry. Joint reinforcing is specified under ASTM A951. It is
usually galvanized for corrosion protection. Its role is mostly for control of shrinkage cracks;
however, it can be included as part of the reinforcing in shear walls in allowable stress design.
Since it cannot be included in strength design, it will not be considered further in this discussion.
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Reinforcing bars are placed in the hollow cells of walls made of hollow CMUs. They are
placed vertically for walls that span vertically. The use of spacers is recommended to ensure the
correct location of the bars within the wall. Most walls have a single layer of reinforcing, hence
the bars are located in the center of the wall. This is quite different from concrete beams, for
example, where the steel is placed near the tension surface for greater efficiency. Most masonry
walls are subjected to wind or earthquake loads that are reversible. Placing the steel off-center
in such a wall would be effective for wind pressure but ineffective for wind suction. If a wall
has a lateral load that is not reversible, such as an earth retaining wall, then placing the steel
off-center can prove to be more efficient. However, the designer must be sure the steel is placed
off-center in the correct direction. Thicker walls (12 in. or more) may be reinforced with two
layers of reinforcement, which is common practice in areas of high seismicity.

Reinforcing steel bars can also be placed horizontally in bond beams. These are used in
walls that span horizontally, for example, between masonry columns embedded within masonry
walls (called pilasters). Bond beams are also used to provide for shear reinforcement in
shear walls. Most designers think of shear reinforcement as vertical stirrups. However,
in shear walls, the direction of the shear force is horizontal, hence so is the shear reinforcement.
This was also the case for concrete shear walls discussed in Chapter 18 of this text. Bond
beams are usually constructed using CMUs that have webs that are not the full height of the
unit. By having half-high webs, a horizontal space is created in a masonry wall, allowing
for placement of the horizontal reinforcing steel. Often two bars are placed in a single bond
beam. Since the vast majority of CMUs are 8 in. high, the vertical spacing of bond beams is a
multiple of 8 in. For example, a wall might have horizontal bond beams, each containing two
#5 bars, spaced in every fourth course, hence every 32 in. A course is simply a continuous
horizontal layer of masonry units.

20.3 Specified Compressive Strength of Masonry
The specified compressive strength of masonry, f ′

m , is analogous to the specified compressive
strength of concrete, f ′

c . Many students, and even designers not familiar with masonry, confuse
masonry unit strengths with f ′

m . Unit strengths are the compressive strength of the units without
the inclusion of mortar, grout, or reinforcement. Unit strengths are higher than f ′

m . The most
commonly specified value of f ′

m is 1500 psi for concrete masonry. Compliance with the specified
value can be demonstrated in two ways: the unit strength method or the prism test method.
The prism test method requires the construction and testing of large test specimens, which is
expensive and which could result in obtaining a low test result well after walls are finished.
The most common method of determining compliance with f ′

m is the unit strength method. In
this method, the unit compressive strength and mortar type are used along with Table 2 in ACI
530.1 (shown as Table 20.1 below) to determine compliance.

TABLE 20.1 Compressive Strength of Masonry Related to Unit
Compressive Strength and Mortar Type (from ACI 530.1, Table 2)

Net Area Compressive Strength of Net Area Compressive Strength of

Concrete Masonry Units, psi (MPa) Masonry, psi (MPa)

Type M or S Mortar Type N Mortar

— 1900 (13.10) 1350 (9.31)

1900 (13.10) 2150 (14.82) 1500 (10.34)

2800 (19.31) 3050 (21.03) 2000 (13.79)

3750 (25.86) 4050 (27.92) 2500 (17.24)

4800 (33.10) 5250 (36.20) 3000 (20.69)
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As an example, if a 1900-psi unit compressive strength is specified along with Type S mortar,
then the net area compressive strength of masonry is 1500 psi. The minimum compressive
strength in ASTM C90 is 1900 psi, so this level of strength is obtained without specifying a
higher-strength unit. If the designer has specified f ′

m = 1500 psi, then this combination of unit
strength and mortar type would comply without testing prisms.

20.4 Maximum Flexural Tensile Reinforcement
The masonry code (ACI 530 Section 3.3.3.5) limits the area of tensile reinforcing in order to
ensure ductility. The provision is analogous to the ACI 318 philosophy of a tension-controlled
section but not exactly the same. The masonry code does not vary the φ factor as a penalty for
not having a tension-controlled section. The maximum flexural tensile reinforcement provision
applies only to members having Mu/(Vu dv) ≥ 1. Members with Mu/(Vu dv) < 1 are stocky
members that are not controlled by flexure. This provision requires that the tensile strain in the
reinforcing steel be at least 50% greater than the yield strain. This 50% factor corresponds to a
ductility factor, μ, of 1.5. For intermediate reinforced shear walls, the μ factor is increased to
μ = 3, and for special reinforced shear walls, μ = 4. Axial load, if present, must be included in
this calculation. The axial load to be considered is D + 0.75L + 0.525QE where QE is the effect
of horizontal seismic (earthquake-induced) forces. The effect of compression reinforcement,
even without lateral restraining reinforcement, may be included when calculating maximum
flexural tensile reinforcement. The impact of this provision is to limit the amount of reinforcing
steel that can be placed in a masonry member. Axial compression reduces this maximum
permitted amount. Alternatively, for a given amount of reinforcing steel, these provisions
impose a limit on the amount of axial compression permitted. Examples of the application of
this limit are included in the example problems for this chapter.

20.5 Walls with Out-of-Plane Loads—
Non–Load-Bearing Walls

A significant number of masonry walls are subjected to out-of-plane loads (wind and earth-
quake) but do not have any external axial loads bearing on them. Picture a simple rectangular
building, such as a convenience store, with a bar-joist roof. If the joist span in the north–south
direction, then they bear on the masonry walls on the east and west end of the building. The
walls on the north and south side have no bar joists bearing on them, hence they are considered
non–load-bearing. Of course, they support their own weight and perhaps just a very small part
of the roof load, but not much. The design of reinforced masonry walls with small or no axial
load is virtually the same as the design of reinforced concrete one-way slabs. However, the
slab stands up and spans vertically. The roof must provide lateral support at the top, and the
footing must provide lateral support at the bottom.

Figure 20.1 shows the cross section of a wall with vertical reinforcing bars located in
cells at a horizontal spacing, s. In this case, counting the seven cells from one bar to the next,
the spacing would be 7 × 8 in. = 56 in. The reason the spacing from center to center of each

s

FI GU RE 20.1 Plan view of wall cross section with reinforcing steel at
spacing s .
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b = 12 in.

d
c a

d – a⎜2
As⎜ftt

T = As fs

²mn = 0.0025

stressstrain

(b)(a)

0.80f 'm

C = 0.80f 'mab

²s

FI GU RE 20.2 One-ft width of non–load-bearing masonry wall showing
masonry stress-block.

cell is 8 in. is because the nominal length of a unit is 16 in., and there are normally two cells
in a unit.

A 12-in. width of the wall in Figure 20.1 is taken out and shown in Figure 20.2. This
figure is comparable to Figure 2.11 in Chapter 2 but reflects the differences between ACI 318
and ACI 530. The differences are listed in Table 20.2.

Looking at Figure 20.2(b), the following equations can be developed. First, summing
forces axially, C = T ,

As fy = 0.80f ′
mab (Equation 20-1)

a = As fy

0.80f ′
mb

(Equation 20-2)

Then, summing moments about the compression force, C,

Mn = As fy

(
d − a

2

)
(Equation 20-3)

The strength reduction factor for reinforced masonry in flexure or combined axial load and
flexure is φ = 0.9 and, as in reinforced concrete, Mu = φMn . Therefore,

Mu = φMn = φAs fy

(
d − a

2

)
Defining the reinforcement ratio, ρ, as it was in reinforced concrete design, ρ = As/bd and
substituting into Equations 20.2 and 20.3 results in:

a = ρdfy
0.80f ′

m
(Equation 20-4)

Mu = φρbdfy

(
d − ρdfy

1.60f ′
m

)
= φfy bd2ρ

(
1 − ρfy

1.60f ′
m

)
(Equation 20-5)

Solving Equation 20.5 for ρ,

ρ = 0.80f ′
m

fy

(
1 −

√
1 − 2Mu

0.80φf ′
mbd2

)
(Equation 20-6)

TABLE 20.2 Comparison of ACI 318 and ACI 530 Stress-Blocks

Limiting Compressive Strain β1 Stress-Block

ACI 318 εcu = 0.003 Varies from 0.65 to 0.85 0.85f ′
c

ACI 530 εmu = 0.0025 0.80 0.80f ′
m
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And solving Equation 20.5 for the parameter bd2,

bd2 = Mu

φfyρ

(
1 − ρ fy

1.6f ′
m

) (Equation 20-7)

The application of the above equations is illustrated in the examples that follow.
When selecting the bar size and spacing, based on the calculation of As , it is normally

assumed that there is an 8-in. spacing from center to center of each cell. So when selecting a
bar spacing, choose a value that is a multiple of 8 in. For example, if a theoretical spacing of
35.4 in. is calculated, a spacing of 32 in. would be selected.

Example 20.1

Design of a Non–Load-Bearing Wall—Reinforced with Out-of-Plane Loads

Design the single-story exterior wall shown, using the ACI 530 Code strength design provisions.
Wind pressure and wind suction are 32 psf. There are no axial loads other than the wall’s own
weight. Use Grade 60 reinforcing steel, a unit strength of 1900 psi, and Type S masonry-cement
mortar. Specify that the wall is fully grouted (i.e., all of the cells, including those between those
containing reinforcing bars, are grouted).

SOLUTION

Treating the wall as simply supported, the moment at mid-height because of wind pressure or
suction is

Mw = wh2

8
= (32 psf) (18 ft)2

8
= 1296 ft-lb/ft

= 15,552 in-lb/ft

The load factor for wind in the 2011 ACI 530 Code (taken from ASCE 7-10) is 1.0, therefore
Mu = 1.0Mw = 15,552 in-lb/ft.

wind load

bar joists

18 ft
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Assume a nominal wall thickness of 8 in. (75
8 in. actual) resulting in d = 7.625 in./2 = 3.81 in.

Also, assume a 1-ft design strip width, as we did when designing one-way slabs made of
reinforced concrete. Then b = 12 in. and the moment Mu = 15,552 in-lb. Then according to
Equation 20.6,

ρ = 0.80f ′
m

fy

(
1 −

√
1 − 2Mu

0.80φf ′
mbd2

)

= (0.80) (1500 psi)
60,000 psi

(
1 −

√
1 − 2(15,552 in-lb)

(0.80) (0.90) (1500 psi) (12 in.) (3.81 in.)2

)

= 0.00173

As = ρbd = (0.00173) (12 in.) (3.81 in.) = 0.0789 in2/ft

This is the area of reinforcing steel per foot of wall width, just as in the design of one-way slabs
in Chapter 4.

This area per foot of wall width can be met with several bar sizes, using ratio and proportion:

s
Ab

= 12
As

where Ab is the area of the bar selected, s is the bar spacing, and As is the theoretical area per
foot of wall width (0.0789 in2/ft) calculated in the previous step.

Bar size designation #3 #4 #5 #6

Ab (in.2) 0.11 0.20 0.31 0.44

Theoretical spacing, s = 12Ab/As (in.) 16.7 30.4 47.1 66.9

Rounded down to multiples of 8 in. 16 24 40 64

Select #5 at 40-in. centers. Place these bars vertically in every fifth cell.
Check the maximum reinforcement provision:

a = Asfy
0.80f ′

mb
= (0.31 in.2) (60,000 lb/in.2)

0.80(1500 lb/in.2) (40 in.)
= 0.3875 in.

c = a
0.8

= 0.3875
0.8

= 0.484 in.

From Figure 20.2(a) and similar triangles,

εs = d − c
c

εmu = 3.81 − 0.484
0.484

(0.0025) = 0.0172

Yield strain for a Grade 60 bar is

εy = fy
Es

= 60,000 psi
29,000,000 psi

= 0.00207

Since the strain in the flexural tensile reinforcing steel is over eight times εy (it has to be
only one and a half times εy ), the wall is quite ductile and the provisions of ACI 530 Section
3.3.3.5 are met. This provision becomes more complex with load-bearing walls because of the
effect of axial load on the strain in the tension steel. It will be covered later under load-bearing
walls.

Note that an 8-in. wall is not necessary for this problem. Rather than just guessing a
wall thickness, a rational approach is available. This approach is very similar to that used in
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reinforced concrete beam and one-way slab design. However, this method still requires making
an assumption—in this case, ρ. Usually masonry walls have a value of ρ somewhere between
0.001 and 0.004. So, assume ρ = 0.002. Substituting this value into Equation 20.7,

bd2 = Mu

φfyρ
(

1 − ρfy
1.6 f ′

m

) = 15,552 in-lb

(0.9) (60,000 psi) (0.002)
[
1 − (0.002) (60,000 psi)

(1.6) (1500 psi)

] = 151.6 in.3

Since b = 12 in. because we assumed a 1-ft design width,

d =
√

151.6 in.3

12 in.
= 3.55 in.

If the steel is placed in the center of the wall such that d = t/2, then a wall thickness of twice
the theoretical value of d is needed. Hence, t ≥ 2 × 3.55 in. = 7.10 in. The designer would then
select the next available thickness above 7.10 in., or 8 in. This method is given only to show the
student how to rationally select wall thicknesses. However, since it is just as easy to just guess
the thickness, rather than ρ, the authors prefer assuming wall thickness at the beginning.

If a 6-in. wall had been selected, the resulting area of reinforcing steel, As, would have
been 0.112 in2/ft (compared to 0.0789 in2/ft for the 8-in. wall). This area can be satisfied using #5
at 33.2 in., which rounds down to 32 in. The resulting steel strain, εs, is 0.00912, which exceeds
one and a half times εy, so the wall is ductile, though not as ductile as the 8-in. wall. The authors
prefer using the 8-in. wall thickness simply because 6-in. units have somewhat smaller cells and
are harder to reinforce and grout. Either solution meets the code.

Shear capacity of walls loaded out of plane is almost never an issue. Generally speaking,
the shear capacity is many times the demand. For that reason, only shear walls and lintels, which
are covered later in this chapter, are designed for shear.

The wall just designed was assumed to be fully grouted. If it had been partially grouted,
much more complicated equations that involve nonrectangular compression zones are involved.
However, just as in the case of design of T beams in Chapter 5, these more complex equations
apply only if the neutral axis is deep enough to go into the webs. In masonry design, if the
neutral axial depth, c, does not exceed the face-shell thickness (11

4 in. for 8 in. and larger wall
thickness), then the equations for fully grouted walls apply also to partially grouted walls. In the
preceding solution, in which an 8-in. wall with #5 bars at 40 in. was chosen, the value of c was
0.484 in., much less than the face-shell thickness. Therefore, this solution would also apply to a
partially grouted wall. Partial grout means that only the reinforced cells are grouted, not the ones
in between. As a practical matter, in order to contain the grout within the reinforced cell, the
webs on each side of each grouted cells must be mortared. This means that the use of face-shell
bedding must be modified accordingly, if partial grout is specified.

20.6 Masonry Lintels
Most masonry walls contain openings such as doors and windows. The loads above these open-
ings must span these openings to be supported by the adjacent masonry. The beam that spans
over such an opening, regardless of what it is made of, is called a lintel. Lintels can be made
of structural steel, precast concrete, or masonry. This section discusses design and construction
of masonry lintels. Many designers choose to use structural steel or precast concrete lintels
simply because they are unfamiliar with the design of masonry lintels. An illustration of a
masonry lintel is shown in Figure 20.3. The large door opening shown might be a garage door,
so the span can be quite large. This illustration shows a three-course lintel, but the number of
courses could range from one to the total number of courses available above the door opening.
The lintel must be fully grouted (ACI 530 Section 3.3.4.2.4), but the masonry above it need
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A

A

Section A–A

b

`n

h d

FI GU RE 20.3 Masonry lintel elevation and cross section.

not be. The lintel is shown to have a span larger than the clear opening, ln . The additional
span represents the bearing length, which ACI 530 (1.13.1.3) requires to be at least 4 in. In
most cases, the bearing length is 8 in. for CMU construction. The lintel must support its own
weight, the weight of masonry above it, and any loads on top of the wall. For example, it
would certainly be possible to have bar joists bearing on top of the wall for its entire length.
The lintel would then have to support the load they impose on the top of the wall.

Lintels must be designed to resist bending and shear, and often their deflection must be
calculated and compared to the limit of l/600 under dead plus live unfactored load (ACI 530
Section 1.13.1.4.1).

All of the equations developed for non–load-bearing walls (Eq. 20.1–20.7) apply equally
to lintels. The main difference is that the value of d for lintels is not half of the lintel depth but
rather is more on the order of reinforced concrete beams. The steel is usually placed as close
to the bottom of a lintel as cover requirements permit. Sometimes, however, instead of using
the U-shaped unit shown in the bottom course in Figure 20.3, Section A–A, the designer may
use units with half-high webs as described earlier when discussing bond beams. These units do
not physically allow the steel to be placed close to the bottom of the lintel because the webs
are in the way. In this case, the steel has approximately a 4-in. cover of masonry below it.
Also, these types of units have vertical cells that have to be “dammed up” to contain the grout
that is placed in them. This dam is often provided using a 2 × 8 wooden form that is also
there to support the lintel during construction. If the units with half-high webs are inverted,
then the reinforcing steel can be placed as close to the bottom as cover limits allow.

Shear Design of Lintels

Shear design of masonry lintels by strength design is very similar to that of reinforced concrete
beams covered in Chapter 7. While it is possible to provide stirrups in masonry lintels, it is
difficult and the authors do not recommend it. Usually if you just make the lintel deeper, no
stirrups will be required. For this reason, and for reasons of space limitations, the design of
stirrups for lintels is not discussed further. The strength reduction factor for shear for reinforced
masonry is φ = 0.8.

If no shear reinforcement is provided, then the masonry must resist the design shear, Vu .
The masonry shear capacity is given by ACI 530 Equation 3-23,

Vnm =
[

4.0 − 1.75

(
Mu

Vu d

)]
An

√
f ′
m + 0.25Pu

The value of Mu/Vudv need not be taken greater than one, and lintels do not ordinarily carry
axial loads, so the worst (and most common) case value for Vnm is

Vnm = 2.25An

√
f ′
m (Equation 20-8)
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where An for solidly grouted lintels is simply the lintel width times its height, b × h . The
design shear is obtained from structural analysis using factored loads and a span measured from
center-to-center of bearing. With reference to Figure 20.3, the span would be ln plus one-half
of the bearing length on each end. So if the bearing length is 8 in., as it normally is for CMU
construction, then l = ln + 8 in. This same span is used to calculate bending moments in the
lintel as well. Although some end restraint is provided to the lintel by the masonry surrounding
it at the supports, it is customary to design single span lintels as simply supported.

The design shear is permitted to be reduced to that value occurring at a distance d/2
from the face of the support (ACI 530 Section 2.3.6.4). In reinforced concrete design, this
corresponding distance is d instead of d/2, and the same limitations apply as for reinforced
concrete. The value of Vnm varies along the span for typical lintels, and the term Mu/Vu d near
the supports is usually small where the design shear, Vu , is large. Therefore, if the designer
is willing to make the effort, the value of Vnm from ACI Equation 3-23 can be evaluated at
increments along the beam, resulting in a larger value than you get from Equation 20.8.

Cracking Moment

MSJC 2008 Section 3.3.4.2.2.2 states, “The nominal flexural strength of a beam shall not be
less than 1.3 multiplied by the nominal cracking moment of the beam, Mcr . The modulus
of rupture, fr , for this calculation shall be determined in accordance with ACI 530 Section
3.1.8.2.” For solidly grouted rectangular sections,

Ig = bh3

12
and Mcr = fr Ig

yt
where yt is half of the total depth, h.

Mn = As fy

(
d − a

2

)
where a = As fy

0.8f ′
mb

The nominal moment capacity, Mn , is determined from the actual bars selected, not the theo-
retically required value.

Deflections

The code limits deflections of beams (a lintel is one type of beam) that support unreinforced
masonry to l/600 under dead plus live unfactored loads (ACI 530 Section 1.13.1.4.1). This
limit is waived if the span length does not exceed eight multiplied by the effective depth, d,
in the masonry beam. In calculating deflections, the use of an effective moment of inertia,
almost identical to that used for deflection calculations of reinforced concrete members, Ieff ,
is permitted:

Ie =
(

Mcr

Ma

)3

In +
[

1 −
(

Mcr

Ma

)3
]

Icr ≤ In (ACI 530 Equation 1-1)

where Ma is the maximum moment in the member from the applied loading for which deflection
is computed, which is under unfactored dead plus live load.

The cracked, transformed moment of inertia, Icr , in Equation 1-1 is calculated as follows:

Icr = n

(
As + Pu

fy

tsp

2d

)
(d − c)2 + bc3

3
(ACI 530 Equation 3-31)

where c = As fy + Pu

0.64f ′
mb

(ACI 530 Equation 3-32)

tsp is the specified wall thickness, and n is the modular ratio defined as the ratio of the elastic
modulus of reinforcing steel (29,000,000 psi) divided by the elastic modulus of masonry (900f ′

m
from ACI 530 Section 1.8.2.2).
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Example 20.2

Design of Reinforced Concrete Masonry Lintel by Strength Design (ACI 530–11)

The lintel shown in Figure 20.3 has a clear opening of 15 ft 4 in. (horizontal). The opening is
10 ft high and the distance from the bottom of the lintel to the top of the wall is 4 ft. The lintel
must carry a uniform live load of 300 plf and a uniform dead load of 320 plf in addition to the
masonry’s own weight. The wall is constructed of 8-in. thick (nominal) CMU, assume simple
supports, and provide a bearing length of 8 in. at each end. The lintel and the masonry above
it are fully grouted. Select reinforcing bars. Unit strength = 1900 psi, density = 115 pcf, Type
S Masonry Cement mortar, Grade 60 reinforcing steel. The weight of fully grouted masonry is
assumed to be 80 psf. (Wall weights are generally given in units of lb/ft2 of wall surface area.)

SOLUTION

The span used in structural calculations is l = ln + bearing length = 15 ft − 4 in. + 8 in. =
16.0 ft. Applying the load factors of ACI 530, which references ASCE 7-10,

wu = 1.2wD + 1.6wL = 1.2 × (320 plf + 80 psf × 4 ft) + 1.6 × 300 plf = 1248 plf

Mn = wul2

8
= 1248 × 162

8
= 39,936 ft-lb = 479.2 in-k

There are many designs that will work. In this design, the authors will look at the shallowest
lintel permitted by the maximum reinforcement provisions and work from there. This approach
ensures that this limit is not violated, but it may lead to designs with more reinforcement in the
lintel than is practical. According to the provisions of ACI 530 Section 3.3.3.5, the strain in the
tension steel must be at least 1.5εy. Then from Figure 20.2(b), the corresponding value of neutral
axis depth permitted, cmax, is given by:

cmax = 0.0025d
0.0025 + 1.5εy

Es

Es
= 72.5d

72.5 + 1.5fy
for CMU construction

For Grade 60 reinforcing, cmax = 0.446d. Since a = 0.80c, amax = 0.8cmax. Using a = amax in
Equation 20-1,

As max fy = 0.80f ′
mamaxb

ρmax = As max

bd
= 0.80f ′

mamax

fyd
= 0.64 f ′

mcmax

fyd
= 0.64 × 1.5 ksi × 0.446d

60 ksi × d
= 0.00714

The preceding equation is limited to members that have rectangular compression zones and a
single layer of tension reinforcing. This is the absolute maximum value of ρ that is permitted, and
it is not advisable to use a value this large or even close to this large. Try ρ = 0.005.

bd2 = Mu

φfyρ
(

1 − ρfy
1.6 f ′

m

) = 479.2 in-k

0.9 × 60 ksi × 0.005
(

1 − 0.005 × 60 ksi
1.6 × 1.5 ksi

) = 1897.4 in.3

for b = 7.625 in., d = 15.77 in.

select d = 20.625 in. (3 courses).
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This assumes that there is a distance of 3 in. from the center of the reinforcing steel to
the bottom of the lintel. This distance would include the bottom shell of the CMU (if U-shaped
units are used), a 1

2 -in. clear space between the reinforcing bar and the bottom shell (ACI 530.1
Section 3.4B.3), and half of the bar diameter. Then from Equation 20-6, and using the value of
d = 20.625 in.,

ρ = 0.80 f ′
m

fy

(
1 −

√
1 − 2Mu

0.80φf ′
mbd2

)

= 0.80 × 1.5 ksi
60 ksi

[
1 −

√
1 − 2 × 479.2 in-k

0.80 × 0.9 × 1.5 ksi × 7.625 in. (20.625 in.)2

]
= 0.00295

As = ρbd = 0.00295 × 7.625 in. × 20.625 in. = 0.464 in.2

select two #5 bars, As = 0.62 in.2.
It is not difficult to place two #5 bars within the width provided by an 8-in. wall thickness.

The amount of width available is approximately 7 5
8 in. − 2 × 1 1

4 in. = 5 1
8 in.

Now compare the capacity, φVnm, to the design shear, Vu, at a distance d/2 from the face
of the support. From Equation 20-8,

Vnm = 2.25An

√
f ′
m = (2.25 × 7.625 in. × 23.625 in.)

√
1500 psi = 15.7 k

Vu = wu

(
ln
2

− d
2

)
= 1.248

(
15.33 ft − 20.625 in./12 in/ft

2

)
= 8.50 k

φVnm = 0.8 × 15.7 k = 12.56 k > Vu = 8.50 k OK

If the amount of steel required had been excessive, or if stirrups had been required for shear,
then the depth of the lintel would be increased to four or even more courses.

As a practical matter, there are six courses of masonry above the opening. The top course
is grouted to form a bond beam to tie the masonry together. If the bottom three courses are also
grouted solid, that leaves two ungrouted courses in the middle. Most designers would simply
use all six courses in their calculations. However, using an extremely deep beam may result in
having to comply with deep beam provisions in ACI 530 Section 1.13.2. These provisions apply
when the effective span is less than three times d for continuous spans. For simple spans, they
apply when the effective span is less than two times d. In this case, if all six courses are used,
then d = 48 in. − 3 in. = 45 in. and 3 × d = 135 in. The effective span is the lesser of the span
from center to center of bearing, or 1.15 times the clear span. In this case, the effective span is
184 in., and the deep beam provisions would not apply.

Deflections

The code limits deflections of beams that support unreinforced masonry to l/600 under dead
plus live unfactored load, but the limit is waived if the span length does not exceed 8d. In
this case, 8 × d = (8) (20.625 in.) = 165 in. The span is 16 ft, or 192 in., which exceeds the
waiver. Deflections must be computed.

Ie =
(

Mcr

Ma

)3

In +
[

1 −
(

Mcr

Ma

)3
]

Icr ≤ In (ACI 530 Equation 1-1)

where

Mcr = fr In

c
= 120 psi × 8379 in.4

11.8 in.
= 85,116 in-lb

fr = 120 psi (ACI 530 Code Table 3.1.8.2)
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In = bh3

12
= (7.625 in.) (23.625 in.)3

12
= 8379 in.4

Ma = wl2

8
= (940 plf) (16 ft)2

8
× 12 in/ft = 360,960 in-lb

and from ACI 530 Equations 3-31 and 3-32 with Pu = 0,

Icr = nAs (d − c)2 + bc3

3
= (21.5) (0.62 in.2) (20.625 in. − 5.09 in.)2

+ (7.625 in.) (5.09 in.)3

3
= 3552 in.4

where

c = Asfy

0.64f ′
cb

= (0.62 in.2) (60 ksi)

(0.64) (1.5 ksi) (7.625 in.)
= 5.09 in.

n = Es

Em
= 29,000,000 psi

900 f ′
m

= 29,000,000 psi

900(1500 psi)
= 21.5

Ie =
(

85.1 in-k

361.0 in-k

)3

8379 in.4 +
[

1 −
(

85.1 in-k

361.0 in-k

)3
]

3552 in.4

= 3615 in.4 < In = 8379 in.4

� = 5wl4

384EI
= (5 × 940 plf) (16 ft)4

384 × 1,350,000 psi × 3615 in.4
× 1728 in3/ft3 = 0.281 in. <

l

600

= (16 ft) (12 in/ ft)

600
= 0.327 in. OK

Cracking Moment

Mn must exceed 1.3Mcr . From MSJC Code 3.1.8.2, using Type S masonry cement mortar with
stress parallel to the bed joints and full grout, fr is found to be 120 psi. Mn is determined from
the actual bars selected, not the theoretically required value. Hence, it is based on the area of
two #5 bars (As = 0.62 in.2), not on As = 0.464 in.2.

a = As fy

0.8f ′
mb

= (0.62 in.2) (60 ksi)

(0.8) (1.5 ksi) (7.625 in.)
= 4.07 in.

Mn = As fy

(
d − a

2

)
= (0.62 in.2) (60 ksi)

(
20.625 in. − 4.07 in.

2

)
= 691.5 in-k

Since Mn > 1.3Mcr = (1.3) (85.1 in-k) = 110.6 in-k, the cracking moment provision is
satisfied.

20.7 Walls with Out-of-Plane Loads—Load-Bearing
Design of load-bearing walls for axial load and bending is very similar to the design of
non–load-bearing walls. The effect of axial load must be added to the equations previously
developed for non–load-bearing walls. Usually the presence of axial compression adds to the
moment capacity of load-bearing walls. If the axial load is eccentric, and it usually is, then
the moment is also increased, but usually not by much compared to the lateral load moment.
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b = 12 in.

d – a⎜2

t
e

d
c a

Pn

As
T = As fy

Pn

²mu = 0.0025

stressstrain

(b)(a)

0.80f 'm

C = 0.80f 'mab

²s

FI GU RE 20.4 One-foot width of load-bearing masonry wall showing masonry
stress-block.

However, axial compression also adds to the design moment because of the P – � effect, so
the beneficial effect may be reduced or even nullified.

As with non–load-bearing walls, a 12 in. width of the wall in Figure 20.1 is taken out
and shown in Figure 20.4. This figure differs from Figure 20.2 only in that it has an axial load,
Pn , applied at an eccentricity, e, with respect to the center of the wall thickness.

Looking at Figure 20.4(b), the following equations can be developed. First, summing
forces axially, Pn = C − T

Pn = 0.80f ′
mab − As fy (Equation 20-9)

a = As fy + Pn

0.80f ′
mb

(Equation 20-10)

Pn is assumed to be positive if compressive. Then, summing moments about the compression
force, C,

Mn = 0.80f ′
m ab

(
d − a

2

)
= (As fy + Pn )

(
d − a

2

)
(Equation 20-11)

These equations are limited to solidly grouted masonry or masonry having a value of
a ≤ tfs , where tfs is the face-shell thickness (usually 1.25 in.). The steel is also assumed to be
located in the center of the wall. As with non–load-bearing walls, Mu ≤ φMn . Therefore,

Mu ≤ φMn = φ

(
As fy + Pu

φ

)(
d − a

2

)
(Equation 20-12)

An easy way to use this equation is to think of an effective area of tension reinforcing
defined as

Ase = As fy + (Pu /φ)

fy
= As + Pu

φfy
(Equation 20-13)

a = Ase fy

0.80f ′
mb

(Equation 20-14)

Mu = φMn = φ(Ase fy)
(

d − a

2

)
(Equation 20-15)

Ase is calculated as though the wall is not axially loaded, then modified for the effect of axial
load by As = Ase − Pu/φfy . So all of the equations developed for non–load-bearing walls can
be used for load-bearing walls, replacing As with Ase . Then, at the end, correct to account for
axial load. If a wall is being analyzed instead of designed, simply use Ase in place of As to
determine its moment capacity. The moment capacity will vary with the amount of axial load.
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Maximum Area of Reinforcement

The maximum area of reinforcement provisions of ACI 530 Section 3.3.3.5 must include the
effects of axial load on ductility. An easy way to do this for load-bearing walls is to calculate
cmax as derived before and be sure that the value of c for your design does not exceed it.

cmax = 0.0025d

0.0025 + 1.5εy

Es

Es
= 72.5d

72.5 + 1.5fy
for CMU construction

Calculate the design value of c from the depth of the stress block, a, using c = a/0.80. How-
ever, the value of a should be based on the actual steel area chosen, not the area theoretically
required. Be sure to use Ase to calculate a so the effect of axial load is included.

Secondary Bending Moments in Walls Loaded
Out-of-Plane: The P-δ Effect

The ACI 530 Code (Section 3.3.5) provides an approximate method to account for secondary
moments in walls that are loaded both axially and out-of-plane. The lateral load produces
deflections that are amplified by the axial load. This effect is accounted for in reinforced
concrete columns by the moment magnifier (Chapter 11), but the masonry code uses a different
approach called the P-δ effect. In order to comply with the limitations of the method, the axial
load is limited to Pu ≤ 0.20f ′

mAg . For slender walls having h/t exceeding 30, Pu ≤ 0.05f ′
mAg

(the coefficient reduces from 0.20 to 0.05). The code does not give guidance on how to design
walls outside this range, so the authors recommend limiting wall designs to the permitted range.
The available research does not include walls outside this range.

Mu = wuh2

8
+ Puf eu

2
+ Puδu (ACI 530 Equation 3-26)

where Pu = Puw + Puf .

The first two terms of the preceding equation are the moment from lateral load (e.g.,
wind or earthquake) and the moment at mid-height from eccentric axial load superimposed on
the top of the wall from a floor or roof system. The third term is the secondary moment caused
by the lateral deflection of the wall being acted upon by the axial load, Pu . In this case, Pu is
larger than Puf because it includes the wall weight, Puw . Note that the wall weight does not
cause bending in the wall because it is concentric.

The term δu in Equation 3-26 is calculated from Equation 3-29 or 3-30. However, the
term δser is replaced with δu and Mser with Mu . In most cases, Mu > Mser and Equation 3-30
is the only equation that applies.

δs = 5Mcr h2

48EmIg
for Mcr ≤ Mser (ACI 530 Equation 3-29)

δs = 5Mcr h2

48EmIg
+ 5(Mser − Mcr )h

2

48Em Icr
for Mcr ≤ Mser ≤ Mu (ACI 530 Equation 3-30)

In using Code Equation 3-29 or 3-30 in conjunction with Equation 3-26, the calculation of
δu is iterative. The first calculation produces a value of δu that is then substituted into Code
Equation 3-26. This new value of Mu is then substituted into Code Equation 3-30, and a new,
larger value of δu is obtained. This new value is now substituted into Code Equation 3-26,
and a new, larger Mu is obtained. This process is repeated until successive calculations show
little difference indicating convergence. In the event that they do not converge, the wall is not
stable, and it must be redesigned. A redesign may involve larger bars, closer bar spacing, a
thicker wall, or a larger value of f ′

m .
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Some of the terms in Code Equation 3-30 require that the final wall design be known.
For example, Icr is the cracked moment of inertia, which requires knowing the wall thickness,
grout spacing (if partially grouted), and bar size and spacing. The designer must make a very
good guess initially or be faced with throwing out the trial design after an iteration or two.

Example 20.3

Exterior Load-Bearing Wall

The wall designed in Example 20.1 is now repeated; however, eccentric axial dead and live loads
are added. The eccentricity of the dead and live loads is 2 in. to the right of the center of the
wall. For simplicity, the wall is also specified to be fully grouted. Loads and load combinations
from ASCE 7-10 are given in the table below:

wind load18 ft

Axial Load, lb Shear Force, lb Moment, lb-in.

Loads and Load Combinations top mid-height1 top bottom top mid-height

Dead, D 850 850 −7.87 7.87 1700 850

Live, L 280 280 −2.59 2.59 560 280

Wind, W (from Example 20.1) 0 0 −288 288 0 15,552

(1) 1.4D 1190 1190 −11.02 11.02 2380 1190

(2) 1.2D + 1.6L + 0.5(Lr or S or R) 1468 1468 −13.59 13.59 2936 1468

(3a) 1.2D + (f1L or 0.5W) + 1.6(Lr or S or R) 1160 1020 −10.74 10.74 2320 1160

(3b) 1.2D + (f1L or 0.5W) + 1.6(Lr or S or R) 1020 1160 −153.4 153.4 2040 8796

(4) 1.2D + 1.0W + f1L + 0.5(Lr or S or R) 1160 1020 −298.7 298.7 2040 16,712

(5) 1.2D + 1.0E + f1L + 0.2S 1160 1020 −10.74 10.74 2320 1160

(6) 0.9D + 1.0W 765 765 −295.1 295.1 1530 16,317

(7) 0.9D + 1.0E 765 765 −7.08 7.08 1530 0

1Plus wall self-weight at critical section.

f1 = 0.5 since the live load is less than 100 psf, the building is not a garage and is not for public
assembly. (ASCE 7-10 Section 2.3.2, exception 1)

The loads Lr (roof live), S (snow), and R (rain) are all zero in this example. Case 4 or
case 6 is likely to control the design since the moment is so large. Assume case 4 controls
(Pu = 1160 lb/ft, Mu = 16,712 in-lb/ft) and verify later. However, both cases must be checked.
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Try a 6-in. wall. d = 5.625 in./2 = 2.8125 in.

ρ = 0.8f ′
m

fy

(
1 −

√
1 − 2Mu

0.8 φf ′
mbd2

)

= 0.8 × 1500 psi
60,000 psi

[
1 −

√
1 − 2 × 16,712 in-lb

(0.8 × 0.9 × 1500 psi × 12 in.) (2.8125 in.)2

]

= 0.00358

As = ρbd − Pu

φfy
= 0.00358 × 12 in. × 2.8125 in. − 1020

(0.9) (60,000 psi)
= 0.102 in2/ft

Try #5 bars at 24 in. (As = 0.31 in.2 × 12 in./24 in. = 0.155 in2/ft > 0.102 in2/ft OK)
MSJC 2011 Code Section 3.3.5.3 requires for h/t > 30 that the axial stress under

factored load not exceed 0.05f ′
m. In this case, h/t = 18 ft × 12 in/ft/6 in. = 36, so the axial

stress cannot exceed 0.05 × 1500 psi = 75 psi. The maximum factored axial load is 1468 lb.
If wall self-weight is added, based on a partially grouted wall with #5 bars at 24-in. centers, the
dead load is increased by the wall height times a wall weight of 37 psf. The value of Pu using
a dead load factor of 1.2 is, therefore, Pu = 1468 lb/ft + 1.2 × 18 ft × 37 psf = 2267 lb/ft. The
cross-sectional area of a 6-in. wall with full grout is 12 in. × 5.625 in. = 67.5 in2/ft (NCMA TEK
14-13B). The stress is (2267 lb/ft)/(67.5 in2/ft) = 33.6 psi < 75 psi. This condition is satisfied.
It would probably be OK to use the wall weight at mid-height here, but the authors chose to be
conservative. The code provision is unclear on this point.

This is a preliminary design in that the P-δ moments are not yet included. It has
intentionally been somewhat conservative by trying a bar selection with As = 0.155 in2/ft when
only 0.102 in2/ft is needed. A similar design for load case 6 results in As = 0.105 in2/ft, which
is more than 0.102 in.2, hence load case 6 controls without the P-δ effect. However, case 4
will have a higher P-δ term, so it is not possible to tell which is more critical without actually
making the P-δ calculations. The trial value of As(0.155 in2/ft) exceeds both 0.102 in2/ft and
0.105 in2/ft.

P-δ Analysis for Load Case 4 (Pu = 1160 lb/ft, Mu = 16,712 in-lb/ft)

The dead load for load case 4 is increased by self-weight of the wall above the critical section
(9 ft × 37 psf = 333 lb/ft). The new value of Pu = 1160 lb/ft + 1.2 × 333 lb/ft = 1560 plf.

n = 29,000

1350
= 21.5

c = As fy + Pu

0.64f ′
mb

= (0.155 in2/ft) (60,000 psi) + 1560 lb

(0.64) (1500 psi) (12 in.)
= 0.943 in.

Icr = bc3

3
+ n

(
As + Pu

fy

)
(d − c)2

= (12 in.) (0.943 in.)3

3
+ (21.48)

(
0.155 in.2 + 1560 lb

60,000 psi

)
(2.8125 in. − 0.943 in.)2

= 16.94 in4/ft

Ig = bt3
sp

12
= 12 × 5.6253

12
= 178 in4/ft (NCMA TEK 14.1B)

fr = 153 psi (ACI 530 Table 3.1.8.2.1 for full grout)
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The value of fr can be increased by the axial stress, Pu/An , associated with the load case
under consideration because axial compression offsets flexural tension.

fr = 153 psi + 1560 lb

(12 in.) (5.625 in.)
= 176.1 psi

Mcr = fr Ig

yt
= 176.1 psi × 178 in.4

2.8125 in.
= 11,145 in-lb/ft

Since Mu > Mcr , Equation 3-30 controls.

δu = 5Mcr h2

48EmIg
+ 5(Mu − Mcr)h

2

48EmIcr
for Mcr ≤ Mu

δu = (5) (11,145 in-lb) (216 in.)2

(48) (1,350,000 psi) (178 in.4)
+ (5) (16,712 in-lb − 11,145 in-lb) (216 in.)2

(48) (1,350,000 psi) (16.94 in.4)
= 1.408 in.

Mu = wuh2

8
+ Puf e

2
+ Puδu = 16,712 + 1560 × 1.408 = 18,909 in-lb

Repeat the calculation of δu , using the new value of Mu (18,909 in-lb instead of 16,712 in-lb).
The new value of δu is 1.875 in. After three iterations, the moment is 19,878 in-lb and δu is
2.03 in. If carried out to convergence (five or six iterations), the moment is 19,998 in-k/ft and
δu is 2.10 in. These calculations are well suited for spreadsheets.

Now that the design moment, including the secondary moment (P-δ effect), has been
determined, the required As to resist this moment at an axial load of 1560 lb must be determined.
Equations 20-12 through 20-15 are applicable for this solution since the wall is solidly grouted
and the steel is not off-center. An iterative solution follows, but the equations can be solved a
number of ways, just as we did in Chapter 4.

As fy + Pu

φ
= Mu

φ
[
d − (a/2)

]
Iterate these two equations until a converges,

a =
[
As fy + (Pu/φ

)]
0.8f ′

mb

Assume a value for a, start with a = 1 in.

As fy + Pu

φ
= 19,998 in-lb

0.9

(
2.8125 in. − 1 in.

2

) = 9609 lb

a = 9609 lb

(0.8) (1500 psi) (12 in.)
= 0.667 in.

This value of a is closer to the actual value, and it is now used instead of a = 1 in.

As fy + Pu

φ
= 19,998 in-lb

0.9

(
2.8125 in. − 0.667 in.

2

) = 8964 lb

a = 8964 lb

(0.8) (1500 psi) (12 in.)
= 0.622 in.

Iterating again,

As fy + Pu

φ
= 19,998 in-lb

0.9

(
2.8125 in. − 0.622 in.

2

) = 8884 lb

a = 8884 lb

(0.8) (1500 psi) (12 in.)
= 0.617 in.
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The last two iterations are close enough to be considered to have converged. So the value of
As can be computed based upon the last value, As fy + Pu/φ = 8884 lb.

As = 8884 lb − (Pu/φ)

fy
= 8884 lb − (1560 lb/0.9)

60,000 psi
= 0.119 in.2

Since this value of As is less than the trial value of 0.155 in.2, the trial value is sufficient.
Note that it does not mean that an As of 0.119 in.2 is sufficient because the wall deflection
properties were based upon the trial value of 0.155 in.2, not 0.119 in.2.

P-δ Analysis for Load Case 6 (Pu = 765 lb/ft, Mu = 16,317 in-lb/ft)

The dead load for load case 6 is also increased by self-weight of the wall above the criti-
cal section (9 ft × 37 psf = 333 lb/ft). The new value of Pu = 765 lb/ft = 0.9 × 333 lb/ft =
1065 plf. The correction for fr for axial load is fr = 153 psi + 1065 lb/ft/(12 in.) (5.625 in.) =
168.8 psi. The corrected value of Mcr = (168.8 psi) (178 in.4)/(2.8125 in.) = 10,683 in-lb/ft.

Use the same iterative method to find δu as was used for case 4, but for an axial load of
1065 lb/ft and moment (before P-δ is applied) of 16,317 in-lb/ft.

Following all of the tedious steps used for case 4, the final value of δu = 1.885 in. and
the moment, Mu , is 18,324 in-lb/ft. Instead of using the iterative method, the direct solution
of the quadratic equation (Equation 20-6) is used to find the required As , just to demonstrate
another technique.

ρ = 0.80f ′
m

fy

(
1 −

√
1 − 2Mu

0.80φf ′
mbd2

)

= (0.80) (1500 psi)

60,000 psi

[
1 −

√
1 − 2 (18,324 in-lb)

0.80(0.90) (1500 psi) (12 in.) (2.8125 in.)2

]

= 0.00397

Ase = ρbd = (0.00397) (12 in.) (2.8125 in.) = 0.134 in2/ft

As = Ase − Pu

φfy
= 0.134 in2/ft − 1065 lb/ft

(0.9) (60,000 psi)
= 0.114 in2/ft

Since this area is less than 0.119 in.2 determined for case 4, case 4 is more critical.

Check for Compliance with the Maximum Reinforcing Provisions

The final design of #5 bars at 24 in. on center must now be checked for compliance with ACI
530 Section 3.3.3.5.1. One way to check for this provision is to confirm that the actual value
of c is less than cmax.

cmax = 0.0025d

0.0025 + μεy

Es

Es
= 72.5d

72.5 + μfy
= 72.5d

72.5 + μ × 60
for CMU construction

cmax = 0.446d for μ = 1.5

amax = 0.8cmax = 0.8(0.446) (2.8125 in.) = 1.00 in.

a = As fy + (Pu/φ
)

0.80f ′
mb

= (0.155 in.2) (60,000) + (1560 lb/0.9)

(0.8) (1500 psi) (12 in.)
= 0.766 in. < amax OK
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The value of a used here (0.766 in.) is the actual value used in the wall, not the theoretical
value needed.

This example demonstrates that strength design is not well suited for hand calculations
because of the P-δ effect. A 6-in. nominal thickness wall was chosen here to illustrate
the P-δ calculations on an example with significant deflections. It is not intended to be a
recommended design.

Use a 6-in. CMU wall with #5 bars spaced at 24-in. centers, fully grouted.

20.8 Walls with In-Plane Loading—Shear Walls
A masonry shear wall is a masonry wall loaded in its own plane. Reinforced concrete shear
walls were discussed in Section 18.5 of this text. Refer to that section to understand the
source of loads for shear walls. The assumptions used to develop equations for walls loaded
out of plane are applied to the geometry of shear walls to obtain equations necessary for
their analysis and design. Most shear walls contain multiple layers of reinforcement (e.g.,
Figure 18.8 in Chapter 18). Each of these layers is subjected to a different strain, hence
potentially a different stress. The rectangular stress block used for lintels and walls is also
applied to the masonry in compression in shear walls.

Figure 20.5 shows a shear wall subjected to a compressive strain of εmu on the right side
and a tensile strain of ε tu on the left. The axial force and bending moment that would cause this
strain is calculated in the same way as for reinforced concrete columns in Section 10.3 of this
text. Each reinforcing bar has a different strain, hence, potentially a different stress. However,
if the strain in any bar is εy or more, the stress is fy . If the strain in a bar is compressive, the
stress is taken as zero. However, when calculating the maximum flexural tensile reinforcement
described in Section 20.4, using the compressive force in reinforcing steel is permitted.

From the strain diagram in Figure 20.5 using similar triangles, the strain at any location
in the wall, ε i , can be related to εmu , c, and the distance to that location from the extreme
compressive fiber, εi . For CMU construction, εmu = 0.0025.

εmu

c
= εtu

dv − c
= εi

di − c

The stress in each bar is the strain in that bar, ε i , multiplied by Es , but not more than fy .

Ti = Asi fsi = Asi εi Es = Asi
εmu(di − c)

c
Es ≤ Asi fy

The compressive force in the masonry is determined from the compressive stress block,

C = 0.80f ′
matsp = 0.80f ′

m(0.80c)tsp = 0.64f ′
mctsp

T1

²1
²2

²3
²tu

²i

²mu

tsp

dv

T2 T3 Ti

di

c

a

strain

stress

0.80f 'm

fy

FI GU RE 20.5 Shear wall strain and stress.
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The axial force through the centroid of the wall, Pu , is determined from summing axial forces:

Pn = C −
∑

Ti = 0.64f ′
mctsp −

∑
Asi fsi

The in-plane moment in the wall is obtained by summing moments of the individual tension
forces in the steel bars and the moment of the compression force with respect to the center of
the wall.

Mn = C
dv − a

2
+
∑

Ti

(
di − dv

2

)
The coordinates of Pn , Mn pairs for any assumed value of neutral axis depth, c, can then
be plotted to form an interaction diagram. This is the same process used for developing the
interaction diagram for reinforced concrete columns in Chapter 10.

Example 20.4

Develop the interaction diagram for a shear wall that has the following properties:

dv = 24 ft 8 in. = 296 in., height = h = 14 ft 0 in., tsp = 7.625 in., #5 bars at 48 in. centers

f ′
m = 1500 psi, fy = 60 ksi

SOLUTION

This wall will have seven bars, equally spaced, with the first bar at 4 in. from each end. Hence,
according to the notation in Figure 20.5,

d1 = dv − 4 in. = 296 in. − 4 in. = 292 in.

d2 = d1 − 48 in. = 292 in. − 48 in. = 244 in.

d3 = 196 in., d4 = 148 in., d5 = 100 in., d6 = 52 in., d7 = 4 in.

Assume c = 146 in.

Then a = 0.8(146 in.) = 116.8 in.

C = 0.64f ′
mctsp = 0.64(1500 psi) (146 in.) (7.625 in.)

= 1,068,720 lb = 1069 k

ε i

di − c
= εmu

c
, ε1 = (d1 − c)εmu

c
= (292 − 146) (0.0025)

146
= 0.0025 > εy

∴ fs1 = fy = 60 ksi

ε2 = (d2 − c)εmu

c
= (244 − 146) (0.0025)

146
= 0.001678 < εy

∴ fs2 = ε2Es = (0.001678) (29,000 ksi) = 48.66 ksi

ε3 = (d3 − c)εmu

c
= (196 − 146) (0.0025)

146
= 0.00086 < εy

∴ fs2 = ε3Es = (0.00086) (29,000 ksi) = 24.83 ksi

ε4 = (d4 − c)εmu

c
= (148 − 146) (0.0025)

146
= 0.000034 < εy

∴ fs2 = ε4Es = (0.000034) (29,000 ksi) = 0.99 ksi

The remaining bars are in compression, and therefore their contribution to the forces in the
section must be neglected. The tension force in each bar is Ti = Asifsi. Since all of the bars are
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the same size (they usually are in a shear wall), Asi is constant for all bars, and the equations are
simplified as follows:

Pn = C −
∑

Ti = 0.64f ′
mctsp − Asi

∑
fsi

= (0.64) (1.500 ksi) (146 in.) (7.625 in.) − (0.31 in.2)(60 k + 48.66 k + 24.83 k + 0.99 k)

= 1027 k

φPn = 0.9(1027 k) = 924 k

Mn = C
dv − a

2
+
∑

Ti

(
di −

dv

2

)
= C

dv − a
2

+ Asi

∑
fsi

(
di −

dv

2

)

= (1069 k)
296 in. − 116.8 in.

2

+(0.31)

⎡
⎢⎢⎣

(60 ksi)
(

292 in. − 296
2

in.
)

+ (48.66 ksi)
(

244 in. − 296
2

in.
)

+ (24.83 ksi)
(

196 in. − 296
2

in.
)

+ (0.99 ksi)
(

148 in. − 296
2

in.
)
⎤
⎥⎥⎦

= 100,253 in-k = 8354 ft-k

φMn = 0.9(8354 ft-k) = 7519 ft-k

The coordinates of one point of the interaction diagram φPn, φMn are (924 k, 7521 ft-k). This
single point is shown in Table 20.3, along with numerous other points. The points are calculated
from assumed values of c/d1 that give a wide range of values for this parameter. Also included
is the axial load associated with ACI 530 Code Equations 3-18 and 3-19. This is the horizontal
line shown at a value of 1232 k. This value is the only one that depends on the slenderness
reduction factor. The value of φPn max associated with the maximum permitted reinforcement
provision is also included in the table. It is obtained using c = cmax and, in this case, is based

TABLE 20.3 Development of Interaction Diagram for Masonry Shear Wall for Example 20.4

φMn, ft-k φPn, k

c/dt c Cmasonry fs7 fs6 fs5 fs4 fs3 fs2 fs1 Moment Axial Force

0 2435

1.0137 296.00 2166.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4810 1950

0.9 262.80 1923.70 0.00 0.00 0.00 0.00 0.00 0.00 −8.06 6214 1729

0.8 233.60 1709.95 0.00 0.00 0.00 0.00 0.00 −3.23 −18.13 7065 1533

0.7 204.40 1496.21 0.00 0.00 0.00 0.00 0.00 −14.05 −31.07 7569 1334

0.6 175.20 1282.46 0.00 0.00 0.00 0.00 −8.61 −28.47 −48.33 7730 1130

0.5472 159.77 1169.54 0.00 0.00 0.00 0.00 −16.44 −38.22 −60.00 7681 1021

0.5472 159.77 1169.54 0.00 0.00 0.00 0.00 −16.44 −38.22 −60.00 7681 1021

0.5 146.00 1068.72 0.00 0.00 0.00 −0.99 −24.83 −48.66 −60.00 7519 924

0.4 116.80 854.98 0.00 0.00 0.00 −19.37 −49.16 −60.00 −60.00 6884 717

0.3 87.60 641.23 0.00 0.00 −10.26 −49.99 −60.00 −60.00 −60.00 5823 510

0.2 58.40 427.49 0.00 0.00 −51.64 −60.00 −60.00 −60.00 −60.00 4340 303

0.1 29.20 213.74 0.00 −56.61 −60.00 −60.00 −60.00 −60.00 −60.00 2394 93

0.01 2.92 21.37 −26.82 −60.00 −60.00 −60.00 −60.00 −60.00 −60.00 346 −89

φ∗ Pure tension = −sum (Asify) 0 −117

c = cmax 130.28 953.63 60.00 43.56 16.85 −9.86 −36.58 −60.00 −60.00 φPn max = 845.4

φ∗ Code Equation 3-18 or 3-19 0 1232
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on a ductility factor of μ = 4 (special reinforced shear wall). Note that in calculating ρPn max
the compression force in the reinforcing steel was included, unlike in all other cases. The pure
tension case (Pn = Asfy, Mn = 0), is also included to complete the diagram.

2500
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20001000 3000 5000 70000 4000 6000 8000
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φMn, ft-k

500

0

−500

FI GU RE 20.6 Interaction diagram for reinforced masonry shear wall for
Example 20.4.

The coordinates of the last two columns from Table 20.3 are plotted in Figure 20.6.
Just as with reinforced concrete columns, all sets of values of Pu and Mu associated

with the load combinations given in Chapter 4 must fall within the diagram. For example, if a
shear wall has Mu = 6000 ft-k, the axial load must fall within the range 550 k < Pu < 1750 k.
However, the maximum axial load from Equation 3-18 is 1252 k, so this value would control
instead of 1750 k. These limits are approximate in that they were simply read from the graph.

Shear Capacity of Reinforced Masonry Shear Walls

Shear design of reinforced masonry shear walls by strength design is very similar to that of
reinforced concrete shear walls covered Section 18.6 of this text.

The masonry shear capacity is given by ACI 530 Equation 3-23 in ACI Section 3.3.4.1.2,

Vnm =
[

4.0 − 1.75

(
Mu

Vud

)]
An

√
f ′
m + 0.25Pu (ACI 530 Equation 3-23)

The value of Mu/Vudv is often less than unity, but not be taken greater than unit. The friction
term, 0.25f ′

m , recognizes that axial compression increases shear capacity from frictional effects.
The coefficient of 0.25 implies a coefficient of friction of 0.25. In shear walls, the masonry
alone often cannot resist the design shear force, Vu . Additional shear capacity can be provided
by shear reinforcement in the form of reinforcing bars in horizontal bond beams. By using units
with webs that are not full height, a horizontal space is provided for placement of horizontal
bars. Often two bars are placed in a bond beam, but not always.

The combined capacity of the masonry and the shear reinforcement is given by

Vn = Vnm + Vns (ACI 530 Equation 3-20)

Upper limits are placed on Vn by

(a) Where Mu/Vu dv ≤ 0.25:

Vn ≤ 6Anv f ′
m (ACI 530 Equation 3-21)

(b) Where Mu/Vu dv > 1.0

Vn ≤ 4Anv f ′
m (ACI 530 Equation 3-22)

(c) The maximum value of Vn for Mu/Vudv between 0.25 and 1.0 can be obtained from
linear interpolation between the two equations.
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Example of running bond
construction. Head joints
(vertical joints) are staggered at
half of the unit length, allowing
for alignment of vertical cells.

Note that the webs are only
about half of the unit height,
allowing for future placement
of horizontal reinforcing bars
and grout.

Vertical reinforcing bar
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Concrete masonry wall with bond beam course for horizontal reinforcing steel.

Finally, the shear capacity provided by shear reinforcement placed at a spacing, s, having
an area of steel, Av , is

Vns = 0.5
Av fy dv

s
(ACI 530 Equation 3-24)

where fy is the specified yield strength for the shear reinforcing. For example, if one #5 bar is
placed in a single-bond beam, Av = (1) (0.31 in.2) = 0.31 in.2.

The maximum spacing between shear reinforcing is the lesser of dv/2 or 48 in. This
provision is in ACI 530 Code Section 3.3.4.2.3, which applies only to beams. However, the
authors feel they should apply also to shear walls. Also, the end of the shear reinforcement
bars should be hooked around the longitudinal (vertical) reinforcement.

Design of Reinforced Masonry Shear Walls

Design of reinforced masonry shear walls involves the same issues that we found when design-
ing columns. There are just too many variables to solve the equations in a closed form. A graph-
ical technique or spreadsheet (or other computer software) is needed to design for combined
axial load and bending moment. There is not enough room in this single chapter on masonry to
develop these. A simple spreadsheet is provided for this chapter to assist in the design process.
Design for shear can be done by hand by applying the equations in ACI Code Section 3.3.4.1.2.

Example 20.5

Design the shear wall below for shear

dv = 288 in., tsp = 7.625 in., h = 192 in., f ′
m = 1500 psi, fy = 60 ksi

Pu = 86 k, Mu = 33,880 in-k, Vu = 280 k
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SOLUTION
Mu

Vudv
= 33,880 in-k

280 k × 288 in.
= 0.42 < 1

Vnm =
(

4 − 1.75
Mu

Vud

)√
f ′
m An + 0.25Pu

= [4 − 1.75(0.42) ]
√

1500 psi × 7.625 in. × 288 in. + 0.25(86,000 lb) = 299,170 k

Vu = 28 k > φ Vm = 0.80 × 299.17 k = 239.3 k Shear reinforcement is required.

Vns = Vu

φshear
− Vnm = 280 k

0.8
− 299.17 k = 50.83 k

Av

s
= Vns

0.5 fydv
= 50.83 k

(0.5) (60 ksi) (288 in.)
= 0.00588 in.

If bond beams are provided in every third course, s = 24 in. Then Av ≥ (0.00588 in.) (24 in.) =
0.141 in.2. If bond beams are spaced at 48 in., then Av ≥ (0.00588 in.) (48 in.) = 0.282 in.2. Use
two #4 bars in horizontal bond beams at s = 48 in. (vertical spacing). The actual value of
Av/s = 2(0.20 in.2)/48 in. = 0.00833 in.

ACI 530 Code 3.3.6.2 requires that reinforcement having an area at least equal to one-
third Av be provided perpendicular to the shear reinforcement. This vertical reinforcement must
be uniformly distributed and shall not exceed a spacing of 8 ft. This provision is met by
providing As/s = 0.00833 in./3 = 0.00278 in. If a horizontal spacing of 48 in. is chosen, then
the area of steel required is (0.00278 in.) (48 in.) = 0.133 in.2. This is satisfied by using a #4 bar
(As = 0.20 in.2). Design for combined flexure and axial load may require more vertical steel than
this, however.

Summary of shear design: Use two #4 bars in horizontal bond beams at a vertical spacing
of 48 in. Use at least one #4 bar vertically at a 48-in. horizontal spacing.

20.9 Computer Example

Example 20.6

Using the Excel spreadsheets provided for Chapter 20, design a reinforced masonry shear wall
(intermediate reinforced shear wall) for the following three load and moment combinations,

1. Pu = 500 k and Mu = 4500 ft-k
2. Pu = 1000 k and Mu = 5000 ft-k
3. Pu = 250 k and Mu = 3500 ft-k

The wall is 248 in. long and 144 in. tall. The material properties are the same as those in
Example 20.5.

SOLUTION

Open the spreadsheet called Shearwall. Enter values in all cells highlighted in yellow (only in
the Excel spreadsheets, not the printed example). Since the wall is shorter than the one in the
spreadsheet, the number and/or location of bars must be modified. Since the bar spacing in the
original spreadsheet is 48 in., it would be a simple matter to simply drop off one of the bars (the
one farthest from the extreme compressive fiber). Just change the value of As1 from the value
shown to zero (cell C27), and the bar has been deleted. Enter a trial wall thickness (try 7.625 in. in
cell B10) and bar area (try 0.31 in.2 in cell C21). Enter the load combinations in the Loads Table
(cells I9 through N11). Now select the Interaction Diagram tab, and observe if all of the loads
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(plotted as an X, a square, and a triangle) fall within the diagram. The X does not. Try increasing
the bar size from 0.31 in.2 to 0.44 in.2. Now they all fit. The value of Pn max is shown to be 385 k,
which must exceed the load combination of D + 0.75L + 0.525QE .

2500
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20000 4000 6000 8000
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φP
n,

 k

φMn, ft-k

Strength Interaction Diagram by Spreadsheet
CMU Masonry Shear Wall—Example Problem 20.4

f 'm = 1500 psi, 24.67 ft long, 7.625 in. thick, #5 bars @ 4 ft spacing

500

0

−500

Spreadsheet for calculation strength moment-axial force interaction diagram for concrete masonry shear wall of Example 2.5

steel layers are counted from the extreme compression fiber to the extreme tension fiber
distances are measured from the extreme compression fiber
reinforcement is assumed to be placed at 4-ft intervals
compression in masonry and reinforcement is taken as positive
stress in compressive reinforcement is set to zero, because the reinforcement is not laterally supported (except in determining Pmax)

Row of
Reinforcement Area Slenderness Factor

Distance
from Extreme
Compression

Fiber, di

7
6
5
4
3
2
1

Pure axial load
Points controlled by masonry

c⎜d, c fs7 fs6 fs5 fs4 fs3 fs2 fs1 Moment
0

0

0

Axial ForceCmasonry

Points controlled by masonry
Points controlled by steel

Pure tension = –sum (Asify)
φ Pn max = (ACI 530 3.3.3.5.2)

Code Equation 3-18 or 3-19

4.00
52.00

100.00
148.00
196.00
244.00
292.00

0.44
0.44
0.44
0.44
0.44
0.44
0.44

1.0137
0.9
0.8
0.7
0.6

0.5472
0.5472

0.5
0.4
0.3
0.2
0.1

0.01

296.00
262.80
233.60
204.40
175.20
159.77
159.77
146.00
116.80
87.60
58.40
29.20
2.92

2166.72
1923.70
1709.95
1496.21
1282.46
1169.54
1169.54
1068.72
854.98
641.23
427.49
213.74
21.37

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

−26.82

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

−56.61
−60.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

−10.26
−51.64
−60.00
−60.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

−0.99
−19.37
−49.99
−60.00
−60.00
−60.00

0.00
0.00
0.00
0.00

−8.61
−16.44
−16.44
−24.83
−49.16
−60.00
−60.00
−60.00
−60.00

0.00
0.00

−3.23
−14.05
−28.47
−38.22
−38.22
−48.66
−60.00
−60.00
−60.00
−60.00
−60.00

0.00
−8.06

−18.13
−31.07
−48.33
−60.00
−60.00
−60.00
−60.00
−60.00
−60.00
−60.00
−60.00

4810
6214
7065
7569
7730
7681
7681
7519
6884
5823
4340
2394
346

2435
1950
1729
1533
1334
1130
1021
1021
924
717
510
303
93

−89
−117
845.4

1232

R = 0.7816

depth, dv 248 in.

width (wall thickness), tsp 7.625
φ 0.9

φ = 3
cmax = 70.05940594 cmax⎜d = 0.2871

Pu = 500
4500

1000
5000

250
3500

k
ft-kMu =

in.

in.

h = 144 in. height

f'm 1.5 ksi s = 48.00 in. bar spacing
fy 60 ksi

d1 60
(c/d)balanced 0.5472

in.
Es 29000 ksi

h⎜r = 65.42 slenderness ratio

²mu 0.0025 t = 7.625 in. thickness

130.28 953.63 60.00 43.56 16.85 −9.86 −36.58 −60.00 −60.00 φ Pn max =

φ Mn, k-ft φ Pn, k

c = cmax

φ * Pure tension = - sum (Asi fy)

φ * Code Equation 3-18 or 3-19

Input axial load and moment pairs of all load combinations
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P R O B L E M S

Problem 20.1 Determine the required reinforcing for an
8-in.-thick wall that spans a 24 ft height. The wall is to be
designed as simply supported. Neglect the wall’s own weight.
The wall is subjected to a lateral out-of-plane wind load of
40 psf. Unit compressive strength is 2500 psi and Type S
masonry cement mortar is specified. (One ans. #6 bars @
24-in. centers, full grout)

Problem 20.2 Determine the required reinforcing for a
12-in.-thick wall that spans a 36 ft height. The wall is to be
designed as simply supported. Neglect the wall’s own weight.
The wall is subjected to a lateral out-of-plane wind load of
32 psf. Unit compressive strength is 2500 psi and Type S
masonry cement mortar is specified.

Problem 20.3 Design a masonry lintel for a clear span of
12 ft. The bearing length is 8 in., door height is 8 ft, and the
height of masonry above the opening is 40 in. f ′

m = 1500 psi
and Grade 60 reinforcement. The wall above the opening is
fully grouted with a thickness of 8 in. (nominal) and weighs
80 psf. The wall is subjected to uniformly distributed loads of
wD = 320 plf (plus the weight of the masonry) and
wL = 220 plf. (One ans. 2 courses, d = 12.625 in., 2 #5 bars,
no shear reinforcement)

Problem 20.4 Design a masonry lintel for a clear span of
18 ft 4 in. The bearing length is 8 in., door height is 12 ft, and
the height of masonry above the opening is 56 in. f ′

m = 1500 psi
and Grade 60 reinforcement. The wall above the opening is
fully grouted with a thickness of 8 in. (nominal) and weighs
80 psf. The wall is subjected to uniformly distributed loads of
wD = 300 plf (plus the weight of the masonry) and
wL = 280 plf.

Problem 20.5 Determine the required reinforcing for an
8-in.-thick wall that spans a 24 ft height. The wall is to be
designed as simply supported. Neglect the wall’s own weight.
The wall is subjected to a lateral out-of-plane wind load of
32 psf. The wall is subjected to eccentric axial loads,
Pd = 850 plf at e = 2 in., and PL = 280 plf also at e = 2 in.
Unit compressive strength is 2500 psi and Type S masonry
cement mortar is specified. (One ans. #5 bars @ 24-in. centers,
full grout)

Problem 20.6 Determine the required reinforcing for a
12-in.-thick wall that spans a 28 ft height. The wall is to be
designed as simply supported. Neglect the wall’s own weight.
The wall is subjected to a lateral out-of-plane wind load of
40 psf. The wall is subjected to eccentric axial loads,
Pd = 1850 plf at e = 2 in., and PL = 1280 plf also at e = 2 in.
Unit compressive strength is 2500 psi and Type S masonry
cement mortar is specified.

Problem 20.7 Develop the interaction diagram for an 8-in.
shear wall that is 20 ft 8 in. long, 16 ft tall, and has six #7 bars
uniformly distributed along its length. The first bar is located
4 in. from each end. Unit compressive strength is 2500 psi
and Type S masonry cement mortar is specified. Grade 60
reinforcing steel is specified. (Ans. one point – the balance
point, c = 133.51 in., φPn = 1411 k, φMn = 9067 ft-k)

Problem 20.8 Design the shear wall in Problem 20.7 for
shear. It is subjected to Pu = 50 k, Mu = 120,000 in-k, and
Vu = 300 k.

Problem 20.9 Using Chapter 20 Excel spreadsheet, design a
shear wall that is 12 ft 8 in. long, 14 ft high, and subject to
Mu = 1600 ft-k and Pu = 200 k. f ′

m = 1500 psi and Grade 60
reinforcement. (One ans. 8-in. wall with #6 bars @ 24-in.
centers, full grout)

Problem 20.10 Using Chapter 20 Excel spreadsheet, design a
shear wall that is 18 ft long, 15 ft high, and subject to
Mu = 96,000 in-k and Pu = 800 k. f ′

m = 2500 psi and
Grade 60 reinforcement.
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APPENDIX ATables and Graphs:
U.S. Customary Units

TABLE A.1 Values of Modulus of Elasticity for Normal-Weight Concrete

U.S. Customary Units

f ′
c (psi) Ec (psi)

3,000 3,160,000

3,500 3,410,000

4,000 3,640,000

4,500 3,870,000

5,000 4,070,000

Source Notes:
Tables A.4, A.6, A.14, and A.15, as well as Graph 1, are reprinted from Design of Concrete
Structures by Winter and Nilson. Copyright © 1972 by McGraw-Hill, Inc., and with permission
of the McGraw-Hill Book Company.

Graphs 2 through 13 are reprinted from Design Handbook, Volume 2, Columns (SP-17A),
1978, with permission of American Concrete Institute.

Table A.3(A)(a) and A.3(B)(b) are reprinted from Manual of Standard Practice, 22nd ed., 1997,
second printing, Concrete Reinforcing Steel Institute, Chicago, IL.

Tables A.16 through A.20 are reprinted from Commentary on Building Code Requirements
For Reinforced Concrete (ACI 318–77) with permission of the American Concrete Institute.

TABLE A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

U.S. Customary Units

Bar No. Diameter (in.) Cross-Sectional Area (in.2) Unit Weight (lb/ft)

3 0.375 0.11 0.376

4 0.500 0.20 0.668

5 0.625 0.31 1.043

6 0.750 0.44 1.502

7 0.875 0.60 2.044

8 1.000 0.79 2.670

9 1.128 1.00 3.400

10 1.270 1.27 4.303

11 1.410 1.56 5.313

14 1.693 2.25 7.650

18 2.257 4.00 13.600

631
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TABLE A.3(A) Common Styles of Welded Wire Reinforcement Sheets

Area Weight
Style (in.2/ft) (lb/100 ft2)

4 × 4 − W1.4 × W1.4* 0.042 31

4 × 4 − W2.0 × W2.0* 0.060 44

4 × 4 − W2.9 × W2.9* 0.087 62

4 × 4 − W3.1 × W3.1 0.093 65

4 × 4 − W4.0 × W4.0* 0.120 88

6 × 6 − W1.4 × W1.4* 0.028 21

6 × 6 − W2.0 × W2.0* 0.040 30

6 × 6 − W2.9 × W2.9* 0.058 42

6 × 6 − W4.0 × W4.0* 0.080 58

6 × 6 − W4.2 × W4.2 0.084 60

6 × 6 − W4.4 × W4.4 0.088 63

6 × 6 − W4.7 × W4.7 0.094 68

6 × 6 − W7.5 × W7.5 0.150 108

6 × 6 − W8.1 × W8.1 0.162 116

6 × 6 − W8.3 × W8.3 0.166 119

12 × 12 − W8.3 × W8.3 0.083 63

12 × 12 − W8.8 × W8.8 0.088 66

12 × 12 − W9.1 × W9.1 0.091 69

12 × 12 − W9.4 × W9.4 0.094 71

12 × 12 − W15 × W15 0.150 113

12 × 12 − W16 × W16 0.160 120

12 × 12 − W16.6 × W16.6 0.166 125

12 × 12 − W17.1 × W17.1 0.171 128

*These styles may be obtained in roll form. It is recommended that rolls be straightened
and cut to size before placement.
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TABLE A.3(B) Cross-Sectional Area and Weight of Welded Wire Reinforcement (in-lb)

Wire Nom. Nom. As (in.2/ft) per Wire Spacing (in.)
Size, Diam. Wt

W or D (in.) (lb/ft) 2 3 4 6 8 10 12

45 0.757 1.530 2.700 1.800 1.350 0.900 0.675 0.540 0.450

31 0.628 1.054 1.860 1.240 0.930 0.620 0.465 0.372 0.310

30 0.618 1.020 1.800 1.200 0.900 0.600 0.450 0.360 0.300

28 0.597 0.952 1.680 1.120 0.840 0.560 0.420 0.336 0.280

26 0.575 0.884 1.560 1.040 0.780 0.520 0.390 0.312 0.260

24 0.553 0.816 1.440 0.960 0.720 0.480 0.360 0.288 0.240

22 0.529 0.748 1.320 0.880 0.660 0.440 0.330 0.264 0.220

20 0.505 0.680 1.200 0.800 0.600 0.400 0.300 0.240 0.200

18 0.479 0.612 1.080 0.720 0.540 0.360 0.270 0.216 0.180

16 0.451 0.544 0.960 0.640 0.480 0.320 0.240 0.192 0.160

14 0.422 0.476 0.840 0.560 0.420 0.280 0.210 0.168 0.140

12 0.391 0.408 0.720 0.480 0.360 0.240 0.180 0.144 0.120

11 0.374 0.374 0.660 0.440 0.330 0.220 0.165 0.132 0.110

10.5 0.366 0.357 0.630 0.420 0.315 0.210 0.158 0.126 0.105

10 0.357 0.340 0.600 0.400 0.300 0.200 0.150 0.120 0.100

9.5 0.348 0.323 0.570 0.380 0.285 0.190 0.143 0.114 0.095

9 0.339 0.306 0.540 0.360 0.270 0.180 0.135 0.108 0.090

8.5 0.329 0.289 0.510 0.340 0.255 0.170 0.128 0.102 0.085

8 0.319 0.272 0.480 0.320 0.240 0.160 0.120 0.096 0.080

7.5 0.309 0.255 0.450 0.300 0.225 0.150 0.113 0.090 0.075

7 0.299 0.238 0.420 0.280 0.210 0.140 0.105 0.084 0.070

6.5 0.288 0.221 0.390 0.260 0.195 0.130 0.098 0.078 0.065

6 0.276 0.204 0.360 0.240 0.180 0.120 0.090 0.072 0.060

5.5 0.265 0.187 0.330 0.220 0.165 0.110 0.083 0.066 0.055

5 0.252 0.170 0.300 0.200 0.150 0.100 0.075 0.060 0.050

4.5 0.239 0.153 0.270 0.180 0.135 0.090 0.068 0.054 0.045

4 0.226 0.136 0.240 0.160 0.120 0.080 0.060 0.048 0.040

3.5 0.211 0.119 0.210 0.140 0.105 0.070 0.053 0.042 0.035

3 0.195 0.102 0.180 0.120 0.090 0.080 0.045 0.036 0.030

2.9 0.192 0.099 0.174 0.116 0.087 0.058 0.044 0.035 0.029

2.5 0.178 0.085 0.150 0.100 0.075 0.050 0.038 0.030 0.025

2 0.160 0.068 0.120 0.080 0.060 0.040 0.030 0.024 0.020

1.4 0.134 0.048 0.084 0.056 0.042 0.028 0.021 0.017 0.014

Notes:
1. The above listing of plain and deformed wire sizes represents wires normally selected to manufacture welded wire
reinforcement to specific areas of reinforcement. Wire sizes other than those listed above, including larger sizes, may be
available if the quantity required is sufficient to justify manufacture.
2. The nominal diameter of a deformed wire is equivalent to the diameter of a plain wire having the same weight per foor
as the deformed wire.
3. The ACI Building Code requirements for tension development lengths and tension lap splice lengths of welded wire
reinforcement are not included in this chapter. These design requirements are covered in Reinforcing Bars: Anchorages
and Splices available from CRSI. For additional information, see Manual of Standard Practice—Structural Welded Wire
Reinforcement and Structural Detailing Manual, both published by the Wire Reinforcement Institute.



McCormac b01.tex V2 - January 10, 2013 5:36 P.M. Page 634

634 A P P E NDI X A Tables and Graphs: U.S. Customary Units

TABLE A.4 Areas of Groups of Standard Bars (in.2)—U.S. Customary Units

Number of Bars

Bar No. 2 3 4 5 6 7 8 9 10

4 0.39 0.58 0.78 0.98 1.18 1.37 1.57 1.77 1.96

5 0.61 0.91 1.23 1.53 1.84 2.15 2.45 2.76 3.07

6 0.88 1.32 1.77 2.21 2.65 3.09 3.53 3.98 4.42

7 1.20 1.80 2.41 3.01 3.61 4.21 4.81 5.41 6.01

8 1.57 2.35 3.14 3.93 4.71 5.50 6.28 7.07 7.85

9 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

10 2.53 3.79 5.06 6.33 7.59 8.86 10.12 11.39 12.66

11 3.12 4.68 6.25 7.81 9.37 10.94 12.50 14.06 15.62

14 4.50 6.75 9.00 11.25 13.50 15.75 18.00 20.25 22.50

18 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00

Number of Bars

Bar No. 11 12 13 14 15 16 17 18 19 20

4 2.16 2.36 2.55 2.75 2.95 3.14 3.34 3.53 3.73 3.93

5 3.37 3.68 3.99 4.30 4.60 4.91 5.22 5.52 5.83 6.14

6 4.86 5.30 5.74 6.19 6.63 7.07 7.51 7.95 8.39 8.84

7 6.61 7.22 7.82 8.42 9.02 9.62 10.22 10.82 11.43 12.03

8 8.64 9.43 10.21 11.00 11.78 12.57 13.35 14.14 14.92 15.71

9 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00

10 13.92 15.19 16.45 17.72 18.98 20.25 21.52 22.78 24.05 25.31

11 17.19 18.75 20.31 21.87 23.44 25.00 26.56 28.12 29.69 31.25

14 24.75 27.00 29.25 31.50 33.75 36.00 38.25 40.50 42.75 45.00

18 44.00 48.00 52.00 56.00 60.00 64.00 68.00 72.00 76.00 80.00
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TABLE A.5 Minimum Web Width (in.) for Beams with Inside Exposure (2011 ACI Code)a,b,c —
U.S. Customary Units

Number of Bars in Single Layer of Reinforcing Add for Each
Size of Bars 2 3 4 5 6 7 8 Additional Bar

#4 6.8 8.3 9.8 11.3 12.8 14.3 15.8 1.50

#5 6.9 8.5 10.2 11.8 13.4 15.0 16.7 1.625

#6 7.0 8.8 10.5 12.3 14.0 15.8 17.5 1.75

#7 7.2 9.0 10.9 12.8 14.7 16.5 18.4 1.875

#8 7.3 9.3 11.3 13.3 15.3 17.3 19.3 2.00

#9 7.6 9.8 12.1 14.3 16.6 18.8 21.1 2.26

#10 7.8 10.4 12.9 15.5 18.0 20.5 23.1 2.54

#11 8.1 10.9 13.8 16.6 19.4 22.2 25.0 2.82

#14 8.9 12.3 15.7 19.0 22.4 25.8 29.2 3.39

#18 10.6 15.1 19.6 24.1 28.6 33.1 37.7 4.51

aMinimum beam widths for beams were calculated using #3 stirrups.
bMaximum aggregate sizes were assumed not to exceed 3

4 of the clear spacing between the bars (ACI 3.3.2).
cThe horizontal distance from the center of the outside longitudinal bars to the inside of the stirrups was assumed to equal
the larger of two times the stirrup diameter (ACI 7.2.2) or half of the longitudinal bar diameter.

TABLE A.6 Areas of Bars in Slabs (in2/ft)—U.S. Customary Units

Bar No.

Spacing (in.) 3 4 5 6 7 8 9 10 11

3 0.44 0.78 1.23 1.77 2.40 3.14 4.00 5.06 6.25

3 1
2 0.38 0.67 1.05 1.51 2.06 2.69 3.43 4.34 5.36

4 0.33 0.59 0.92 1.32 1.80 2.36 3.00 3.80 4.68

4 1
2 0.29 0.52 0.82 1.18 1.60 2.09 2.67 3.37 4.17

5 0.26 0.47 0.74 1.06 1.44 1.88 2.40 3.04 3.75

5 1
2 0.24 0.43 0.67 0.96 1.31 1.71 2.18 2.76 3.41

6 0.22 0.39 0.61 0.88 1.20 1.57 2.00 2.53 3.12

6 1
2 0.20 0.36 0.57 0.82 1.11 1.45 1.85 2.34 2.89

7 0.19 0.34 0.53 0.76 1.03 1.35 1.71 2.17 2.68

7 1
2 0.18 0.31 0.49 0.71 0.96 1.26 1.60 2.02 2.50

8 0.17 0.29 0.46 0.66 0.90 1.18 1.50 1.89 2.34

9 0.15 0.26 0.41 0.59 0.80 1.05 1.33 1.69 2.08

10 0.13 0.24 0.37 0.53 0.72 0.94 1.20 1.52 1.87

12 0.11 0.20 0.31 0.44 0.60 0.78 1.00 1.27 1.56
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TABLE A.7 Values of ρ Balanced, ρ to Achieve Various εt Values, and ρ Minimum for
Flexure. All Values Are for Tensilely Reinforced Rectangular Sections

f ′
c 3000 psi 4000 psi 5000 psi 6000 psi

fy β1 = 0.85 β1 = 0.85 β1 = 0.80 β1 = 0.75

Grade 40

ρ balanced 0.0371 0.0495 0.0582 0.0655

40,000 psi

ρ when εt = 0.004 0.0232 0.0310 0.0364 0.0410

(275.8 MPa)
ρ when εt = 0.005 0.0203 0.0271 0.0319 0.0359

ρ when εt = 0.0075 0.0155 0.0206 0.0243 0.0273

ρ min for flexure 0.0050 0.0050 0.0053 0.0058

Grade 50

ρ balanced 0.0275 0.0367 0.0432 0.0486

50,000 psi

ρ when εt = 0.004 0.0186 0.0248 0.0291 0.0328

(344.8 MPa)
ρ when εt = 0.005 0.0163 0.0217 0.0255 0.0287

ρ when εt = 0.0075 0.0124 0.0165 0.0194 0.0219

ρ min for flexure 0.0040 0.0040 0.0042 0.0046

Grade 60

ρ balanced 0.0214 0.0285 0.0335 0.0377

60,000 psi

ρ when εt = 0.004 0.0155 0.0206 0.0243 0.0273

(413.7 MPa)
ρ when εt = 0.005 0.0136 0.0181 0.0212 0.0239

ρ when εt = 0.0075 0.0103 0.0138 0.0162 0.0182

ρ min for flexure 0.0033 0.0033 0.0035 0.0039

Grade 75

ρ balanced 0.0155 0.0207 0.0243 0.0274

75,000 psi

ρ when εt = 0.004 0.0124 0.0165 0.0194 0.0219

(517.1 MPa)
ρ when εt = 0.005 0.0108 0.0144 0.0170 0.0191

ρ when εt = 0.0075 0.0083 0.0110 0.0130 0.0146

ρ min for flexure 0.0027 0.0027 0.0028 0.0031
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TABLE A.8 fy = 40,000 psi; f ′c = 3000 psi—U.S. Customary Units

ρ
Mu

φbd2 ρ
Mu

φbd2
ρ

Mu

φbd2 ρ
Mu

φbd2

ρmin for 0.0020 78.74 ρmin for 0.0050 192.1 0.0080 299.9 0.0110 401.9

temp. and 0.0021 82.62 flexure 0.0051 195.8 0.0081 303.4 0.0111 405.2
shrinkage

0.0022 86.48 0.0052 199.5 0.0082 306.8 0.0112 408.5

0.0023 90.34 0.0053 203.2 0.0083 310.3 0.0113 411.8

0.0024 94.19 0.0054 206.8 0.0084 313.8 0.0114 415.1

0.0025 98.04 0.0055 210.5 0.0085 317.3 0.0115 418.4

0.0026 101.9 0.0056 214.1 0.0086 320.7 0.0116 421.7

0.0027 105.7 0.0057 217.8 0.0087 324.2 0.0117 424.9

0.0028 109.5 0.0058 221.4 0.0088 327.6 0.0118 428.2

0.0029 113.4 0.0059 225.0 0.0089 331.1 0.0119 431.4

0.0030 117.2 0.0060 228.7 0.0090 334.5 0.0120 434.7

0.0031 121.0 0.0061 232.3 0.0091 337.9 0.0121 437.9

0.0032 124.8 0.0062 235.9 0.0092 341.4 0.0122 441.2

0.0033 128.6 0.0063 239.5 0.0093 344.8 0.0123 444.4

0.0034 132.4 0.0064 243.1 0.0094 348.2 0.0124 447.6

0.0035 136.2 0.0065 246.7 0.0095 351.6 0.0125 450.8

0.0036 139.9 0.0066 250.3 0.0096 355.0 0.0126 454.0

0.0037 143.7 0.0067 253.9 0.0097 358.4 0.0127 457.2

0.0038 147.5 0.0068 257.4 0.0098 361.8 0.0128 460.4

0.0039 151.2 0.0069 261.0 0.0099 365.2 0.0129 463.6

0.0040 155.0 0.0070 264.6 0.0100 368.5 0.0130 466.8

0.0041 158.7 0.0071 268.1 0.0101 371.9 0.0131 470.0

0.0042 162.5 0.0072 271.7 0.0102 375.3 0.0132 473.2

0.0043 166.2 0.0073 275.2 0.0103 378.6 0.0133 476.3

0.0044 169.9 0.0074 278.8 0.0104 382.0 0.0134 479.5

0.0045 173.6 0.0075 282.3 0.0105 385.3 0.0135 482.6

0.0046 177.4 0.0076 285.8 0.0106 388.6 0.0136 485.8

0.0047 181.1 0.0077 289.3 0.0107 392.0 0.0137 488.9

0.0048 184.8 0.0078 292.9 0.0108 395.3 0.0138 492.1

0.0049 188.5 0.0079 296.4 0.0109 398.6 0.0139 495.2

(continues)
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TABLE A.8 (Continued)

ρ
Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2

0.0140 498.3 0.0156 547.4 0.0172 594.9 0.0188 640.8

0.0141 501.4 0.0157 550.4 0.0173 597.8 0.0189 643.6

0.0142 504.5 0.0158 553.4 0.0174 600.7 0.0190 646.4

0.0143 507.6 0.0159 556.4 0.0175 603.6 0.0191 649.2

0.0144 510.7 0.0160 559.4 0.0176 606.5 0.0192 652.0

0.0145 513.8 0.0161 562.4 0.0177 609.4 0.0193 654.8

0.0146 516.9 0.0162 565.4 0.0178 612.3 0.0194 657.6

0.0147 520.0 0.0163 568.4 0.0179 615.2 0.0195 660.3

0.0148 523.1 0.0164 571.4 0.0180 618.0 0.0196 663.1

0.0149 526.1 0.0165 574.3 0.0181 620.9 0.0197 665.9

0.0150 529.2 0.0166 577.3 0.0182 623.8 0.0198 668.6

0.0151 532.2 0.0167 580.2 0.0183 626.6 0.0199 671.4

0.0152 535.3 0.0168 583.2 0.0184 629.5 0.0200 674.1

0.0153 538.3 0.0169 586.1 0.0185 632.3 0.0201 676.9

0.0154 541.4 0.0170 589.1 0.0186 635.1 0.0202 679.6

0.0155 544.4 0.0171 592.0 0.0187 638.0 0.0203 682.3
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TABLE A.9 fy = 40,000 psi; f ′c = 4000 psi—U.S. Customary Units

ρ
Mu

φbd2 ρ
Mu

φbd2
ρ

Mu

φbd2 ρ
Mu

φbd2

ρmin for 0.0020 79.06 ρmin for 0.0050 194.1 0.0080 304.9 0.0110 411.4

temp. and 0.0021 82.96 flexure 0.0051 197.9 0.0081 308.5 0.0111 414.9
shrinkage

0.0022 86.86 0.0052 201.6 0.0082 312.1 0.0112 418.4

0.0023 90.75 0.0053 205.4 0.0083 315.7 0.0113 421.9

0.0024 94.64 0.0054 209.1 0.0084 319.3 0.0114 425.3

0.0025 98.53 0.0055 212.9 0.0085 322.9 0.0115 428.8

0.0026 102.4 0.0056 216.6 0.0086 326.5 0.0116 432.2

0.0027 106.3 0.0057 220.3 0.0087 330.1 0.0117 435.7

0.0028 110.2 0.0058 224.1 0.0088 333.7 0.0118 439.1

0.0029 114.0 0.0059 227.8 0.0089 337.3 0.0119 442.6

0.0030 117.9 0.0060 231.5 0.0090 340.9 0.0120 446.0

0.0031 121.7 0.0061 235.2 0.0091 344.5 0.0121 449.4

0.0032 125.6 0.0062 238.9 0.0092 348.0 0.0122 452.9

0.0033 129.4 0.0063 242.6 0.0093 351.6 0.0123 456.3

0.0034 133.3 0.0064 246.3 0.0094 355.1 0.0124 459.7

0.0035 137.1 0.0065 250.0 0.0095 358.7 0.0125 463.1

0.0036 141.0 0.0066 253.7 0.0096 362.2 0.0126 466.5

0.0037 144.8 0.0067 257.4 0.0097 365.8 0.0127 469.9

0.0038 148.6 0.0068 261.1 0.0098 369.3 0.0128 473.3

0.0039 152.4 0.0069 264.8 0.0099 372.9 0.0129 476.7

0.0040 156.2 0.0070 268.4 0.0100 376.4 0.0130 480.1

0.0041 160.0 0.0071 272.1 0.0101 379.9 0.0131 483.5

0.0042 163.8 0.0072 275.8 0.0102 383.4 0.0132 486.9

0.0043 167.6 0.0073 279.4 0.0103 387.0 0.0133 490.2

0.0044 171.4 0.0074 283.1 0.0104 390.5 0.0134 493.6

0.0045 175.2 0.0075 286.7 0.0105 394.0 0.0135 497.0

0.0046 179.0 0.0076 290.4 0.0106 397.5 0.0136 500.3

0.0047 182.8 0.0077 294.0 0.0107 401.0 0.0137 503.7

0.0048 186.6 0.0078 297.6 0.0108 404.5 0.0138 507.0

0.0049 190.4 0.0079 301.3 0.0109 408.0 0.0139 510.4

(continues)
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TABLE A.9 (Continued)

ρ
Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2

0.0140 513.7 0.0173 621.4 0.0206 723.8 0.0239 821.2

0.0141 517.1 0.0174 624.5 0.0207 726.9 0.0240 824.1

0.0142 520.4 0.0175 627.7 0.0208 729.9 0.0241 826.9

0.0143 523.7 0.0176 630.9 0.0209 732.9 0.0242 829.8

0.0144 527.1 0.0177 634.1 0.0210 735.9 0.0243 832.6

0.0145 530.4 0.0178 637.2 0.0211 738.9 0.0244 835.5

0.0146 533.7 0.0179 640.4 0.0212 741.9 0.0245 838.3

0.0147 537.0 0.0180 643.5 0.0213 744.9 0.0246 841.2

0.0148 540.3 0.0181 646.7 0.0214 747.9 0.0247 844.0

0.0149 543.6 0.0182 649.8 0.0215 750.9 0.0248 846.8

0.0150 546.9 0.0183 653.0 0.0216 753.9 0.0249 849.7

0.0151 550.2 0.0184 656.1 0.0217 756.9 0.0250 852.5

0.0152 553.5 0.0185 659.2 0.0218 759.8 0.0251 855.3

0.0153 556.7 0.0186 662.3 0.0219 762.8 0.0252 858.1

0.0154 560.0 0.0187 665.5 0.0220 765.8 0.0253 860.9

0.0155 563.3 0.0188 668.6 0.0221 768.7 0.0254 863.7

0.0156 566.6 0.0189 671.7 0.0222 771.7 0.0255 866.5

0.0157 569.8 0.0190 674.8 0.0223 774.6 0.0256 869.3

0.0158 573.1 0.0191 677.9 0.0224 777.6 0.0257 872.1

0.0159 576.3 0.0192 681.0 0.0225 780.5 0.0258 874.9

0.0160 579.6 0.0193 684.1 0.0226 783.4 0.0259 877.7

0.0161 582.8 0.0194 687.2 0.0227 786.4 0.0260 880.5

0.0162 586.1 0.0195 690.3 0.0228 789.3 0.0261 883.2

0.0163 589.3 0.0196 693.3 0.0229 792.2 0.0262 886.0

0.0164 592.5 0.0197 696.4 0.0230 795.1 0.0263 888.7

0.0165 595.7 0.0198 699.5 0.0231 798.1 0.0264 891.5

0.0166 599.0 0.0199 702.5 0.0232 801.0 0.0265 894.3

0.0167 602.2 0.0200 705.6 0.0233 803.9 0.0266 897.0

0.0168 605.4 0.0201 708.6 0.0234 806.8 0.0267 899.7

0.0169 608.6 0.0202 711.7 0.0235 809.7 0.0268 902.5

0.0170 611.8 0.0203 714.7 0.0236 812.5 0.0269 905.2

0.0171 615.0 0.0204 717.8 0.0237 815.4 0.0270 907.9

0.0172 618.2 0.0205 720.8 0.0238 818.3 0.0271 910.7
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TABLE A.10 fy = 50,000 psi; f ′c = 3000 psi—U.S. Customary Units

ρ
Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2

ρmin for 0.0020 98.04 0.0056 264.6 0.0092 418.4 0.0128 559.4

temp. and 0.0021 102.8 0.0057 269.0 0.0093 422.5 0.0129 563.2
shrinkage

0.0022 107.6 0.0058 273.5 0.0094 426.6 0.0130 566.9

0.0023 112.4 0.0059 277.9 0.0095 430.6 0.0131 570.6

0.0024 117.2 0.0060 282.3 0.0096 434.7 0.0132 574.3

0.0025 121.9 0.0061 286.7 0.0097 438.7 0.0133 578.0

0.0026 126.7 0.0062 291.1 0.0098 442.8 0.0134 581.7

0.0027 131.4 0.0063 295.5 0.0099 446.8 0.0135 585.4

0.0028 136.2 0.0064 299.9 0.0100 450.8 0.0136 589.1

0.0029 140.9 0.0065 304.2 0.0101 454.8 0.0137 592.7

0.0030 145.6 0.0066 308.6 0.0102 458.8 0.0138 596.4

0.0031 150.3 0.0067 312.9 0.0103 462.8 0.0139 600.0

0.0032 155.0 0.0068 317.3 0.0104 466.8 0.0140 603.6

0.0033 159.7 0.0069 321.6 0.0105 470.8 0.0141 607.2

0.0034 164.3 0.0070 325.9 0.0106 474.8 0.0142 610.9

0.0035 169.0 0.0071 330.2 0.0107 478.7 0.0143 614.5

0.0036 173.6 0.0072 334.5 0.0108 482.6 0.0144 618.0

0.0037 178.3 0.0073 338.8 0.0109 486.6 0.0145 621.6

0.0038 182.9 0.0074 343.1 0.0110 490.5 0.0146 625.2

ρmin for 0.0039 187.5 0.0075 347.3 0.0111 494.4 0.0147 628.7

flexure 0.0040 192.1 0.0076 351.6 0.0112 498.3 0.0148 632.3

0.0041 196.7 0.0077 355.8 0.0113 502.2 0.0149 635.8

0.0042 201.3 0.0078 360.1 0.0114 506.1 0.0150 639.4

0.0043 205.9 0.0079 364.3 0.0115 510.0 0.0151 642.9

0.0044 210.5 0.0080 368.5 0.0116 513.8 0.0152 646.4

0.0045 215.0 0.0081 372.7 0.0117 517.7 0.0153 649.9

0.0046 219.6 0.0082 376.9 0.0118 521.5 0.0154 653.4

0.0047 224.1 0.0083 381.1 0.0119 525.4 0.0155 656.9

0.0048 228.7 0.0084 385.3 0.0120 529.2 0.0156 660.3

0.0049 233.2 0.0085 389.5 0.0121 533.0 0.0157 663.8

0.0050 237.7 0.0086 393.6 0.0122 536.8 0.0158 667.3

0.0051 242.2 0.0087 397.8 0.0123 540.6 0.0159 670.7

0.0052 246.7 0.0088 401.9 0.0124 544.4 0.0160 674.1

0.0053 251.2 0.0089 406.1 0.0125 548.2 0.0161 677.5

0.0054 255.7 0.0090 410.2 0.0126 551.9 0.0162 681.0

0.0055 260.1 0.0091 414.3 0.0127 555.7 0.0163 684.4
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TABLE A.11 fy = 50,000 psi; f ′c = 4000 psi—U.S. Customary Units

ρ
Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2

ρmin for 0.0020 98.53 0.0059 282.2 0.0098 454.6 0.0137 615.8

temp. and 0.0021 103.4 0.0060 286.7 0.0099 458.9 0.0138 619.8
shrinkage

0.0022 108.2 0.0061 291.3 0.0100 463.1 0.0139 623.7

0.0023 113.0 0.0062 295.8 0.0101 467.4 0.0140 627.7

0.0024 117.9 0.0063 300.4 0.0102 471.6 0.0141 631.7

0.0025 122.7 0.0064 304.9 0.0103 475.9 0.0142 635.6

0.0026 127.5 0.0065 309.4 0.0104 480.1 0.0143 639.6

0.0027 132.3 0.0066 313.9 0.0105 484.3 0.0144 643.5

0.0028 137.1 0.0067 318.4 0.0106 488.6 0.0145 647.5

0.0029 141.9 0.0068 322.9 0.0107 492.8 0.0146 651.4

0.0030 146.7 0.0069 327.4 0.0108 497.0 0.0147 655.3

0.0031 151.5 0.0070 331.9 0.0109 501.2 0.0148 659.2

0.0032 156.2 0.0071 336.4 0.0110 505.4 0.0149 663.1

0.0033 161.0 0.0072 340.9 0.0111 509.6 0.0150 667.0

0.0034 165.7 0.0073 345.3 0.0112 513.7 0.0151 670.9

0.0035 170.5 0.0074 349.8 0.0113 517.9 0.0152 674.8

0.0036 175.2 0.0075 354.3 0.0114 522.1 0.0153 678.7

0.0037 180.0 0.0076 358.7 0.0115 526.2 0.0154 682.5

0.0038 184.7 0.0077 363.1 0.0116 530.4 0.0155 686.4

ρmin for 0.0039 189.4 0.0078 367.6 0.0117 534.5 0.0156 690.3

flexure 0.0040 194.1 0.0079 372.0 0.0118 538.6 0.0157 694.1

0.0041 198.8 0.0080 376.4 0.0119 542.8 0.0158 697.9

0.0042 203.5 0.0081 380.8 0.0120 546.9 0.0159 701.8

0.0043 208.2 0.0082 385.2 0.0121 551.0 0.0160 705.6

0.0044 212.9 0.0083 389.6 0.0122 555.1 0.0161 709.4

0.0045 217.5 0.0084 394.0 0.0123 559.2 0.0162 713.2

0.0046 222.2 0.0085 398.4 0.0124 563.3 0.0163 717.0

0.0047 226.9 0.0086 402.7 0.0125 567.4 0.0164 720.8

0.0048 231.5 0.0087 407.1 0.0126 571.4 0.0165 724.6

0.0049 236.1 0.0088 411.4 0.0127 575.5 0.0166 728.4

0.0050 240.8 0.0089 415.8 0.0128 579.6 0.0167 732.1

0.0051 245.4 0.0090 420.1 0.0129 583.6 0.0168 735.9

0.0052 250.0 0.0091 424.5 0.0130 587.7 0.0169 327.4

0.0053 254.6 0.0092 428.8 0.0131 591.7 0.0170 743.4

0.0054 259.2 0.0093 433.1 0.0132 595.7 0.0171 747.2

0.0055 263.8 0.0094 437.4 0.0133 599.8 0.0172 750.9

0.0056 268.4 0.0095 441.7 0.0134 603.8 0.0173 754.6

0.0057 273.0 0.0096 446.0 0.0135 607.8 0.0174 758.3

0.0058 277.6 0.0097 450.3 0.0136 611.8 0.0175 762.1
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TABLE A.11 (Continued)

ρ
Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2

0.0176 765.8 0.0187 806.0 0.0198 845.4 0.0208 880.5

0.0177 769.5 0.0188 809.7 0.0199 849.0 0.0209 883.9

0.0178 773.2 0.0189 813.3 0.0200 852.5 0.0210 887.4

0.0179 776.8 0.0190 816.9 0.0201 856.0 0.0211 890.8

0.0180 780.5 0.0191 820.5 0.0202 859.5 0.0212 894.3

0.0181 784.2 0.0192 824.1 0.0203 863.0 0.0213 897.7

0.0182 787.8 0.0193 827.6 0.0204 866.5 0.0214 901.1

0.0183 791.5 0.0194 831.2 0.0205 870.0 0.0215 904.5

0.0184 795.1 0.0195 834.8 0.0206 873.5 0.0216 907.9

0.0185 798.8 0.0196 838.3 0.0207 877.0 0.0217 911.3

0.0186 802.4 0.0197 841.9
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TABLE A.12 fy = 60,000 psi; f ′c = 3000 psi—U.S. Customary Units

ρ
Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2

ρmin for 0.0018 105.7 0.0048 271.7 0.0078 424.9 0.0108 565.4

temp. and 0.0019 111.5 0.0049 277.0 0.0079 429.8 0.0109 569.9
shrinkage

0.0020 117.2 0.0050 282.3 0.0080 434.7 0.0110 574.3

0.0021 122.9 0.0051 287.6 0.0081 439.5 0.0111 578.8

0.0022 128.6 0.0052 292.9 0.0082 444.4 0.0112 582.3

0.0023 134.3 0.0053 298.1 0.0083 449.2 0.0113 587.6

0.0024 139.9 0.0054 303.4 0.0084 454.0 0.0114 592.0

0.0025 145.6 0.0055 308.6 0.0085 458.8 0.0115 596.4

0.0026 151.2 0.0056 313.8 0.0086 463.6 0.0116 600.7

0.0027 156.9 0.0057 319.0 0.0087 468.4 0.0117 605.1

0.0028 162.5 0.0058 324.2 0.0088 473.2 0.0118 609.4

0.0029 168.1 0.0059 329.4 0.0089 477.9 0.0119 613.7

0.0030 173.7 0.0060 334.5 0.0090 482.6 0.0120 618.0

0.0031 179.2 0.0061 339.7 0.0091 487.4 0.0121 622.3

0.0032 184.8 0.0062 344.8 0.0092 492.1 0.0122 626.6

ρmin for 0.0033 190.3 0.0063 349.9 0.0093 496.8 0.0123 630.9

flexure 0.0034 195.8 0.0064 355.0 0.0094 501.4 0.0124 635.1

0.0035 201.3 0.0065 360.1 0.0095 506.1 0.0125 639.4

0.0036 206.8 0.0066 365.2 0.0096 510.7 0.0126 643.6

0.0037 212.3 0.0067 370.2 0.0097 515.4 0.0127 647.8

0.0038 217.8 0.0068 375.3 0.0098 520.0 0.0128 652.0

0.0039 223.2 0.0069 380.3 0.0099 524.6 0.0129 656.2

0.0040 228.7 0.0070 385.3 0.0100 529.2 0.0130 660.9

0.0041 234.1 0.0071 390.3 0.0101 533.8 0.0131 664.5

0.0042 239.5 0.0072 395.3 0.0102 538.3 0.0132 668.6

0.0043 244.9 0.0073 400.3 0.0103 542.9 0.0133 672.8

0.0044 250.3 0.0074 405.2 0.0104 547.4 0.0134 676.9

0.0045 255.7 0.0075 410.2 0.0105 551.9 0.0135 681.0

0.0046 261.0 0.0076 415.1 0.0106 556.4 0.0136 685.0

0.0047 266.4 0.0077 420.0 0.0107 560.9
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TABLE A.13 fy = 60,000 psi; f ′c = 4000 psi—U.S. Customary Units

ρ
Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2
ρ

Mu

φbd2

ρmin for 0.0018 106.3 0.0059 335.5 0.0100 546.9 0.0141 740.4
temp. and 0.0019 112.1 0.0060 340.9 0.0101 551.8 0.0142 744.9
shrinkage

0.0020 117.1 0.0061 346.2 0.0102 556.7 0.0143 749.4

0.0021 123.7 0.0062 351.6 0.0103 561.7 0.0144 753.9

0.0022 129.4 0.0063 356.9 0.0104 566.6 0.0145 758.3

0.0023 135.2 0.0064 362.2 0.0105 571.5 0.0146 762.8

0.0024 141.0 0.0065 367.6 0.0106 576.3 0.0147 767.2

0.0025 146.7 0.0066 372.9 0.0107 581.2 0.0148 771.7

0.0026 152.4 0.0067 378.2 0.0108 586.1 0.0149 776.1

0.0027 158.1 0.0068 383.4 0.0109 590.9 0.0150 780.5

0.0028 163.8 0.0069 388.7 0.0110 595.7 0.0151 784.9

0.0029 169.5 0.0070 394.0 0.0111 600.6 0.0152 789.3

0.0030 175.2 0.0071 399.2 0.0112 605.4 0.0153 793.7

0.0031 180.9 0.0072 404.5 0.0113 610.2 0.0154 798.1

0.0032 186.6 0.0073 409.7 0.0114 615.0 0.0155 802.4

ρmin for 0.0033 192.2 0.0074 414.9 0.0115 619.8 0.0156 806.8

flexure 0.0034 197.9 0.0075 420.1 0.0116 624.5 0.0157 811.1

0.0035 203.5 0.0076 425.3 0.0117 629.3 0.0158 815.4

0.0036 209.1 0.0077 430.5 0.0118 634.1 0.0159 819.7

0.0037 214.7 0.0078 435.7 0.0119 638.8 0.0160 824.1

0.0038 220.3 0.0079 440.9 0.0120 643.5 0.0161 828.3

0.0039 225.9 0.0080 446.0 0.0121 648.2 0.0162 832.6

0.0040 231.5 0.0081 451.2 0.0122 653.0 0.0163 836.9

0.0041 237.1 0.0082 456.3 0.0123 657.7 0.0164 841.2

0.0042 242.6 0.0083 461.4 0.0124 662.3 0.0165 845.4

0.0043 248.2 0.0084 466.5 0.0125 667.0 0.0166 849.7

0.0044 253.7 0.0085 471.6 0.0126 671.7 0.0167 853.9

0.0045 259.2 0.0086 476.7 0.0127 676.3 0.0168 858.1

0.0046 264.8 0.0087 481.8 0.0128 681.0 0.0169 862.3

0.0047 270.3 0.0088 486.9 0.0129 685.6 0.0170 866.5

0.0048 275.8 0.0089 491.9 0.0130 690.3 0.0171 870.7

0.0049 281.2 0.0090 497.0 0.0131 694.9 0.0172 874.9

0.0050 286.7 0.0091 502.0 0.0132 699.5 0.0173 879.1

0.0051 292.2 0.0092 507.1 0.0133 704.1 0.0174 883.2

0.0052 297.6 0.0093 512.1 0.0134 708.6 0.0175 887.4

0.0053 303.1 0.0094 517.1 0.0135 713.2 0.0176 891.5

0.0054 308.5 0.0095 522.1 0.0136 717.8 0.0177 895.6

0.0055 313.9 0.0096 527.1 0.0137 722.3 0.0178 899.7

0.0056 319.3 0.0097 532.0 0.0138 726.9 0.0179 903.9

0.0057 324.7 0.0098 537.0 0.0139 731.4 0.0180 907.9

0.0058 330.1 0.0099 542.0 0.0140 735.9 0.0181 912.0
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TABLE A.14 Size and Pitch of Spirals, ACI Code—U.S. Customary Units

Diameter of Out to Out of f ′
c

Column (in.) Spiral (in.) 2500 3000 4000 5000

fy = 40,000:

14, 15 11,12 3
8 − 2 3

8 − 1 3
4

1
2 − 2 1

2
1
2 − 1 3

4

16 13 3
8 − 2 3

8 − 1 3
4

1
2 − 2 1

2
1
2 − 2

17–19 14–16 3
8 − 2 1

4
3
8 − 1 3

4
1
2 − 2 1

2
1
2 − 2

20–23 17–20 3
8 − 2 1

4
3
8 − 1 3

4
1
2 − 2 1

2
1
2 − 2

24–30 21–27 3
8 − 2 1

4
3
8 − 2 1

2 − 2 1
2

1
2 − 2

fy = 60,000:

14, 15 11, 12 1
4 − 1 3

4
3
8 − 2 3

4
3
8 − 2 1

2 − 2 3
4

16–23 13–20 1
4 − 1 3

4
3
8 − 2 3

4
3
8 − 2 1

2 − 3

24–29 21–26 1
4 − 1 3

4
3
8 − 3 3

8 − 2 1
4

1
2 − 3

30 17 1
4 − 1 3

4
3
8 − 3 3

8 − 2 1
4

1
2 − 3 1

4
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TABLE A.15 Weights, Areas, and Moments of Inertia of Circular Columns and Moments of
Inertia of Column Verticals Arranged in a Circle 5 in. Less Than the Diameter of Column: U.S.
Customary Units

gt = t – 5 in.

Diameter Weight per As′ Where
of Column h (in.) Foot (lb) Area (in.2) I (in.4) ρg = 0.01* Is (in.4)†

12 118 113 1,018 1.13 6.92

13 138 133 1,402 1.33 10.64

14 160 154 1,886 1.54 15.59

15 184 177 2,485 1.77 22.13

16 210 201 3,217 2.01 30.40

17 237 227 4,100 2.27 40.86

18 265 255 5,153 2.55 53.87

19 295 284 6,397 2.84 69.58

20 327 314 7,854 3.14 88.31

21 361 346 9,547 3.46 110.7

22 396 380 11,500 3.80 137.2

23 433 416 13,740 4.16 168.4

24 471 452 16,290 4.52 203.9

25 511 491 19,170 4.91 245.5

26 553 531 22,430 5.31 292.7

27 597 573 26,090 5.73 346.7

28 642 616 30,170 6.16 407.3

29 688 661 34,720 6.61 475.9

30 736 707 39,760 7.07 552.3

∗For other values of ρg , multiply the value by 100 ρg .
†The bars are assumed transformed into a thin-walled cylinder having the same sectional area as the bars. Then
Is = As (γ t)2/8.
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TABLE A.16 Moment Distribution Constants for Slabs Without Drop Panelsa

c1A

A B

w

h

CL CL

`1

c1B

Column Uniform Load Stiffness Carryover
Dimension FEM = Coef. (wl2l2

1 ) Factor† Factor
c1A

l1

c1B

l1
MAB MBA kAB kBA COFAB COFBA

0.00 0.083 0.083 4.00 4.00 0.500 0.500

0.05 0.083 0.084 4.01 4.04 0.504 0.500

0.10 0.082 0.086 4.03 4.15 0.513 0.499

0.15 0.081 0.089 4.07 4.32 0.528 0.498

0.00 0.20 0.079 0.093 4.12 4.56 0.548 0.495

0.25 0.077 0.097 4.18 4.88 0.573 0.491

0.30 0.075 0.102 4.25 5.28 0.603 0.485

0.35 0.073 0.107 4.33 5.78 0.638 0.478

0.05 0.084 0.084 4.05 4.05 0.503 0.503

0.10 0.083 0.086 4.07 4.15 0.513 0.503

0.15 0.081 0.089 4.11 4.33 0.528 0.501

0.05 0.20 0.080 0.092 4.16 4.58 0.548 0.499

0.25 0.078 0.096 4.22 4.89 0.573 0.494

0.30 0.076 0.101 4.29 5.30 0.603 0.489

0.35 0.074 0.107 4.37 5.80 0.638 0.481

0.10 0.085 0.085 4.18 4.18 0.513 0.513

0.15 0.083 0.088 4.22 4.36 0.528 0.511
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TABLE A.16 (Continued)

Column Uniform Load Stiffness Carryover
Dimension FEM = Coef. (wl2l2

1 ) Factor† Factor
c1A

l1

c1B

l1
MAB MBA kAB kBA COFAB COFBA

0.10 0.20 0.082 0.091 4.27 4.61 0.548 0.508

0.25 0.080 0.095 4.34 4.93 0.573 0.504

0.30 0.078 0.100 4.41 5.34 0.602 0.498

0.35 0.075 0.105 4.50 5.85 0.637 0.491

0.15 0.086 0.086 4.40 4.40 0.526 0.526

0.20 0.084 0.090 4.46 4.65 0.546 0.523

0.15 0.25 0.083 0.094 4.53 4.98 0.571 0.519

0.30 0.080 0.099 4.61 5.40 0.601 0.513

0.35 0.078 0.104 4.70 5.92 0.635 0.505

0.20 0.088 0.088 4.72 4.72 0.543 0.543

0.20 0.25 0.086 0.092 4.79 5.05 0.568 0.539

0.30 0.083 0.097 4.88 5.48 0.597 0.532

0.35 0.081 0.102 4.99 6.01 0.632 0.524

0.25 0.090 0.090 5.14 5.14 0.563 0.563

0.25 0.30 0.088 0.095 5.24 5.58 0.592 0.556

0.35 0.085 0.100 5.36 6.12 0.626 0.548

0.30 0.30 0.092 0.092 5.69 5.69 0.585 0.585

0.35 0.090 0.097 5.83 6.26 0.619 0.576

0.35 0.35 0.095 0.095 6.42 6.42 0.609 0.609

aApplicable when c1/l1 = c2/l2. For other relationships between these ratios, the constants will be slightly in error.
†Stiffness is KAB = kAB E(l2h3/12l1) and KBA = kBAE(l2h3/12l1)



McCormac b01.tex V2 - January 10, 2013 5:36 P.M. Page 650

650 A P P E NDI X A Tables and Graphs: U.S. Customary Units

TABLE A.17 Moment Distribution Constants for Slabs with Drop Panelsa

c1A

A B

w

h1.25h

CL CL

`1⎜6 2`1⎜3 `1⎜6

c1B

Column Uniform Load Stiffness Carryover
Dimension FEM = Coef. (wl2l2

1 ) Factor† Factor
c1A

l1

c1B

l1
MAB MBA kAB kBA COFAB COFBA

0.00 0.088 0.088 4.78 4.78 0.541 0.541

0.05 0.087 0.089 4.80 4.82 0.545 0.541

0.10 0.087 0.090 4.83 4.94 0.553 0.541

0.00 0.15 0.085 0.093 4.87 5.12 0.567 0.540

0.20 0.084 0.096 4.93 5.36 0.585 0.537

0.25 0.082 0.100 5.00 5.68 0.606 0.534

0.30 0.080 0.105 5.09 6.07 0.631 0.529

0.05 0.088 0.088 4.84 4.84 0.545 0.545

0.10 0.087 0.090 4.87 4.95 0.553 0.544

0.15 0.085 0.093 4.91 5.13 0.567 0.543

0.05 0.20 0.084 0.096 4.97 5.38 0.584 0.541

0.25 0.082 0.100 5.05 5.70 0.606 0.537

0.30 0.080 0.104 5.13 6.09 0.632 0.532

0.10 0.089 0.089 4.98 4.98 0.553 0.553

0.15 0.088 0.092 5.03 5.16 0.566 0.551

0.10 0.20 0.086 0.094 5.09 5.42 0.584 0.549

0.25 0.084 0.099 5.17 5.74 0.606 0.546

0.30 0.082 0.103 5.26 6.13 0.631 0.541

0.15 0.090 0.090 5.22 5.22 0.565 0.565

0.20 0.089 0.094 5.28 5.47 0.583 0.563

0.15 0.25 0.087 0.097 5.37 5.80 0.604 0.559

0.30 0.085 0.102 5.46 6.21 0.630 0.554

0.20 0.092 0.092 5.55 5.55 0.580 0.580

0.20 0.25 0.090 0.096 5.64 5.88 0.602 0.577

0.30 0.088 0.100 5.74 6.30 0.627 0.571

0.25 0.25 0.094 0.094 5.98 5.98 0.598 0.598

0.30 0.091 0.098 6.10 6.41 0.622 0.593

0.30 0.30 0.095 0.095 6.54 6.54 0.617 0.617

aApplicable when c1/l1 = c2/l2. For other relationships between these ratios, the constants will be slightly in error.
†Stiffness is KAB = kAB E(l2h3/12l1) and KBA = kBAE(l2h3/12l1)
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TABLE A.18 Moment Distribution Constants for Slab-Beam Members with Column Capitals

FEM (uniform load w) = Mw`2(`1)2
w

h h
c1

c1

c2

Carryover factor       = C

`2

K (stiffness)        = kE`2h3

12`1

c1

l1

c1

l2
M k C

c1

l1

c1

l2
M k C

0.00 0.083 4.000 0.500 0.10 0.25 0.087 4.449 0.530

0.05 0.083 4.000 0.500 0.30 0.087 4.535 0.535

0.10 0.083 4.000 0.500 0.35 0.088 4.618 0.540

0.15 0.083 4.000 0.500 0.40 0.088 4.698 0.545

0.20 0.083 4.000 0.500 0.45 0.089 4.774 0.550

0.00 0.25 0.083 4.000 0.500 0.50 0.089 4.846 0.554

0.30 0.083 4.000 0.500 0.00 0.083 4.000 0.500

0.35 0.083 4.000 0.500 0.05 0.084 4.132 0.509

0.40 0.083 4.000 0.500 0.10 0.085 4.267 0.517

0.45 0.083 4.000 0.500 0.15 0.086 4.403 0.526

0.50 0.083 4.000 0.500 0.20 0.087 4.541 0.534

0.00 0.083 4.000 0.500 0.15 0.25 0.088 4.680 0.543

0.05 0.084 4.047 0.503 0.30 0.089 4.818 0.550

0.10 0.084 4.093 0.507 0.00 0.083 4.000 0.500

0.15 0.084 4.138 0.510 0.05 0.085 4.170 0.511

0.20 0.085 4.181 0.513 0.10 0.086 4.346 0.522

0.05 0.25 0.085 4.222 0.516 0.15 0.087 4.529 0.532

0.30 0.085 4.261 0.518 0.20 0.088 4.717 0.543

0.35 0.086 4.299 0.521 0.20 0.25 0.089 4.910 0.554

0.40 0.086 4.334 0.523 0.30 0.090 5.108 0.564

0.45 0.086 4.368 0.526 0.35 0.091 5.308 0.574

0.50 0.086 4.398 0.528 0.40 0.092 5.509 0.584

0.00 0.083 4.000 0.500 0.45 0.093 5.710 0.593

0.05 0.084 4.091 0.506 0.50 0.094 5.908 0.602

0.10 0.085 4.182 0.513 0.00 0.083 4.000 0.500

0.15 0.085 4.272 0.519 0.05 0.085 4.204 0.512

0.20 0.086 4.362 0.524 0.10 0.086 4.420 0.525

(continues)
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TABLE A.18 (Continued)

c1

l1

c1

l2
M k C

c1

l1

c1

l2
M k C

0.15 0.087 4.648 0.538 0.20 0.090 5.348 0.563

0.20 0.089 4.887 0.550 0.40 0.25 0.092 5.778 0.580

0.25 0.25 0.090 5.138 0.563 0.30 0.094 6.255 0.598

0.30 0.091 5.401 0.576 0.35 0.095 6.782 0.617

0.35 0.093 5.672 0.588 0.40 0.097 7.365 0.635

0.40 0.094 5.952 0.600 0.45 0.099 8.007 0.654

0.45 0.095 6.238 0.612 0.50 0.100 8.710 0.672

0.50 0.096 6.527 0.623 0.00 0.083 4.000 0.500

0.00 0.083 4.000 0.500 0.05 0.085 4.311 0.515

0.05 0.085 4.235 0.514 0.10 0.087 4.658 0.530

0.10 0.086 4.488 0.527 0.15 0.088 5.046 0.547

0.15 0.088 4.760 0.542 0.20 0.090 5.480 0.564

0.20 0.089 5.050 0.556 0.45 0.25 0.092 5.967 0.583

0.30 0.25 0.091 5.361 0.571 0.35 0.095 6.416 0.609

0.30 0.092 5.692 0.585 0.40 0.096 6.888 0.626

0.35 0.094 6.044 0.600 0.45 0.098 7.395 0.642

0.40 0.095 6.414 0.614 0.50 0.099 7.935 0.658

0.45 0.096 6.802 0.628 0.30 0.094 6.517 0.602

0.50 0.098 7.205 0.642 0.35 0.096 7.136 0.621

0.00 0.083 4.000 0.500 0.40 0.098 7.836 0.642

0.05 0.085 4.264 0.514 0.45 0.100 8.625 0.662

0.10 0.087 4.551 0.529 0.50 0.101 9.514 0.683

0.15 0.088 4.864 0.545 0.00 0.083 4.000 0.500

0.20 0.090 5.204 0.560 0.05 0.085 4.331 0.515

0.35 0.25 0.091 5.575 0.576 0.10 0.087 4.703 0.530

0.30 0.093 5.979 0.593 0.15 0.088 5.123 0.547

0.35 0.090 4.955 0.558 0.20 0.090 5.599 0.564

0.40 0.090 5.090 0.565 0.50 0.25 0.092 6.141 0.583

0.45 0.091 5.222 0.572 0.30 0.094 6.760 0.603

0.50 0.092 5.349 0.579 0.35 0.096 7.470 0.624

0.00 0.083 4.000 0.500 0.40 0.098 8.289 0.645

0.05 0.085 4.289 0.515 0.45 0.100 9.234 0.667

0.10 0.087 4.607 0.530 0.50 0.102 10.329 0.690

0.15 0.088 4.959 0.546
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TABLE A.19 Moment Distribution Constants for Slab-Beam Members with Column Capitals and
Drop Panels

FEM (uniform load w) Mw ( 2
1)

K (stiffness) kE 2h
3

12 1

w

h2 h1

c1

c2
h

c1

`1⎜6

`2

Constants for Constants for
h2 = 1.25h1 h2 = 1.5h2

c1

l1

c1

l2
M k C M k C

0.00 0.088 4.795 0.542 0.093 5.837 0.589

0.05 0.088 4.795 0.542 0.093 5.837 0.589

0.10 0.088 4.795 0.542 0.093 5.837 0.589

0.00 0.15 0.088 4.795 0.542 0.093 5.837 0.589

0.20 0.088 4.795 0.542 0.093 5.837 0.589

0.25 0.088 4.795 0.542 0.093 5.837 0.589

0.30 0.088 4.797 0.542 0.093 5.837 0.589

0.00 0.088 4.795 0.542 0.093 5.837 0.589

0.05 0.088 4.846 0.545 0.093 5.890 0.591

0.10 0.089 4.896 0.548 0.093 5.942 0.594

0.05 0.15 0.089 4.944 0.551 0.093 5.993 0.596

0.20 0.089 4.990 0.553 0.094 6.041 0.598

0.25 0.089 5.035 0.556 0.094 6.087 0.600

0.30 0.090 5.077 0.558 0.094 6.131 0.602

0.00 0.088 4.795 0.542 0.093 5.837 0.589

0.05 0.088 4.894 0.548 0.093 5.940 0.593

0.10 0.089 4.992 0.553 0.094 6.042 0.598

0.10 0.15 0.090 5.039 0.559 0.094 6.142 0.602

0.20 0.090 5.184 0.564 0.094 6.240 0.607

0.25 0.091 5.278 0.569 0.095 6.335 0.611

0.30 0.091 5.368 0.573 0.095 6.427 0.615

0.00 0.088 4.795 0.542 0.093 5.837 0.589

0.05 0.089 4.938 0.550 0.093 5.986 0.595

0.10 0.090 5.082 0.558 0.094 6.135 0.602

(continues)
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TABLE A.19 (Continued)

Constants for Constants for
h2 = 1.25h1 h2 = 1.5h2

c1

l1

c1

l2
M k C M k C

0.15 0.15 0.090 5.228 0.565 0.095 6.284 0.608

0.20 0.091 5.374 0.573 0.095 6.432 0.614

0.25 0.092 5.520 0.580 0.096 6.579 0.620

0.30 0.092 5.665 0.587 0.096 6.723 0.626

0.00 0.088 4.795 0.542 0.093 5.837 0.589

0.05 0.089 4.978 0.552 0.093 6.027 0.597

0.10 0.090 5.167 0.562 0.094 6.221 0.605

0.20 0.15 0.091 5.361 0.571 0.095 6.418 0.613

0.20 0.092 5.558 0.581 0.096 6.616 0.621

0.25 0.093 5.760 0.590 0.096 6.816 0.628

0.30 0.094 5.962 0.590 0.097 7.015 0.635

0.00 0.088 4.795 0.542 0.093 5.837 0.589

0.05 0.089 5.015 0.553 0.094 6.065 0.598

0.10 0.090 5.245 0.565 0.094 6.300 0.608

0.25 0.15 0.091 5.485 0.576 0.095 6.543 0.617

0.20 0.092 5.735 0.587 0.096 6.790 0.626

0.25 0.094 5.994 0.598 0.097 7.043 0.635

0.30 0.095 6.261 0.600 0.098 7.298 0.644

0.00 0.088 4.795 0.542 0.093 5.837 0.589

0.05 0.089 5.048 0.554 0.094 6.099 0.599

0.10 0.090 5.317 0.567 0.095 6.372 0.610

0.30 0.15 0.092 5.601 0.580 0.096 6.657 0.620

0.20 0.093 5.902 0.593 0.097 6.953 0.631

0.25 0.094 6.219 0.605 0.098 7.258 0.641

0.30 0.095 6.550 0.618 0.099 7.571 0.651
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TABLE A.20 Stiffness Factors and Carryover Factors for Columns

B b

a a a

b b

B B

A A A

`u `c `u `c `u `c

lu

ln
a
b

0.95 0.90 0.85 0.80 0.75

0.20
kAB 4.32 4.70 5.33 5.65 6.27

CAB 0.57 0.64 0.71 0.80 0.89

0.40
kAB 4.40 4.89 5.45 6.15 7.00

CAB 0.56 0.61 0.68 0.74 0.81

0.60
kAB 4.46 5.02 5.70 6.54 7.58

CAB 0.55 0.60 0.65 0.70 0.76

0.80
kAB 4.51 5.14 5.90 6.85 8.05

CAB 0.54 0.58 0.63 0.67 0.72

1.00
kAB 4.55 5.23 6.06 7.11 8.44

CAB 0.54 0.57 0.61 0.65 0.68

1.20
kAB 4.58 5.30 6.20 7.32 8.77

CAB 0.53 0.57 0.60 0.63 0.66

1.40
kAB 4.61 5.36 6.31 7.51 9.05

CAB 0.53 0.56 0.59 0.61 0.64

1.60
kAB 4.63 5.42 6.41 7.66 9.29

CAB 0.53 0.55 0.58 0.60 0.62

1.80
kAB 4.65 5.46 6.49 7.80 9.50

CAB 0.53 0.55 0.57 0.59 0.60

2.00
kAB 4.67 5.51 6.56 7.92 9.68

CAB 0.52 0.54 0.56 0.58 0.59

Notes:
1. Values computed by column analogy method.
2. kc = kAB from table

(
EI0/ln

)
.
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GRAPH 1 Moment capacity of rectangular sections.
(Note: The upper ends of the curves shown here for 40 ksi and 50 ksi bars
correspond to ρ values for which εt < 0.004 in the steel.)
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GRAPH 2 Column interaction diagrams for rectangular tied columns with bars on end faces only.
(Published with the permission of the American Concrete Institute.)
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GRAPH 3 Column interaction diagrams for rectangular tied columns with bars on end faces only.
(Published with the permission of the American Concrete Institute.)
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GRAPH 4 Column interaction diagrams for rectangular tied columns with bars on end faces only.
(Published with the permission of the American Concrete Institute.)
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GRAPH 5 Column interaction diagrams for rectangular tied columns with bars on end faces only.
(Published with the permission of the American Concrete Institute.)
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GRAPH 6 Column interaction diagrams for rectangular tied columns with bars on all four faces.
(Published with the permission of the American Concrete Institute.)
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GRAPH 7 Column interaction diagrams for rectangular tied columns with bars on all four faces.
(Published with the permission of the American Concrete Institute.)
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GRAPH 8 Column interaction diagrams for rectangular tied columns with bars on all four faces.
(Published with the permission of the American Concrete Institute.)
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GRAPH 9 Column interaction diagrams for rectangular tied columns with bars on all four faces.
(Published with the permission of the American Concrete Institute.)



McCormac b01.tex V2 - January 10, 2013 5:36 P.M. Page 665

A P P E NDI X A Tables and Graphs: U.S. Customary Units 665

0.07

0.05

0.04

0.03

0.02

0.01

0.000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.025 0.050 0.075 0.100 0.125 0.150 0.2500.2250.2000.175

Rn = Pne⎜fcAgh'

K
n

=
P

n
⎜f

cA
g

'

Pn

= 0.6

h

fy = 60 ksi

h

e

fc = 4 ksi'
INTERACTION DIAGRAM C4–60.6

t = 0.0050

t = 0.0035

0.75

fs⎜fy = 0

0.25

0.50

1.0

Kmax0.06

z = 0.08

GRAPH 10 Column interaction diagrams for circular spiral columns.
(Published with the permission of the American Concrete Institute.)



McCormac b01.tex V2 - January 10, 2013 5:36 P.M. Page 666

666 A P P E NDI X A Tables and Graphs: U.S. Customary Units

Kmax

0.07

0.06

0.05

0.04

0.02

0.01

1.0

0.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.05 0.10 0.15 0.20 0.25 0.30

Rn = Pne⎜fcAgh'

K
n

=
P

n
⎜f

cA
g

'
Pn

= 0.7

h

fy = 60 ksi

h

e

fc = 4 ksi'
INTERACTION DIAGRAM C4–60.7

t = 0.0050
t = 0.0035

0.50

0.75

0.25

fs⎜fy = 0

z = 0.08

0.03

GRAPH 11 Column interaction diagrams for circular spiral columns.
(Published with the permission of the American Concrete Institute.)



McCormac b01.tex V2 - January 10, 2013 5:36 P.M. Page 667

A P P E NDI X A Tables and Graphs: U.S. Customary Units 667

Kmax

0.07

0.06

0.05

0.04

0.03

0.02

0.01

1.0

0.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.05 0.10 0.15 0.20 0.25 0.350.30

Rn = Pne⎜fcAgh'

K
n

=
P

n
⎜f

cA
g

'

Pn

= 0.8

h

fy = 60 ksi

h

e

fc = 4 ksi'
INTERACTION DIAGRAM C4–60.8

t = 0.0050
t = 0.0035

0.50

0.75

0.25

fs⎜fy = 0

z = 0.08

GRAPH 12 Column interaction diagrams for circular spiral columns.
(Published with the permission of the American Concrete Institute.)



McCormac b01.tex V2 - January 10, 2013 5:36 P.M. Page 668

668 A P P E NDI X A Tables and Graphs: U.S. Customary Units

0.06

0.05

0.04

0.03

0.02

0.01

1.0

0.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.05 0.10 0.15 0.20 0.25 0.400.30 0.35

Rn = Pne⎜fcAgh'

K
n

=
P

n
⎜f

cA
g

'
Pn

= 0.9

h

fy = 60 ksi

h

e

fc = 4 ksi'
INTERACTION DIAGRAM C4–60.9

t = 0.0050
t = 0.0035

0.50

0.75

0.25

fs⎜fy = 0

0.07

Kmax

z = 0.08

GRAPH 13 Column interaction diagrams for circular spiral columns.
(Published with the permission of the American Concrete Institute.)



McCormac b02.tex V2 - January 10, 2013 1:42 P.M. Page 669

APPENDIX BTables in SI Units

TABLE B.1 Values of Modulus of
Elasticity for Normal-Weight Concrete

f ′
c (MPa) Ec (MPa)

17 17 450

21 21 500

24 23 000

28 24 900

35 27 800

42 30 450

TABLE B.2 Designations, Diameters, Areas, Perimeters, and
Masses of Metric Bars

Nominal Dimensions

Bar No. Diameter (mm) Area (mm2) Mass (kg/m)

10 9.5 71 0.560

13 12.7 129 0.994

16 15.9 199 1.552

19 19.1 284 2.235

22 22.2 387 3.042

25 25.4 510 3.973

29 28.7 645 5.060

32 32.3 819 6.404

36 35.8 1006 7.907

43 43.0 1452 11.38

57 57.3 2581 20.24

669
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TABLE B.3 Grades of Reinforcing Bars and Metric Bar
Sizes Available for Each

ASTM No. Steel Grade (MPa) Bar Sizes

A615M Billet

300 #10–#19

420 #10–#57

520 #19–#57

A616M Rail
350 #10–#36

420 #10–#36

A617M Axle
300 #10–#36

420 #10–#36

A706M Low-Alloy 420 #10–#57

TABLE B.4 Areas of Groups of Standard Metric Bars (mm2)

Number of Bars

Bar Designation 2 3 4 5 6 7 8 9 10

#10 142 213 284 355 426 497 568 639 710

#13 258 387 516 645 774 903 1032 1161 1290

#16 398 597 796 995 1194 1393 1592 1791 1990

#19 568 852 1136 1420 1704 1988 2272 2556 2840

#22 774 1161 1548 1935 2322 2709 3096 3483 3870

#25 1020 1530 2040 2550 3060 3570 4080 4590 5100

#29 1290 1935 2580 3225 3870 4515 5160 5805 6450

#32 1638 2457 3276 4095 4914 5733 6552 7371 8190

#36 2012 3018 4024 5030 6036 7042 8048 9054 10 060

#43 2904 4356 5808 7260 8712 10 162 11 616 13 068 14 520

#57 5162 7743 10 324 12 905 15 486 18 067 20 648 23 229 25 810

Number of Bars

Bar Designation 11 12 13 14 15 16 17 18 19 20

#10 781 852 923 994 1065 1136 1207 1278 1349 1420

#13 1419 1548 1677 1806 1935 2064 2193 2322 2451 2580

#16 2189 2388 2587 2786 2985 3184 3383 3582 3781 3980

#19 3124 3408 3692 3976 4260 4544 4828 5112 5396 5680

#22 4257 4644 5031 5418 5805 6192 6579 6966 7353 7740

#25 5610 6120 6630 7140 7650 8160 8670 9180 9690 10 200

#29 7095 7740 8385 9030 9675 10 320 10 965 11 610 12 255 12 900

#32 9009 9828 10 647 11 466 12 285 13 104 13 913 14 742 15 561 16 380

#36 11 066 12 072 13 078 14 084 15 090 16 096 17 102 18 108 19 114 20 120

#43 15 972 17 424 18 876 20 328 21 780 23 232 24 684 26 136 27 588 29 040

#57 28 391 30 972 33 553 36 134 38 715 41 296 43 877 46 458 49 039 51 620
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TABLE B.5 Minimum Beam Width (mm) for Beams with Inside Exposure (1995
ACI Metric Code)a,b,c

Size of Number of Bars in Single Layer of Reinforcement Add for Each
Bars 2 3 4 5 6 7 8 Additional Bar

#13 175 213 251 288 326 364 401 37.7

#16 178 219 260 301 342 383 424 40.9

#19 182 226 270 314 358 402 446 44.1

#22 185 232 279 326 373 421 468 47.2

#25 188 239 290 341 391 442 493 50.8

#29 195 252 310 367 424 482 539 57.4

#32 202 267 331 396 460 525 590 64.6

#36 209 281 353 424 496 567 639 71.6

#43 228 314 400 486 572 658 744 86.0

#57 271 386 501 615 730 844 959 114.6

aMinimum beam widths for beams were calculated using #10 stirrups.
bMaximum aggregate sizes were assumed not to exceed 3

4 of the clear spacing between the bars (ACI
3.3.2).
cThe horizontal distance from the center of the outside longitudinal bars to the inside of the stirrups
was assumed to equal the larger of two times the stirrup diameter (ACI 7.2.2) or half the longitudinal bar
diameter.

TABLE B.6 Areas of Bars in Slabs (mm2/m)

Spacing
(mm)

Bar Number

10 13 16 19 22 25 29 32 36

75 947 1720 2653 3787 5160 6800 8600 10 920 13 413

90 789 1433 2211 3156 4300 5667 7167 9100 11 178

100 710 1290 1990 2840 3870 5100 6450 8190 10 060

115 617 1122 1730 2470 3365 4435 5609 7122 8748

130 546 992 1531 2185 2977 3923 4962 6300 7738

140 507 921 1421 2029 2764 3643 4607 5850 7186

150 473 860 1327 1893 2580 3400 4300 5460 6707

165 430 782 1206 1721 2345 3091 3909 4964 6097

180 394 717 1106 1578 2150 2833 3583 4550 5589

190 374 679 1047 1495 2037 2684 3395 4311 5295

200 355 645 995 1420 1935 2550 3225 4095 5030

225 316 573 884 1262 1720 2267 2867 3640 4471

250 284 516 796 1136 1548 2040 2580 3276 4024

300 237 430 663 947 1290 1700 2150 2730 3353
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TABLE B.7 Values of ρ Balanced, ρ to Achieve Various εt Values, and ρ

Minimum for Flexure. All Values are for Tensilely Reinforced Rectangular
Sections

f ′
c(MPa) 21 28 35 42

fy (MPa) β1 = 0.85 β1 = 0.85 β1 = 0.814 β1 = 0.764

300

ρ balanced 0.0337 0.0450 0.0538 0.0606

ρ when εt = 0.004 0.0217 0.0289 0.0346 0.0390

ρ when εt = 0.005 0.0190 0.0253 0.0303 0.0341

ρ when εt = 0.075 0.0144 0.0193 0.0231 0.0260

ρ min for flexure 0.0047 0.0047 0.0049 0.0054

350

ρ balanced 0.0274 0.0365 0.0437 0.0492

ρ when εt = 0.004 0.0186 0.0248 0.0297 0.0334

ρ when εt = 0.005 0.0163 0.0217 0.0259 0.0292

ρ when εt = 0.0075 0.0124 0.0165 0.0198 0.0223

ρ min for flexure 0.0040 0.0040 0.0042 0.0046

420

ρ balanced 0.0212 0.0283 0.0339 0.0382

ρ when εt = 0.004 0.0155 0.0206 0.0247 0.0278

ρ when εt = 0.005 0.0135 0.0181 0.0216 0.0244

ρ when εt = 0.0075 0.0103 0.0138 0.0165 0.0186

ρ min for flexure 0.0033 0.0033 0.0035 0.0039

520

ρ balanced 0.0156 0.0208 0.0249 0.0281

ρ when εt = 0.004 0.0125 0.0167 0.0200 0.0225

ρ when εt = 0.005 0.0109 0.0146 0.0175 0.0197

ρ when εt = 0.0075 0.0083 0.0111 0.0133 0.0150

ρ min for flexure 0.0027 0.0027 0.0028 0.0031
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TABLE B.8 fy = 420 MPa; f ′c = 21 MPa—SI Units

ρ
Mu

φbd 2 ρ
Mu

φbd 2 ρ
Mu

φbd 2 ρ
Mu

φbd 2

ρmin for 0.0018 0.740 0.0048 1.902 0.0078 2.975 0.0107 3.928

temp. and 0.0019 0.780 0.0049 1.939 0.0079 3.010 0.0108 3.960

shrinkage 0.0020 0.820 0.0050 1.976 0.0080 3.044 0.0109 3.991

0.0021 0.860 0.0051 2.013 0.0081 3.078 0.0110 4.022

0.0022 0.900 0.0052 2.050 0.0082 3.112 0.0111 4.053

0.0023 0.940 0.0053 2.087 0.0083 3.146 0.0112 4.084

0.0024 0.980 0.0054 2.124 0.0084 3.179 0.0113 4.115

0.0025 1.019 0.0055 2.161 0.0085 3.213 0.0114 4.146

0.0026 1.059 0.0056 2.197 0.0086 3.247 0.0115 4.177

0.0027 1.098 0.0057 2.233 0.0087 3.280 0.0116 4.207

0.0028 1.137 0.0058 2.270 0.0088 3.313 0.0117 4.238

0.0029 1.176 0.0059 2.306 0.0089 3.347 0.0118 4.268

0.0030 1.216 0.0060 2.342 0.0090 3.380 0.0119 4.298

0.0031 1.255 0.0061 2.378 0.0091 3.413 0.0120 4.328

0.0032 1.293 0.0062 2.414 0.0092 3.446 0.0121 4.359

ρmin 0.0033 1.332 0.0063 2.450 0.0093 3.479 0.0122 4.389

flexure 0.0034 1.371 0.0064 2.486 0.0094 3.511 0.0123 4.418

0.0035 1.409 0.0065 2.521 0.0095 3.544 0.0124 4.448

0.0036 1.448 0.0066 2.557 0.0096 3.577 0.0125 4.478

0.0037 1.486 0.0067 2.592 0.0097 3.609 0.0126 4.508

0.0038 1.525 0.0068 2.628 0.0098 3.641 0.0127 4.537

0.0039 1.563 0.0069 2.663 0.0099 3.674 0.0128 4.566

0.0040 1.601 0.0070 2.698 0.0100 3.706 0.0129 4.596

0.0041 1.639 0.0071 2.733 0.0101 3.738 0.0130 4.625

0.0042 1.677 0.0072 2.768 0.0102 3.770 0.0131 4.654

0.0043 1.715 0.0073 2.803 0.0103 3.802 0.0132 4.683

0.0044 1.752 0.0074 2.837 0.0104 3.834 0.0133 4.712

0.0045 1.790 0.0075 2.872 0.0105 3.865 0.0134 4.741

0.0046 1.827 0.0076 2.907 0.0106 3.897 0.0135 4.769

0.0047 1.865 0.0077 2.941
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TABLE B.9 fy = 420 MPa; f ′c = 28 MPa—SI Units

ρ
Mu

φbd 2 ρ
Mu

φbd 2 ρ
Mu

φbd 2 ρ
Mu

φbd 2

ρmin for 0.0018 0.744 0.0059 2.349 0.0100 3.829 0.0141 5.185

temp. and 0.0019 0.785 0.0060 2.387 0.0101 3.864 0.0142 5.217

shrinkage 0.0020 0.825 0.0061 2.424 0.0102 3.898 0.0143 5.248

0.0021 0.866 0.0062 2.462 0.0103 3.933 0.0144 5.280

0.0022 0.906 0.0063 2.499 0.0104 3.967 0.0145 5.311

0.0023 0.946 0.0064 2.536 0.0105 4.001 0.0146 5.342

0.0024 0.987 0.0065 2.573 0.0106 4.036 0.0147 5.373

0.0025 1.027 0.0066 2.611 0.0107 4.070 0.0148 5.404

0.0026 1.067 0.0067 2.648 0.0108 4.104 0.0149 5.435

0.0027 1.107 0.0068 2.685 0.0109 4.138 0.0150 5.466

0.0028 1.147 0.0069 2.722 0.0110 4.172 0.0151 5.497

0.0029 1.187 0.0070 2.758 0.0111 4.205 0.0152 5.528

0.0030 1.227 0.0071 2.795 0.0112 4.239 0.0153 5.558

0.0031 1.266 0.0072 2.832 0.0113 4.273 0.0154 5.589

0.0032 1.306 0.0073 2.869 0.0114 4.306 0.0155 5.620

ρmin 0.0033 1.346 0.0074 2.905 0.0115 4.340 0.0156 5.650

flexure 0.0034 1.385 0.0075 2.942 0.0116 4.373 0.0157 5.681

0.0035 1.424 0.0076 2.978 0.0117 4.407 0.0158 5.711

0.0036 1.464 0.0077 3.014 0.0118 4.440 0.0159 5.741

0.0037 1.503 0.0078 3.051 0.0119 4.473 0.0160 5.771

0.0038 1.542 0.0079 3.087 0.0120 4.506 0.0161 5.801

0.0039 1.582 0.0080 3.123 0.0121 4.539 0.0162 5.831

0.0040 1.621 0.0081 3.159 0.0122 4.572 0.0163 5.861

0.0041 1.660 0.0082 3.195 0.0123 4.605 0.0164 5.891

0.0042 1.699 0.0083 3.231 0.0124 4.638 0.0165 5.921

0.0043 1.737 0.0084 3.267 0.0125 4.671 0.0166 5.951

0.0044 1.776 0.0085 3.302 0.0126 4.704 0.0167 5.980

0.0045 1.815 0.0086 3.338 0.0127 4.736 0.0168 6.010

0.0046 1.854 0.0087 3.374 0.0128 4.769 0.0169 6.040

0.0047 1.892 0.0088 3.409 0.0129 4.801 0.0170 6.069

0.0048 1.931 0.0089 3.444 0.0130 4.834 0.0171 6.098

0.0049 1.969 0.0090 3.480 0.0131 4.866 0.0172 6.128

0.0050 2.007 0.0091 3.515 0.0132 4.898 0.0173 6.157

0.0051 2.046 0.0092 3.550 0.0133 4.930 0.0174 6.186

0.0052 2.084 0.0093 3.585 0.0134 4.963 0.0175 6.215

0.0053 2.122 0.0094 3.621 0.0135 4.995 0.0176 6.244

0.0054 2.160 0.0095 3.656 0.0136 5.027 0.0177 6.273

0.0055 2.198 0.0096 3.690 0.0137 5.058 0.0178 6.302

0.0056 2.236 0.0097 3.725 0.0138 5.090 0.0179 6.331

0.0057 2.274 0.0098 3.760 0.0139 5.122 0.0180 6.359

0.0058 2.311 0.0099 3.795 0.0140 5.154 0.0181 6.388
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APPENDIX CThe Strut-and-Tie Method
of Design

C.1 Introduction
This appendix presents an alternative method for designing reinforced concrete members with
force and geometric discontinuities. The method is also very useful for designing deep beams
for which the usual assumption of linear strain distribution is not valid. This method of design,
commonly referred to as strut-and-tie design, is briefly introduced.

C.2 Deep Beams
Section 10.7 of the ACI Code defines a deep beam as a member that

(a) Is loaded on one face and supported on the opposite face so that compression struts
can develop between the load and the supports.

(b) Has a clear span not more than four times its overall depth or that has regions where
concentrated loads are located within two times the member depth from the support.

Transfer girders are one type of deep beam that occur rather frequently. Such members
are used to transfer loads laterally from one or more columns to other columns. Sometimes
bearing walls also exhibit deep beam action.

Deep beams begin to crack at loads ranging from 1
3 Pu to 1

2 Pu . As a result, elastic analyses
are not of much value to us except in one regard: the cracks tell us something about the way
the stresses that cause the cracks are distributed. In other words, they provide information as
to how the loads will be carried after cracking.

C.3 Shear Span and Behavior Regions
The ratio of the shear span of a beam to its effective depth determines how the beam will fail
when overloaded. The shear span for a particular beam is shown in Figure C.1, where it is
represented by the symbol a. This is the distance from the concentrated load shown to the face
of the support. Should the beam be supporting only a uniform load, the shear span is the clear
span of the beam.

When shear spans are long, they are referred to as B regions. These are regions for
which the usual beam theory applies—plane sections remain plain before and after bending.
The letter B stands for beam or for Bernoulli (he is the one who presented the linear strain
theory for beams).

In some situations, the usual beam theory does not apply. When shear spans are short,
loads are primarily resisted by arch action rather than beam action. Locations where this occurs
are called D regions. The letter D represents discontinuity or disturbance. In such regions, plane

675
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a

FI GU RE C.1 Shear span.

sections before bending do not remain plane after bending, and the forces obtained with the
usual shear and moment diagrams and first-order beam theory are incorrect.

D regions are those parts of members located near concentrated loads and reactions.
They also include joints and corbels and other locations where sudden changes in member
cross section occur, such as where holes are present in members.

According to the St. Venant principle, local disturbances such as those caused by con-
centrated loads tend to dissipate within a distance approximately equal to the member depth.
Figure C.2 shows several typical B and D regions. You should note that the authors used the
St. Venant principle in this figure to show the extent of the D regions. For more examples, the
reader should also examine Figures R.A.1.1 and R.A.1.2 in Appendix A of the ACI Code.

D region

D region B region D region B region

D region
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FI GU RE C.2 B and D regions.
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C.4 Truss Analogy
If shear spans are very short, inclined cracks extending from the concentrated loads to the sup-
ports tend to develop. This situation is illustrated in Figure C.3. In effect, the flow of horizontal
shear from the longitudinal reinforcement to the compression zone has been interrupted. As a
result, the behavior of the member has been changed from that of a beam to that of a tied arch
where the reinforcing bars act as the ties of an arch.

In Chapter 8, Section 8.7 of this text, reference was made to the description of reinforced
concrete beams by Ritter-Morsch with the truss analogy method. According to that theory, a
reinforced concrete beam with shear reinforcement behaves much like a statically determinate
parallel chord truss with pinned joints. The concrete compression block is considered to be the
top chord of the fictitious “truss,” while the tensile reinforcement is considered to act as the
bottom chord. The “truss” web is said to consist of the stirrups acting as vertical tension
members, while the portions of the concrete between the diagonal cracks are assumed to act
as diagonal compression members. Such a “truss” is shown in Figure C.4, which is a copy of
Figure 8.4 presented in Chapter 8.

In this figure, the compression concrete and the stirrups are shown with dashed lines.
These lines represent the estimated centers of gravity of those forces. The tensile forces are
represented with solid lines because those forces clearly act along the reinforcing bar lines.

a ≤ d

tensile reinforcement

FI GU RE C.3 A very short shear span.

concrete between
inclined cracks (diagonals) stirrups (verticals)

compression concrete
(top chord)

tensile steel
(bottom chord)

diagonal tension cracks

FI GU RE C.4 Truss analogy.
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C.5 Definitions

A strut-and-tie model is a truss model of a D region where the member is represented
by an idealized truss of struts and ties.

A tie is a tension member in a strut-and-tie model.

A strut is a compression member in a strut-and-tie model that represents the resultant of
the compression field.

A node in a strut-and-tie model is the point in a joint where the struts, ties, and concen-
trated forces at the joint intersect.

The nodal zone is the volume of concrete around a node that is assumed to transfer the
forces from the struts and ties through the node.

C.6 ACI Code Requirements for Strut-and-Tie Design
Several of the more important code requirements for strut-and-tie-design are as follows.

Strength of Struts

1. The design strength of a strut, tie, or nodal zone, φFn , must be at least as large as the
force in the strut or tie or nodal zone.

φFn ≥ Fu (ACI Equation A-1)

In Section 9.3.2 of the ACI Code, φ is specified to be 0.75 for strut-and-tie members.

2. The nominal compression strength of a strut that contains no longitudinal reinforcing is
to be taken as the smaller value at the two ends of the strut of

Fns = fceAcs (ACI Equation A-2)

where Acs is the cross-sectional area at one end of a strut taken perpendicular to the
axis and fce is the effective compression strength of the concrete (psi) in a strut or nodal
zone. Its value is to be taken as the lesser of (a) and (b) to follow:

(a) Effective concrete compression strength in struts

fce = 0.85βs f ′
c (ACI Equation A-3)

βs is a factor used to estimate the effect of cracking and confining the reinforcing on
the strength of the strut concrete. Values of βs are given in Appendix Section A.3.2 of
the ACI Code for different situations. They vary from 0.4 to 0.75, and their meaning
and effect are similar to β1 on the rectangular stress blocks so frequently discussed for
beams and columns earlier in this text. For a strut having uniform cross-sectional area
over its length, βs = 1.0. For struts in tension members of tension flanges, βs = 0.40.

For bottle-shaped struts (width at midsection greater than width at nodes), βs =
0.75 if f ′

c ≤ 6000 psi and if the axis of the strut is crossed by layers of reinforcement
that satisfy ACI Equation A-4

∑ Asi

BsSi
sinαi ≥ 0.003 (ACI Equation A-4)
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where Asi is the total area of surface reinforcement at spacing Si in the ith layer
of reinforcement, crossing a strut at an angle αi to the axis of the strut. For bottle-
shaped struts not satisfying ACI Equation A-4, βs = 0.60λ. Finally, for all other
struts, βs = 0.60λ.

(b) The nominal compression strength of a nodal zone, Fnn , is

Fnn = fceAnz

where Anz is the smaller of

(i) the area of the face of the nodal zone on which Fu acts, taken perpendicular to
the line of action of Fu , or

(ii) the area of a section through the nodal zone, taken perpendicular to the line of
action of Fu .

Effective concrete compression strength in nodal zones

fce = 0.85βn f ′
c (ACI Equation A-8)

βn is a factor used to estimate the effect of the anchorage of ties on the effective
compression strength of the nodal zone. Values are specified for different situations
in ACI Appendix Section A.5.2 and vary from 0.6 to 1.0, depending on the number
of ties and on what bounds the nodal zone.

Strength of Ties

Following the provisions of ACI 318 in its Appendix A-4, the nominal strength of a tie is to
be determined with the following expression:

Fnt = Ats fy + Atp (fse + �fp) (ACI Equation A-6)

where

Ats = area of nonprestressed reinforcing in a tie
fy = yield strength of the nonprestressed reinforcement

Atp = area of prestressing steel in a tie

fse = effective stress in prestressed reinforcement after losses

�fp = increase in stress in prestress steel due to factored loads. The code in its
Section A.4.1 states that it is permissible to use �fp = 60,000 psi for bonded
prestressed reinforcement and 10,000 psi for nonbonded prestressed
reinforcement. Other values can be used if they can be justified by analysis.

fse + �fp shall not exceed fpy .

C.7 Selecting a Truss Model
When the strut-and-tie method is used for D regions, the results are thought to be more
conservative but more realistic than the results obtained with the usual beam theory. To design
for a D region of a beam, it is necessary to isolate the region as a free body, determine the
forces acting on that body, and then select a system or truss model to transfer the forces through
the region.

Once the D region has been identified and its dimensions have been determined, it is
assumed to extend a distance h on each side of the discontinuity or to the face of the support
if that value is less than the depth.
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T T

C

C

shear reinforcement

tensile reinforcement

s = stirrup spacing

FI GU RE C.5 A beam showing shear and tensile reinforcing.

The stresses on the boundaries of the region are computed with the usual expression for
combined axial load and bending, P/A ± Mc/I . The resulting values must be divided by the
capacity reduction factor φ for shearing forces (0.75) to obtain the required nominal stresses.

The designer needs to represent the D regions of members, which fail in shear, with
some type of model before beginning the design. The model selected for beams with shear
reinforcement is the truss model, as it is the best one available at this time.

For this discussion, the beam of Figure C.5 is considered. The internal and external forces
acting on this beam, which is assumed to be cracked, are shown. To select a strut-and-tie model
for such a beam, all the stirrups cut by the imaginary section (see Figure C.5) are lumped into
one. In a similar fashion, the concrete parallel to a diagonal is also lumped together in one
member.

With the strut-and-tie method, forces are resisted by an idealized internal truss such as
the triangular one sketched in Figure C.6. The member and joints of this truss are designed
so that they will be able to resist the computed forces. The truss selected must, of course,
be smaller than the beam that encloses it, and any reinforcing steel must be given adequate
cover. For a first illustration, a short deep beam supporting a concentrated load is shown in
Figure C.6.

Various types of nodes are shown in Figure C.7. You should observe that there have to
be at least three forces at each joint for equilibrium. This is the number of forces necessary for
static equilibrium as well as the largest number that can occur in a state of determinate static
equilibrium.

If more than three forces meet at a joint when a truss is laid out, the designer will need
to make combinations of them in some way so that only three forces are considered to meet
at the node. Two possible strut-and-tie models for a deep beam supporting two concentrated
loads are shown in Figure C.8. In part (a) of the figure, four forces meet at the location of

reinforcing bars

compression diagonals

compression
diagonals

nodal zone

nodal zone

FI GU RE C.6 A short deep beam with the truss model shown.
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FI GU RE C.7 Various types of truss joints.

reinforcing bars

(a)

(b)

reinforcing bars

FI GU RE C.8 Two more assumed strut-and-tie trusses.

each concentrated load. As such, we cannot determine all of the forces. An alternative truss is
shown in part (b) of the figure in which only three forces meet at each joint.

You can see that the assumptions of the paths of the forces involved in the trusses
described might vary quite a bit among different designers. As a result, there is no one correct
solution for a particular member designed by the strut-and-tie method.

C.8 Angles of Struts in Truss Models
To lay out the truss, it is necessary to establish the slope of the diagonals (angle θ in Figure C.8
that is measured from the tension chord—the tension reinforcement). According to Schlaich
and Weischede, the angle of stress trajectories varies from about 68◦ if l/d ≥ 10 to about 55◦

if l/d = 2.0.1 A rather common practice, and one that is used in this appendix and is usually
satisfactory, is to assume a 2 vertical to 1 horizontal slope for the struts. This will result in a
value of θ = 63◦56′. The dimensions selected for the truss model must fit into the D region
involved, so the angles may need to be adjusted.

1 Jörg Schlaich and Dieter Weischede, Detailing of Concrete Structures, Bulletin d’Information 150, Comité Euro-International
‘du Béton, Paris (March 1982), 163 pages.
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C.9 Design Procedure
Following is a step-by-step procedure for using the strut-and-tie design method.

1. Selection of strut-and-tie model—A truss is selected to support the concentrated loads,
and that truss is analyzed.

2. Design of vertical stirrups—A stirrup bar size is assumed, and its strength is assumed
to equal its cross-sectional area times its yield stress. The number of stirrups required
equals the vertical force divided by the strength of one of the stirrups. The required
spacing of these stirrups is determined. If it is too large or too small, a different stirrup
size is assumed, and the procedure is repeated.

3. Selection of horizontal reinforcing across beam perpendicular to span—The appendix to
the code does not require that reinforcing such as this be used, but it is likely that its
use will appreciably reduce cracking. As a result, we can select an amount of steel equal
to that listed in ACI Section 11.7.4 for regular deep beam design. There the equation
Avh = 0.0025bw sh is given, and it is specified that the spacing of such reinforcing not
exceed d/5 or 12 in.

4. Computing the strength of struts—Next ACI Equation A-3 is applied to check needed
strut sizes. In actual problems, these struts are the diagonals. As a part of the calculation,
the spaces available are compared to the required sizes.

5. Design of ties parallel to beam span—Horizontal ties parallel to the beam span are
needed to resist the horizontal forces in the struts and keep them from cracking. The
design strength of such ties is provided by ACI Appendix Equation A-6.

6. Analysis of nodal zones—Finally, ACI Appendix Equation A-8 is used to determine the
strength of the nodal zones. The reader should note that ACI Appendix Section A.5.2
states that no confinement of the nodal zones is required.
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APPENDIX D
Seismic Design of Reinforced
Concrete Structures

D.1 Introduction
Seismic design of reinforced concrete structures is a subject that could easily fill an entire
textbook. Many organizations are dedicated to studying the earthquake response and design
of structures. Each earthquake teaches us new lessons, and we continually refine our code
requirements based on such lessons.

Earthquakes produce horizontal and vertical ground motions that shake the base of a struc-
ture. Because the movement of the rest of the structure is resisted by the structure’s mass (inertia),
ground shaking creates deformations in the structure, and these deformations produce forces in the
structure. Earthquake motions produce seismic loads on structures, even those that are not part of
the lateral load-resisting system. These forces can be both horizontal and vertical and can subject
structural elements to axial forces, moments, and shears whose magnitudes depend on many of
the properties of the structure, such as its mass, its stiffness, and its ductility. Also important is
the structure’s period of vibration (the time that the structure takes to vibrate back and forth later-
ally). In this appendix, the seismic design of reinforced concrete structures is approached from the
viewpoint of code application. Calculation of seismic design forces is discussed, element design
and detailing for those forces is explained, and examples are provided.

The seismic design of reinforced concrete structures is addressed by the general design
provisions of ACI 318 and also by the special seismic-design provisions of Chapter 21 of ACI
318. Reinforced concrete structures designed and detailed according to ACI 318 are intended
to resist earthquakes without structural collapse. In general terms, the strength of an earthquake
depends on the accelerations, velocities, and displacements of the ground motion that it pro-
duces. Seismic design loads are prescribed by Minimum Design Loads for Buildings and Other
Structures (ASCE/SEI 7-10).1 In that document, the severity of the design earthquake motion
for a concrete structure is described in terms of the structure’s seismic design category (SDC),
which depends on the structure’s geographic location and also the soil on which it is built.
Structures assigned to the lowest seismic design category, SDC A, must meet only the general
design provisions of ACI 318 and do not have to meet the special requirements of Chapter 21
of ACI 318. Structures assigned to higher SDCs (B, C, D, E, or F) have increasing seismic
demands, however, and must meet the requirements of Chapter 21 of ACI 318, which increase
in severity with higher SDC. For those higher seismic design categories, the requirements of
Chapter 21 of ACI 318 are based on the assumption that a reinforced concrete structure responds
inelastically. Inelastic behavior is characterized by yielding of the reinforcing steel as described
in Chapter 3, Section 3.6 of this textbook. Structural members whose reinforcing steel yields
can dissipate some of the energy imparted to the structure by an earthquake, and the forces
that develop in such members during an earthquake are less than they would be if the structure
responded elastically. Seismic design categories are discussed in more detail in Section D.5 of

1 American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures (Reston, VA: ASCE),
Chapters 11–23.

683
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this appendix. For now, let’s continue with a discussion of the fundamental steps of earthquake
design according to the load provisions of ASCE 7-10 and the element design and detailing
provisions of Chapter 21 of ACI 318-11.

D.2 Maximum Considered Earthquake
Areas with high risk of significant ground motion, such as the West Coast of the United States,
have the highest seismic hazard level. Most areas of the United States have at least some level
of seismic risk, however. A large part of ASCE 7-10 is dedicated to determining seismic design
forces. These forces are based on the “maximum considered earthquake” (MCE), which is an
extreme earthquake, considered to occur only once every 2500 years. The severity of MCE-
level ground shaking is described in terms of the spectral response acceleration parameters SS
and S1, whose values are given in contour maps provided within ASCE 7 and also available
from the United States Geological Service (USGS) website (www.usgs.gov). The parameter
SS is a measure of how strongly the MCE affects structures with a short period (0.2 sec).
The parameter S1 is a measure of how strongly the MCE affects structures with a longer
period (1 sec). These are called spectral response parameters, and their values are provided in
Figures 22-1 through 22-14 of ASCE/SEI 7-10.2 If S1 is less than or equal to 0.04 and SS is
less than or equal to 0.15, the structure is assigned to SDC A. Higher values of S1 and SS
correspond to successively higher seismic design categories. SS and S1 are proportions or ratios
of gravity. For example, in parts of southern California, the value of SS may be 1.0 (100% of
the acceleration of gravity), whereas in parts of the Midwest, it may be only a few percent.

D.3 Soil Site Class
The spectral response parameters determined above are modified based on the structure’s soil
site class. The soil at the site is classified into soil site class A through F in accordance
with Table 20.3-1 and Section 20.3 of ASCE/SEI 7, using only the upper 100 ft of the site
profile. The lowest soil site class, site class A (hard rock), gives a relatively low seismic
design force. Higher soil site classes give higher seismic design forces. If such site-specific
data are not available, ASCE/SEI 7 permits the registered design professional preparing the
soil investigation report to estimate soil properties from known geologic conditions. If the
soil properties are not sufficiently known, site class D is used unless the authority having
jurisdiction or geotechnical data determines that site class E or F is appropriate. Once the soil
site class is assigned, the corresponding site coefficients for short and long periods, Fa and Fv ,
respectively, are determined using Table D.1 and the values of SS and S1 as described above.

MCE Spectral Response Accelerations and
Design Response Accelerations

The MCE spectral response accelerations (related to design forces) for short periods (SMS ) and
for longer (1-s) periods (SM1) are obtained by multiplying each spectral response acceleration
parameter (SS and S1) by its corresponding site coefficient:

SMS = FaSS (ASCE/SEI Equation 11.4-1)

SM1 = Fv S1 (ASCE/SEI Equation 11.4-2)

2 ASCE/SEI 7-10, pp. 210–227.

http://www.usgs.gov
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TABLE D.1 Maximum Considered Earthquake Spectral Response Acceleration Parameters

Mapped Maximum Considered Earthquake
Spectral Response Acceleration Parameter at Short Period

Site Class SS ≤ 0.25 SS = 0.5 SS = 0.75 SS = 1.0 SS ≥ 1.25

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1.6 1.4 1.2 1.1 1.0

E 2.5 1.7 1.2 0.9 0.9

F A site response analysis must be performed (see Section 11.4.7, ASCI/ACI 7-10).

Note: Use straight-line interpolation for intermediate values of SS .
(a) Site Coefficient, Fa , based on Site Class and Mapped Maximum Considered Earthquake Spectral Response
Acceleration Parameter at Short Period [from American Society of Civil Engineers/Structural Engineers Institute,
Minimum Design Loads for Buildings and Other Structures. ASCE/SEI 7-10 (Reston, VA: American Society of Civil
Engineers), Table 11.4-1].

Mapped Maximum Considered Earthquake
Spectral Response Acceleration Parameter at One-Second Period

Site Class S1 ≤ 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 ≥ 0.5

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.7 1.6 1.5 1.4 1.3

D 2.4 2.0 1.8 1.6 1.5

E 3.5 3.2 2.8 2.4 2.4

F A site response analysis must be performed (see Section 11.4.7, ASCI/ACI 7-10).

Note: Use straight-line interpolation for intermediate values of S1.
(b) Site Coefficient, Fv , based on Mapped Maximum Considered Earthquake Spectral Response Acceleration
Parameter at One-Second Period [from American Society of Civil Engineers/Structural Engineers Institute, Minimum
Design Loads for Buildings and Other Structures. ASCE/SEI 7-10 (Reston, VA: American Society of Civil Engineers),
Table 11.4-2].

The site coefficients can be as high as 2.5 for SS , and as high as 3.5 for S1 (site class E).
If the designer uses the default site class D instead of a lower site class to avoid the expense
of a soil report, the required seismic design forces may be significantly increased.

Design forces are based on a design earthquake (less severe than the maximum considered
earthquake, considered to occur only once every 500 years). The design spectral acceleration
parameters, SDS and SD1, are obtained by multiplying the values of SMS and SM1 by 2

3 :

SDS = 2

3
SMS (ASCE/SEI Equation 11.4-3)

SD1 = 2

3
SM 1 (ASCE/SEI Equation 11.4-4)



McCormac b04.tex V2 - January 9, 2013 7:16 P.M. Page 686

686 A P P E NDI X D Seismic Design of Reinforced Concrete Structures

D.4 Risk and Importance Factors
The occupancy of a building is an important consideration in determining its SDC. A lean-
to shed on a farm is obviously less important than a hospital, fire station, or police station.
Chapter 1 of ASCE/SEI 7 lists four risk categories in Table 1.5-1. These risk categories are
correlated to importance factors that range from 1.0 to 1.5 (ASCE/SEI 7-10, Table 11.5-2).
Risk categories and importance factors are combined into a single table (Table D.2) below.

TABLE D.2 Risk Category of Buildings and Other Structures for Earthquake Loadsa (from
ASCE/SEI 7-10, Tables 1.5-1 and 1.5-2)

Seismic
Importance

Use or Occupancy of Buildings and Structures Risk Category Factor, Ie

Buildings and other structures that represent a low risk to human
life in the event of failure

I 1.00

All buildings and other structures except those listed in Risk Cate-
gories I, III, and IV

II 1.00

Buildings and other structures, the failure of which could pose a
substantial risk to human life

III 1.25

Buildings and other structures, not included in Risk Category IV,
with potential to cause a substantial economic impact and/or mass
disruption of day-to-day civilian life in the event of failure

Buildings and other structures not included in Risk Category IV
(including, but not limited to, facilities that manufacture, process,
handle, store, use, or dispose of such substances as hazardous
fuels, hazardous chemicals, hazardous waste, or explosives) con-
taining toxic or explosive substances where their quantity exceeds
a threshold quantity established by the authority having jurisdiction
and is sufficient to pose a threat to the public if released

Buildings and other structures designated as essential facilities IV 1.50

Buildings and other structures, the failure of which could pose a
substantial hazard to the community

Buildings and other structures (including, but not limited to, facilities
that manufacture, process, handle, store, use, or dispose of such
substances as hazardous fuels, hazardous chemicals, or hazardous
waste) containing sufficient quantities of highly toxic substances
where the quantity exceeds a threshold quantity established by the
authority having jurisdiction to be dangerous to the public if released
and is sufficient to pose a threat to the public if releasedb

Buildings and other structures required to maintain the functionality
of other Risk Category IV structures

aThe component importance factor, Ip , applicable to earthquake loads is not included in this table because it is dependent
on the importance of the individual component rather than that of the building as a whole or its occupancy.
bBuildings and other structures containing toxic, highly toxic, or explosive substances shall be eligible for classification to a
lower Risk Category if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment
as described in Section 1.5.2 that a release of the substances is commensurate with the risk associated with that Risk
Category.
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TABLE D.3 Seismic Design Category (SDC) Based on Risk Category and Response
Acceleration Parameter

Risk Category

Value of SDS I or II III IV

SDS < 0.167 A A A

0.167 ≤ SDS < 0.33 B B C

0.33 ≤ SDS < 0.50 C C D

0.50 = SDS D D D

(a) Based on Short-Period Response Acceleration Parameter (from ASCE/SEI 7-10, Table 11.6-1).

Risk Category

Value of SD1 I or II III IV

SD1 < 0.067 A A A

0.067 ≤ SD1 < 0.133 B B C

0.133 ≤ SD1 < 0.20 C C D

0.20 ≤ SD1 D D D

(b) Based on One-Second Period Response Acceleration Parameter (from ASCE/SEI 7-10, Table 11.6-2).

D.5 Seismic Design Categories
Seismic design categories are assigned using Table D.3 of this text and depend on the seismic
hazard level, soil type, risk, and use. The seismic hazard level depends on the geographic
location of the structure. Where S1 is less than 0.75, the seismic design category can be
determined from Table D.3(a) alone where certain conditions apply.3 When Table D.3(a) and
(b) give different results for the same structure, the more severe SDC is used. Table D.3 does
not contain SDC E or SDC F. Structures with risk category I, II, or III that are located where
the mapped spectral response acceleration parameter at 1-s period, S1, is greater than or equal to
0.75 are assigned to SDC E. Structures with risk category IV that are located where S1 ≥ 0.75
are assigned to SDC F.

D.6 Seismic Design Loads
Vertical Forces

Vertical seismic loads, Ev , are based on the value of SDS (the design spectral response accel-
eration parameter) and the dead load, D.

Ev = 0.2SDS D (ASCE/SEI 7-10 Equation 12.4-4)

3 ASCE/SEI 7-10 Section 11.4.
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The vertical seismic load must be considered to act either upward or downward,
whichever is more critical for design. The critical design load combination for most reinforced
concrete columns usually occurs below their balanced point. In this region, columns generally
have less moment capacity if axial compression is decreased (see Figures 10.4 and 10.8 in
Chapter 10 of this textbook). Hence, an upward seismic load would result in reduced moment
capacity.

Lateral Forces

Structures assigned to seismic design category A are designed for the effects of static lateral
forces applied independently in each of two orthogonal plan directions. In each direction, the
design lateral forces are applied simultaneously at all levels. The design lateral force at each
level is determined as follows:

Fx = 0.01Wx (ASCE/SEI 7-10 Equation 1.4-1)

where
Fx = the design lateral force applied at story x
Wx = the portion of the total dead load of the structure, D, located or assigned to level

x

Quite simply, a structure assigned to SDC A is designed for a lateral seismic load equal
to 1% of its design dead load. Structures assigned to SDC A must also meet requirements for
load path connections, connection to supports, and anchorage of concrete or masonry walls.4

Structures assigned to SDC B through SDC F must be designed using a more detailed
method. One such method is the equivalent lateral force procedure, in which the design seismic
base shear, V, in each principal plan direction is determined as:

V = CsW (ASCE/SEI 7-10 Equation 12.8-1)

where
Cs = the seismic response coefficient determined in accordance with ASCE/SEI Section

12.8.1.1
W = the effective seismic weight (ASCE/SEI Section 12.7.2)

It includes the total dead load and other loads that are likely to be present during an
earthquake. For example, at least 25% of the floor live load in storage areas must be included.
Where partitions are present, the larger of the actual partition weight or 10 psf (0.48 kN/m2)
must be included. The total operating weight of permanent equipment must be included. Where
the flat roof snow load, Pf , exceeds 30 psf (1.44 kN/m2), 20% of the uniform design snow
load, regardless of actual roof slope, is included.

The seismic response coefficient, Cs , is determined by

CS = SDS

R/Ie
(ASCE/SEI 7-10 Equation 12.8-2)

and need not exceed

CS = SDI

T (R/Ie)
for T ≤ TL (ASCE/SEI 7-10 Equation 12.8-3)

4 ASCE/SEI 7-10 Section 11.7.
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or
CS = SD1TL

T 2(R/Ie)
for T > TL (ASCE/SEI 7-10 Equation 12.8-4)

In no case is CS permitted to be less than 0.044IeSDS or less than 0.01.
When S1 ≥ 0.6 g,

CS = 0.5S1

R/I
(ASCE/SEI 7-10 Equation 12.8-6)

The fundamental period of the structure, T, in the direction under consideration is estab-
lished using the structural properties of the resisting elements in a properly substantiated
analysis. The fundamental period, T, must not exceed the product of the coefficient for upper
limit on calculated period (Cu) from Table 12.8-1 and the approximate fundamental period, Ta ,
determined from Equation 12.8-7. As an alternative to performing an analysis to determine the
fundamental period, T, it is permitted to use the approximate building period, Ta , calculated
in accordance with Section 12.8.2.1, directly.

The approximate fundamental period (Ta), in s, can be determined from the following
equation:

Ta = Ct h
x
n (ASCE/SEI 7-10 Equation 12.8-7)

where hn is the height in feet above the base to the highest level of the structure. For concrete
moment resisting frames, the coefficient Ct is 0.016 (0.0466 in SI units) and x is 0.9.

As an alternative, the approximate fundamental period (Ta), in seconds, can be found
from the following equation for structures not exceeding 12 stories in height in which the
seismic force–resisting system consists entirely of concrete moment resisting frames and the
story height is at least 10 ft (3 m):

Ta = 0.1N (ASCE/SEI 7-10 Equation 12.8-8)

where N = number of stories.
Whereas Ta for concrete shear wall structures can be determined by

Ta = 0.0019√
Cw

hn (ASCE/SEI 7-10 Equation 12.8-9)

where hn is as defined previously and Cw is calculated as follows:

Cw = 100

AB

x∑
i=1

(
hn

hi

)2 Ai[
1 + 0.83

(
hi /Di

)2] (ASCE/SEI 7-10 Equation 12.8-10)

where
AB = area of base of structure, ft2

Ai = web area of shear wall “i” in ft2

Di = length of shear wall “i” in ft
hi = height of shear wall “i” in ft
x = number of shear walls in the building effective in resisting lateral forces in the

direction under consideration

The total design seismic base shear, V, is distributed to each building level in accordance
with the following expressions:

Fx = Cvx V (ASCE/SEI 7-10 Equation 12.8-11)

Cvx = wx hk
x∑n

i=1 wi h
k
i

(ASCE/SEI 7-10 Equation 12.8-12)
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where
wx or wi = the portion of the total effective weight of the structure, W, assigned to level

x or i, respectively
k = an exponent related to the structure period as follows:

for structures having a period of 0.5 sec or less, k = 1
for structures having a period of 2.5 sec or more, k = 2
for structures having a period between 0.5 sec and 2.5 sec, k shall be 2 or shall be

determined by linear interpolation between 1 and 2

Structures that respond elastically to earthquakes generally incur large seismic forces.
If a structure is designed and detailed to be capable of nonlinear inelastic response, it will
be subjected to lower seismic forces, however, even for the same earthquake at the same
site. The response modification coefficient, R, reduces the design seismic force for structures
capable of responding inelastically. As shown in Table D.4, this coefficient is 3.0 for ordinary
concrete moment frames, 5.0 for intermediate concrete moment frames, and 8.0 for special
concrete moment frames. In this table, the terms ordinary, intermediate, and special refer to
increasingly severe levels of seismic detailing and are discussed later in this appendix. Higher
values of R correspond to lower seismic design forces, since R appears in the denominator of
the equation for seismic design base shear. A special concrete moment frame must be designed
for only 3

8 the seismic base shear of a geometrically identical ordinary concrete moment frame.
Structures assigned to SDC A need not comply with the requirements of Chapter 21 of

ACI 318. Structures assigned to SDC B and higher must comply with successively more severe
requirements within that chapter. For example, structures assigned to SDC B must satisfy ACI
318 Section 21.1.2; structures assigned to SDC C must satisfy ACI 318 Sections 21.1.2 and
21.1.8; and structures assigned to SDC D through F must satisfy ACI 318 Sections 21.1.2
through 21.1.8 and Sections 21.11 through 21.13.

More complex structures must be designed using the general response spectra method
or site-specific, ground-motion procedures. In the general response spectra method, the design

TABLE D.4 Response Modification Coefficients for Different Seismic Force–Resisting Systems
(from ASCE/SEI 7-10, Table 12.2-1, Abridged)

Seismic Force–Resisting System R*

Bearing Wall System

Special Reinforced Concrete Shearwall 5

Ordinary Reinforced Concrete Shearwall 4

Detailed Plain Concrete Shearwall 2

Ordinary Plain Concrete Shearwall 1.5

Building Frame System

Special Reinforced Concrete Shearwall 6

Ordinary Reinforced Concrete Shearwall 5

Detailed Plain Concrete Shearwall 2

Ordinary Plain Concrete Shearwall 1.5

Special Reinforced Concrete Moment Frames 8

Intermediate Reinforced Concrete Moment Frames 5

Moment Resistant Frames Ordinary Reinforced Concrete Moment Frames 3

∗Response Modification Coefficient, R.
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FI GU RE D.1 Design response spectrum (from ASCE/SEI 7-10,
Figure 11.4-1).

response acceleration, Sa , depends on the fundamental building period, T, as shown in
Figure D.1. That figure has four distinct regions, each with its own equation relating Sa to
SDS or SD1 and to T

where

SDS = the design spectral response acceleration parameter at short periods
SD1 = the design spectral response acceleration parameter at 1-s period

T = the fundamental period of the structure, seconds
T0 = 0.2SD1/SDS
TS = SD1/SDS
TL = long-period transition period(s) shown in Chapter 22 of ASCE/SEI 7-10

D.7 Detailing Requirements for Different Classes of
Reinforced Concrete Moment Frames

Ordinary moment frames that are part of the seismic force–resisting system are permitted only
in SDC B5 and must meet seismic design and detailing requirements for beams and columns
as prescribed in ACI 318, Chapter 21. Beams must have at least two of their longitudinal bars
continuous along both the top and bottom faces, and these bars must be developed at the faces
of supports. Such bars provide the frame with seismic load–resisting capability that may not
have been required by analysis. Columns with clear height less than or equal to five times the
dimension c1 must be designed for shear in accordance with ACI Section 21.3.3. The term c1
is the dimension of a rectangular (or equivalent rectangular column, capital, or bracket) in the
direction of the span for which moments are being calculated. The design shear is determined
as the summation of the moment capacity at the faces of the joints at each end of the column,
divided by the distance between those faces. This approach, referred to as capacity design
for shear, is intended to ensure that the columns do not fail in shear during an earthquake.
If the moment capacity of a column is larger than that required based on analysis (due, for
example, to reinforcing bars with cross-sectional areas greater than the theoretically required
areas), then the shear capacity of the column must be correspondingly increased. This increased

5 ASCE/SEI 7-10, Table 12.2-1.
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design shear need not exceed the shear corresponding to a value of earthquake load E twice
that required by the applicable code, however.

Intermediate moment frames that are part of the seismic force–resisting system are per-
mitted in SDC B and C5 only and must satisfy the more stringent requirements of ACI 318
Section 21.3. These include the shear requirements of ACI 21.3.3 described previously for cer-
tain columns in ordinary moment frames. In addition, beams (members with axial compressive
loads, Pu , less than Ag f ′

c/10) must be designed for shear using capacity design as required in
ACI 318 Section 21.3.4 and illustrated in Figure D.2. Beams must also be detailed for ductility,
using closed spirals, closed hoops, or closed rectangular ties to confine the concrete so that it
will be stronger and more ductile. Members with larger values of Pu must meet the require-
ments for columns in ACI 318 Section 21.3.5. These also include more stringent requirements
for concrete confinement.

Special moment frames are permitted in any seismic design category (ASCE 7-10,
Table 12.2-1) and must satisfy ACI 318 Sections 21.5 through 21.8. ACI 318 Section 21.5
applies only to flexural members in special moment frames. As with intermediate moment
frames, a flexural member in a special moment frame is defined as one having a factored
axial compressive force on the member, Pu , that does not exceed Ag f ′

c/10. Such a flexural
member must have a clear span, ln, not less than four times its effective depth. Its width,
bw , cannot be less than the smaller of 0.3h and 10 in. Additionally its width, bw , must not
exceed the width of the supporting member, c2, plus a distance on each side of supporting
member equal to the smaller of (a) the width of supporting member, c2, and (b) 0.75 times
the overall dimension of supporting member, c1. These geometric limits are intended to
provide greater ductility. A limit of 0.025 is imposed on the longitudinal reinforcement ratio,
to enhance flexural ductility and avoid congestion. A minimum of two bars must be provided
continuously at both top and bottom. The positive moment strength at any joint face must be
at least one-half the negative moment strength of the flexural member. The negative and the
positive moment strength at any section along the member length must be at least one-fourth
of the maximum moment strength provided at the face of either joint.

Mnl Mnr

Mnb

beam shear

co
lu

m
n 

sh
ea

rVu

Vu

Pu

Mnt

Mnt + Mnb

lu
wu

Pu

lu

ln

Vu =
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ln

wuln
2

Vu = +

FI GU RE D.2 Column and beam design shear for intermediate moment frames.
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Lap splices of flexural reinforcement are permitted only if confinement reinforcement
(hoops or spiral reinforcement) is provided over the entire lap length. The spacing of such trans-
verse reinforcement cannot exceed the smaller of d/4 and 4 in. Lap splices are not permitted
in regions where flexural yielding is expected, including

(a) within the joints

(b) within a distance of two times the member depth from the face of the joint

(c) where analysis shows flexural yielding caused by inelastic lateral displacements of the
frame

Requirements for transverse confinement are similar to but more stringent than those
for intermediate concrete moment frames. They are intended to provide confinement of the
concrete within the hoop and to provide lateral support to resist buckling of yielded longitu-
dinal reinforcement under reversed cyclic loading. Hoops are required in regions expected to
experience hinging. Where hoops are not required, stirrups having seismic hooks at both ends
must be provided, spaced at a distance not more than d/2 throughout the length of the member.

Members of special moment frame must be designed for shear using the capacity design
procedures explained above. When members of special moment frames are subjected to com-
bined flexure and factored axial compressive forces exceeding Ag f ′

c/10, additional requirements
must be met. Geometric requirements include the following:

1. The smallest cross-sectional dimension, measured on a line passing through the geometric
centroid, must be at least 12 in.

2. The ratio of the shortest cross-sectional dimension to the perpendicular dimension must
be at least 0.4 in.

ACI 318 Section 21.6.2 requires that columns of special moment frames be designed
so that their nominal flexural strengths are 20% stronger than those of the beams framing
into a beam–column joint. This requirement is intended to ensure that if hinges should form
at a beam–column joint, they would occur in beams rather than columns. If hinges form in
columns, the result may be collapse of the frame. This requirement is waived if the columns’
lateral strength and stiffness are ignored in determining the structure’s strength and stiffness,
such as in a braced frame.

The longitudinal reinforcement in columns of special moment frames must be between
1% and 6% of the gross cross-sectional area. In addition, lap splices must meet the requirements
in ACI 318 Section 21.6.3.2.

Transverse reinforcement requirements (ACI 318 Section 21.6.4) for special moment
frames are more stringent than those for ordinary or intermediate moment frames, and are
intended to provide even higher ductility.

Shear requirements for intermediate moment frames are increased for special moment
frames by changing Mnl and Mnr in Figure D.2 to Mpr1 and Mpr2, respectively. Mpr is the
probable flexural strength at the face of the joint considering axial load, if any, using a rein-
forcing steel stress of 1.25fy and a φ factor of 1.0. The subscripts 1 and 2 on Mpr denote
the left and right ends of the flexural member, respectively. Similarly, the moments Mnt and
Mnb in Figure D.2 are changed to Mpr3 and Mpr4, where the subscripts 3 and 4 denote the
top and bottom of the column, respectively. While Chapter 21 of ACI 318 contains additional
requirements for shear strength and development length in tension in special moment frames,
these are more complex than necessary for this introductory text in reinforced concrete design.
Additional information on these and other seismic design provisions for reinforced concrete
structures is provided in Chapter 29 of PCA’s Notes on ACI 318-11, Chapter 29.
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Example D.1

Determine the design lateral forces due to earthquake on a 6-story concrete frame hospital using
the equivalent lateral force procedure. The structure is selected as a hospital to illustrate the
use of importance factors in calculating seismic design loads using the procedures of ASCE/SEI
7-10. Some states have additional requirements for hospitals, which are not addressed by this
example. The structure is located in Memphis, Tennessee, for which MCE values are determined
from USGS maps to be SS = 2.0 and S1 = 0.9. The structure is located on soil determined to be
site class C. Each floor is 12 ft in height. The value of W for each floor is determined to be 450 k,
and for the roof, 200 k.

1. Determine Fa and Fv

From Table D.1(a), using SS ≥ 1.25 and site class C, Fa = 1.0.

From Table D.1(b), using S1 ≥ 0.5 and site class C, Fv = 1.3.

2. Determine SMS and SM1

SMS = FaSS = (1.0) (2.0) = 2.0 (ASCE/SEI Equation 11.4-1)

SM1 = FvS1 = (1.3) (0.9) = 1.17 (ASCE/SEI Equation 11.4-2)

3. Determine SDS and SD1 (Table D.1)

SDS = 2SMS

3
= 1.33 (ASCE/SEI Equation 11.4-3)

SD1 = 2SM1

3
= 0.78 (ASCE/SEI Equation 11.4-4)

4. Risk and seismic importance factors—Table D.2 lists the risk category for hospitals as IV.
This corresponds to a seismic importance factor of 1.5, also from the same table. This is a
critical facility that requires the highest level of consideration, hence the highest importance
factor. Imagine the consequences if our fire stations, police stations, and hospitals could not
function after a serious earthquake.

5. Determine the seismic design category—Table D.3(a) requires SDC D for SDS ≥ 0.50 and risk
category IV. Table D.3(b) likewise requires SDC D for SD1 ≥ 0.20 and risk category IV.

6. Determine the response modification coefficient, R—Since a special moment frame is required
for SDC D, R = 8 from Table D.4. Note that the frame must be detailed in accordance with
the requirements for special moment frames.

7. Determine the fundamental period of the structure—The approximate value of T is

Ta = 0.1N = 0.1(6) = 0.6 sec (ASCE/SEI Equation 12.8-8)

(for frames with floor-to-floor heights exceeding 10 ft and with fewer than 12 stories)

8. Determine TS and TL

TS = SD1

SDS
= 0.78

1.33
= 0.59

TL = 12 (ASCE/SEI 7-10, Figure 22-12)



McCormac b04.tex V2 - January 9, 2013 7:16 P.M. Page 695

D.7 Detailing Requirements for Different Classes of Reinforced Concrete Moment Frames 695

9. Determine the total design lateral seismic force on the structure

CS = SDS

R/I
= 1.33

8/1.5
= 0.25 (ASCE/SEI Equation 12.8-2)

and since Ta < TL, CS need not exceed

CS = SD1

T(R/I)
= 0.78

0.6(8/1.5)
= 0.244 (ASCE/SEI Equation 12.8-3)

the controlling value is CS = 0.244.

V = CSW = (0.244) (450 k) (5 floors) + (0.244) (200 k) (1) = 598 kips
(ASCE/SEI Equation 12.8-1)

The force at the top floor (roof level) is determined using Equation 12.8-12 of ASCE/SEI 7-10.

FR = wrh
1.05
R∑n

i=1 wih
1.05
i

V

= (200 k) (72 ft)1.05

(450 k) (12 ft)1.05 + (450 k) (24 ft)1.05 + · · · + (200 k) (72 ft)1.05
(598 k)

= 17,833 ft-k
115,333 ft-k

(598 k) = 92.4 k

The coefficient k is determined to be 1.05 by interpolation, using a value of T = 0.6 sec.
At the fifth-floor level

F6 = w6h1.05
6∑n

i=1 wih
1.05
i

V

= (450 k) (60 ft)1.05

(450 k) (12 ft)1.05 + (450 k) (24 ft)1.05 + · · · + (200 k) (72 ft)1.05
(598 k)

= 33,134 ft-k
115,333 ft-k

(598 k) = 171.8 k

The remaining forces at other floor levels are calculated using the technique shown above for
the roof and sixth levels, and the results are shown in Figure D.3.

92.4 k

171.8 k

135.8 k

100.4 k

65.6 k

31.7 k

12 ft

12 ft

12 ft

12 ft

12 ft

12 ft

A B C

R

6

5

4

3

2

D
FI GU RE D.3 Design lateral seismic
forces for Example D.1.
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Example D.2

Determine the design column shear for the column in Figure D.4 if it is part of an intermediate
concrete moment frame.

Determine the moment capacity of the column.

SOLUTION

Kn = Pn

f ′
cAg

= Pu

φf ′
cAg

= 120 k
0.65(4 ksi) (16 in.)2

= 0.18

ρz = 6 in.2

(16 in.)2
= 0.0234

Using the Column Interaction diagrams in Appendix A, Graph 3, Rn = 0.18. However, the location
of the coordinates of Kn and Rn appears to be on the radial line corresponding to εt = 0.005. The
φ factor for this value of Kn and Rn is 0.9, not 0.65 as assumed above. Repeating the calculation
of Kn using φ = 0.9 results in Kn = 0.130. From Graph 3, Rn = 0.17.

Mn = Rnf ′
cAgh = 0.17(4 ksi) (16 in.)2 (16 in.) = 2785 in-k = 232.1 ft-k

Since the moment capacities at the top and bottom of the column are the same, Mnt =
Mnb = 232.1 ft-k.

Vu = Mnt + Mnb

lu
= 232.1 ft-k + 232.1 ft-k

12 ft
= 38.68 k

Mnb

co
lu

m
n 

sh
ea

r

Vu

Vu

Pu = 120

Mnt

lu = 12 ft

Pu

16-in. square column with six #9
bars, f 'c = 4 ksi, fy = 60 ksi, γ = 0.7

Mnt + Mnb

lu
Vu =

FI GU RE D.4 Details for Example D.2.
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Example D.3

The beam–column joint shown in Figure D.5 is part of a special moment frame. Determine if the
joint is in compliance with ACI 318-11 Section 21.6.2.2. If not, redesign the columns to comply
with this provision.

SOLUTION

ACI 318-11 Section 21.6.2.2 requires that the sum of the column moments at a joint (Mnt + Mnb)
be not less than 120% of the sum of the beam moments framing into the same joint (Mnl + Mnr ).
The axial force is included in determining the column’s flexural capacity.

Beam capacity: The beam cross section at the left side of the joint is subjected to positive
moment. Hence, As = 4 in.2 and A′

s = 1.57 in.2

a = Asfy
0.85f ′

cb
= 4.00 in.2 × 60 ksi

0.85 × 4 ksi × 14 in.
= 5.04 in.

Mn = Asfy
(
d − a

2

)
= 4.00 in.2 × 60 ksi ×

(
17.5 in. − 5.04 in.

2

)
= 3595 in-k

Note: If the compression steel (A′
s = 1.57 in.2) were included, the moment capacity would

be 3710 in-k (only 3% more).
The beam cross section at the right side of the joint is subjected to negative moment.

Hence, As = 1.57 in.2 and A′
s = 4.00 in.2

a = Asfy
0.85f ′

cb
= 1.57 in.2 × 60 ksi

0.85 × 4 ksi × 14 in.
= 1.98 in.

Mn = Asfy
(
d − a

2

)
= 1.57 in.2 × 60 ksi ×

(
17.5 in. − 1.98 in.

2

)
= 1555 in-k

Note: If the compression steel (A′
s = 4.00 in.2) were included, the moment capacity would

be 1558 in-k (only 0.2% more).

Mnb
Pu = 100

Mnt

Column above and
below joint—
16 in. × 18 in. with
10 #9 bars, f'c = 4 ksi,
fy = 60 ksi, γ = 0.7

Beam cross section left
and right of joint—
b = 14 in., h = 20 in.,
d = 17.5 in., d = 2.5 in.,
2 #8 top bars, 4 #9
bottom bars, f 'c = 4 ksi,
fy = 60 ksi

Pu

Mnl Mnr

FI GU RE D.5 Details for Example D.3.
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Column capacity: Using the interaction diagrams in Appendix A, the moment capacity
corresponding to an axial compressive load of 300 kips is determined as follows:

Assume φ = 0.65. ρz = Ast/bh = 10 in.2/(16 in.) (18 in.) = 0.035.

Kn = Pu

φf ′
cbh

= 300 k
0.65 k × 4 ksi × 16 in. × 18 in.

= 0.40

γ = h − 5 in.
h

= 13 in.
18 in.

= 0.72 (use Graph 7, γ = 0.7)

Rn = 0.22, Mn = Rnf ′
cbh2 = 0.22(4.0 ksi) (16 in.) (18 in.)2 = 4562 in-k

Also from Graph 7, fs/fy is between 0.9 and 1.0, which means εt < εy and φ = 0.65, as
assumed.

The columns above and below the joint have the same axial load and same cross section,
hence the same capacity. If the axial load of the column below had been different from that
above, the moment capacity would be different, even with the same cross section. The sum
of the nominal column moment capacities at the joint is therefore (2)(4562 in-k) = 9124 in-k.
The sum of the nominal beam moment capacities is 3595 in-k + 1555 in-k = 5150 in-k.
Since 9124 in-k > 1.2 × 5150 in-k = 6180 in-k, the strong-column, weak-beam requirements of
Chapter 21 of ACI 318-11 for special moment frames are satisfied.

P R O B L E M S

Problem D.1 Repeat Example D.1 if SS = 1.8, S1 = 0.6, and
soil site class D. The bottom floor is 16 ft high, and the others
are each 14 ft. The value of W for each floor is 400 k, and for
the roof, it is 175 k. (Ans. Fr = 73.2 k, F6 = 138.8 k)

Problem D.2 Repeat Example D.2 assuming a special
concrete moment frame.

Problem D.3 Repeat Example D.2 using Chapter 10 Excel
spreadsheet to determine the column capacity. (Ans.
Vu = 38.3 k)

Problem D.4 Repeat Example D.3 using Pu = 50 k and 10 #8
bars in the column.
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Aggregate interlock Shear or friction resistance by the
concrete on opposite sides of a crack in a reinforced con-
crete member (obviously larger with narrower cracks).

Balanced failure condition The simultaneous occur-
rence of the crushing of the compression concrete on one
side of a member and the yielding of the tensile steel on
the other side.

Bond stresses The shear-type stresses produced on the
surfaces of reinforcing bars as the concrete tries to slip
on those bars.

Camber The construction of a member bent or arched
in one direction so that it won’t look so bad when the
service loads bend it in the opposite direction.

Capacity reduction factors Factors that take into
account the uncertainties of material strengths, approx-
imations in analysis, and variations in dimensions and
workmanship. They are multiplied by the nominal or the-
oretical strengths of members to obtain their permissible
strengths.

Cast-in-place concrete Concrete cast at the building site
in its final position.

Column capital A flaring or enlarging of a column
underneath a reinforced concrete slab.

Composite column A concrete column that is reinforced
longitudinally with structural steel shapes.

Compression reinforcement Reinforcement added to
the compression side of beams to increase moment capac-
ity, increase ductility, decrease long-term deflections, or
provide hangars for shear reinforcement.

Concrete A mixture of sand, gravel, crushed rock, or
other aggregates held together in a rock-like mass with a
paste of cement and water.

Concrete masonry unit (CMU) A masonry unit made
of portland cement, water, and mineral aggregates formed
into a rectangular prism.

Cover A protective layer of concrete over reinforcing
bars to protect them from fire and corrosion.

Cracking moment The bending moment in a member
when the concrete tensile stress equals the modulus of
rupture and cracks begin to occur.

Creep or plastic flow When a concrete member is sub-
jected to sustained compression loads, it will continue to
shorten for years. The shortening that occurs after the ini-
tial or instantaneous shortening is called creep or plastic
flow and is caused by the squeezing of water from the
pores of the concrete.

Dead load Loads of constant magnitude that remain in
one position. Examples: weights of walls, floors, roofs,
plumbing, fixtures, structural frames, and so on.

Development length The length of a reinforcing bar
needed to anchor or develop its stress at a critical section.

Doubly reinforced beam Concrete beams that have both
tensile and compression reinforcing.

Drop panels A thickening of a reinforced concrete slab
around a column.

Effective depth The distance from the compression face
of a flexural member to the center of gravity of the tensile
reinforcing.

Factored load A load that has been multiplied by a load
factor, thus providing a safety factor.

Flat plate Solid concrete floor or roof slabs of uniform
depths that transfer loads directly to supporting columns
without the aid of beams or capitals or drop panels.

Flat slab Reinforced concrete slab with capitals and/or
drop panels.

Formwork The mold in which semiliquid concrete is
placed.

Grade 40 (60) reinforcement Reinforcement with a
minimum yield stress of 40,000 psi (60,000 psi).

Grout A mixture of portland cement or other cement,
sand, water, and often coarse aggregate and sometimes
admixtures used to fill the hollow cells in masonry units
and bond reinforcing to the masonry.

699
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Honeycomb Areas of concrete where there is segrega-
tion of the coarse aggregate or rock pockets where the
aggregate is not surrounded with mortar. It is caused by
the improper handling and placing of the concrete.

Inflection point A point in a flexural member where the
bending moment is zero and where the moment is chang-
ing from one sign to the other.

Influence line A diagram whose ordinates show the mag-
nitude and character of some function of a structure
(shear, moment, etc.) as a load of unity moves across the
structure.

Interaction curve A diagram showing the interaction or
relationship between two functions of a member, usually
axial column load and bending.

Joint reinforcement Wire reinforcing embedded in mor-
tar joints used in masonry walls to reduce shrinkage
cracking.

L beam A T beam at the edge of a reinforced concrete
slab that has a flange on only one side.

Lightweight concrete Concrete where lightweight
aggregate (such as zonolite, expanded shales, sawdust,
etc.) is used to replace the coarse and/or fine aggregate.

Limit state A condition at which a structure or some part
of that structure ceases to perform its intended function.

Lintel A beam made of structural steel, precast concrete,
or masonry embedded in a masonry wall spanning over
an opening such as a window or door.

Live loads Loads that change position and magnitude.
They move or are moved. Examples: trucks, people,
wind, rain, earthquakes, temperature changes, and so on.

Load factor A factor generally larger than one that is
multiplied by a service or working load to provide a fac-
tor of safety.

Long columns See Slender columns.

Maximum considered earthquake (MCE) An extreme
earthquake, considered to occur only once every 2500
years.

Microcrack A crack too fine to be seen with the naked
eye.

Modulus of elasticity The ratio of stress to strain in
elastic materials. The higher its value, the smaller the
deformations in a member.

Modulus of rupture The flexural tensile strength of
concrete.

Monolithic concrete Concrete cast in one piece or in
different operations but with proper construction joints.

Mortar A cementitious material used to construct
masonry by being placed between the individual masonry
units to bond them together to form a masonry element
such as a wall.

Nominal strength The theoretical ultimate strength of
a member, such as Mn (nominal moment), Vn (nominal
shear), and so on.

One-way slab A slab designed to bend in one direction.

Overreinforced members Members for which the ten-
sile steel will not yield (nor will cracks and deflections
appreciably change) before failure, which will be sudden
and without warning due to crushing of the compression
concrete.

P-δ moments See Secondary moments.

Plain concrete Concrete with no reinforcing whatsoever.

Plastic centroid of column The location of the resultant
force produced by the steel and the concrete.

Plastic deformation Permanent deformation occurring
in a member after its yield stress is reached.

Plastic flow See Creep or plastic flow.

Poisson’s ratio The lateral expansion or contraction of a
member divided by its longitudinalshortening or lengthen-
ing when the member is subjected to tension or compres-
sion forces. (Average value for concrete is about 0.16.)

Posttensioned concrete Prestressed concrete for which
the steel is tensioned after the concrete has hardened.

Precast concrete Concrete cast at a location away from
its final position. It may be cast at the building site near its
final position, but usually this is done at a concrete yard.

Prestressing The imposition of internal stresses into a
structure that are of an opposite character to those that
will be caused by the service or working loads.

Pretensioned Prestressed concrete for which the steel is
tensioned before the concrete is placed.

Primary moments Computed moments in a structure
that do not account for structure deformations.

Ready-mixed concrete Concrete that is mixed at a con-
crete plant and then is transported to the construction site.

Reinforced concrete A combination of concrete and
steel reinforcing wherein the steel provides the tensile
strength lacking in the concrete. (The steel reinforcing
can also be used to resist compressive forces.)

Secondary moments Moments caused in a structure by
its deformations under load. As a column bends later-
ally, a moment is caused equal to the axial load times
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the lateral deformation. It is called a secondary or P-δ
moment.

Seismic Design Category A classification given to a
structure based on its Occupancy Category and the sever-
ity of the design earthquake ground motion at the site.

Serviceability Pertains to the performance of structures
under normal service loads and is concerned with such
items as deflections, vibrations, cracking, and slipping.

Service loads The actual loads that are assumed to be
applied to a structure when it is in service (also called
working loads).

Shearheads Cross-shaped elements, such as steel chan-
nels and I beams, placed in reinforced concrete slabs
above columns to increase their shear strength.

Shearwall A wall usually made of reinforced concrete or
reinforced masonry loaded with lateral loads in its own
plane.

Shores The temporary members (probably wood or
metal) that are used for vertical support for formwork
into which fresh concrete is placed.

Short columns Columns with such small slenderness
ratios that secondary moments are negligible.

Slender columns (or long columns) Columns with suf-
ficiently large slenderness ratios that secondary moments
appreciably weaken them (to the ACI, an appreciable
reduction in strength in columns is more than 5%).

Spalling The breaking off or flaking off of a concrete
surface.

Spiral column A column that has a helical spiral made
from bars or heavy wire wrapped continuously around its
longitudinal reinforcing bars.

Spirals Closely spaced wires or bars wrapped in a con-
tinuous spiral around the longitudinal bars of a member
to hold them in position.

Split-cylinder test A test used to estimate the tensile
strength of concrete.

Stirrups Vertical reinforcement added to reinforced con-
crete beams to increase their shear capacity.

Strength design A method of design whereby the esti-
mated dead and live loads are multiplied by certain load

or safety factors. The resulting so-called factored loads
are used to proportion the members.

T beam A reinforced concrete beam that incorporates a
portion of the slab that it supports.

Tendons Wires, strands, cables, or bars used to prestress
concrete.

Tied column A column with a series of closed steel
ties wrapped around its longitudinal bars to hold them
in place.

Ties Individual pieces of wires or bars wrapped at inter-
vals around the longitudinal bars of a member to hold
them in position.

Top bars Horizontal reinforcing bars that have at least
12 in. of fresh concrete placed beneath them.

Transformed area The cross-sectional area of one mate-
rial theoretically changed into an equivalent area of
another material by multiplying it by the ratio of the mod-
uli of elasticity of the two materials. For illustration, an
area of steel is changed to an equivalent area of concrete,
expressed as nAs.

Two-way slabs Floor or roof slabs supported by columns
or walls arranged so that the slab bends in two directions.

Underreinforced member A member that is designed
so that the tensile steel will begin to yield (resulting in
appreciable deflections and large visible cracks) while
the compression concrete has not yet reached its limiting
compressive strain. Thus, a warning is provided before
failure occurs.

Web reinforcement Shear reinforcement in flexural
members.

Working loads The actual loads that are assumed to be
applied to a structure when it is in service (also called
service loads).

Working-stress design A method of design where the
members of a structure are so proportioned that the esti-
mated dead and live loads do not cause elastically com-
puted stresses to exceed certain specified values. Method
is also referred to as allowable stress design, elastic
design, or service load design.
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A
AASHTO (American Association of State Highway and

Transportation Officials), 7, 33
ACI (American Concrete. Institute), 6–7
Active soil pressure, 401
Admixtures, 9–10

accelerating, 9
1air-entraining, 9
retarding, 9–10
silica fume, 19–20
superplasticizers, 10, 20
waterproofing, 10

Aggregates:
defined, 18
lightweight, 3, 17, 18

Aggregate interlock, 226
Allowable stress design, 65
American Association of State Highway and

Transportation Officials (AASHTO), 7, 33
American Concrete. Institute (ACI), 6–7
American Railway Engineering Association

(AREA), 7, 33
American Society for Testing and Materials (ASTM), 9,

16–17, 21, 23–25, 27, 602
American Society of Civil Engineering (ASCE), 29–33
Approximate analysis (continuous frames):

for lateral loads, 454–458
for vertical loads, 445–454

AREA (American Railway Engineering
Association), 7, 33

ASCE (American Society of Civil Engineering), 29–33
Aspdin, J., 4
Aspect ratio, 21, 497
Assumed points of inflection, 454, 455
ASTM, see American Society for Testing and Materials,
Average shearing stress, 225
Axial forces:

column, 458
and shear strength, 251–253

Axial loads:
footings subjected to, 380–382

short columns subject to bending and, 281–316
biaxial bending, 302–309
capacity reduction factors, 309–311
interaction diagrams, 284–301
plastic centroid, 282–284
shear in, 301–302

Axial load capacity, of columns, 266
Axially loaded columns, 274–277

B
Backfill, 397, 402–403, 408
Balanced loading, 288
Balanced steel ratio, 71, 75–76
Beams, 35–262

balanced steel percentage, 75–76
brittle, 71, 73
cantilever, 102
continuous:

ACI coefficients for, 446–450
deflections of, 164–170
rectangular, 102

deep:
shear design for, 253–254
skin reinforcement for, 95
strut and tie design, 675

doubly reinforced, 127–136
compression steel on, 127–132
design of, 132–136

failure, 36–38
flexural analysis, 35–64

concrete cracked–elastic stresses stage, 35–36,
41–47

cracking moment, 38–41
ultimate-strength stage, 36–38, 48–51
uncracked concrete stage, 35, 38–40

L-beams, 127
maximum steel percentage, 73
minimum steel percentage, 74–75
minimum thicknesses for, 155
rectangular, 82–111
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Beams, (continued )
bundled bars, 98
cantilever, 102
continuous, 102
design of, 85–94
lateral support, 95
load factors, 82–84
one-way slabs as, 99–102
sizes of, 96
skin reinforcement, 95
steel area for predetermined dimensions, 96–98

strength analysis, 65–81
balanced sections, 71
balanced steel percentage, 75–76
brittle sections, 71
compression-controlled sections, 71
derivation of beam expressions, 67–70
design methods, 65–66
minimum percentage of steel, 74–75
strains in flexural members, 70–71
strength design advantages, 66
strength reduction factors, 67, 71–74
structural safety, 66–67
tension-controlled sections, 71

T-beams, 112–127
analysis of, 114–119
deflections, 164–170
design of, 120–127

tension controlled, 71
two-way slabs with, 492, 494, 517–522

Beam weight, 85–86
Bending, short columns subject to axial load and,

281–316
biaxial bending, 302–309
capacity reduction factors, 309–311
interaction diagrams, 284–301
plastic centroid, 282–284
shear in, 301–302

Bending bars, 184–187, 208–211
Bent-up bars, 230, 232
Biaxial bending, 302–309
Bond stresses, 187–189
Braced frames, see Nonsway (braced) frames,
Brackets, 249
Bresler, Boris, 304–306
Bridge abutments, 396, 397
Building Code Requirements for Structural Concrete

(ACI, 318–11), 6–7
Bundled bars, 98

development lengths for, 197–199
lap splices for, 212

Buttress walls, 395, 396

C
Calculation accuracy, 33–34
Camber, 156
Cantilever beams, 102
Cantilever retaining walls, 394–396

design procedure for, 413–424
estimating sizes of, 409–413
without heel, 396
without toe, 396, 397

Capacity reduction factors, 309–311
Carrasquillol, R., 13
Cast-in-place columns, 269–271
Cast-in-place walls, 548
Cement:

Portland, 7–9
Roman, 3

Class A splices, 213
Class B splices, 213
CMUs (concrete masonry units), 602–603
Coating factor, 191
Codes, 6–7
Coignet, F., 4
Collapse mechanism, 436–437
Columns, 263–280

axial load capacity of, 266
axially loaded, 274–277, 458
cast-in-place, 269–271
categories of, 263
composite, 265, 266
design of:

axially loaded columns, 274–277
economical, 273–274
formulas for, 272–273

interaction diagrams for, 284–301
lally, 266
load transfer to footings from, 364–369, 382–383
long, 263
moments, 458
round or regular polygon-shaped, 364
safety provisions for, 271–272
shear, 457
short:

compression blocks and pedestals, 263
subject to axial load and bending, 281–316

slender, 263, 317–346
ACI Code treatment of slenderness effects, 328
analyses of, 323–324, 328
avoiding, 325–326
effective length factors, 318–323
in nonsway (braced) frames, 317–318, 320,

324–333
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in sway (unbraced) frames, 317–318, 320,
324–327, 333–341

unsupported lengths, 318
spiral, 264

ACI Code requirements for, 270–271
failure of, 266–268

tied, 264
ACI Code requirements for, 270
as economical, 274
failure of, 266–268

two-way slabs:
factored moments in, 528
transfer of shear and moments between slabs and,

522–528
types of, 264–266

Column capitals, 492
Column strips, 496–497
Combined footings, 348, 349, 372–378
Compatibility, 6
Compatibility torsion, 474–475
Composite columns, 265, 266
Composite construction, prestressed concrete in, 595
Compression bars:

in beams, 46
development lengths for, 204–206

Compression blocks, short, 263
Compression controlled section, 71
Compression splices, 213–214
Compression steel, doubly reinforced beams, 127–132
Compression strength:

of concrete, 10–12
of masonry, 606–607

Computers:
analysis with:

continuous structures, 458–459
equivalent frame method, 544–545

design impact of, 34
Computer examples:

beam analysis and design, 52–54, 79–80
columns, 278–279
deflection calculator, 177–178
development length, 216–217
doubly reinforced beams, 141–143
footings, 388–390
masonry shear walls, 628–629
prestressed concrete, 597
rectangular beams, 52–54, 105–106
shear design, 257–258
short columns, 311–312
slender columns, 342–343
T beams, 138–141

torsion, 487
two-way slabs:

direct design method, 528–530
equivalent frame method, 545

walls, 564–565
Concrete:

defined, 1
durability of, 21
fiber-reinforced, 20–21
high-strength, 19–20
properties of, 10–18

Concrete masonry units (CMUs), 602–603
Concrete Reinforcing Steel Institute (CRSI), 24
Confinement term, 192
Construction joints, in retaining walls, 424–425
Continuous beams, rectangular, 102
Continuous-beam deflections, 164–170
Continuous members, prestressed, 596
Continuous structures, 431–469

ACI coefficients for beams and slabs, 446–450
analysis methods, 431
approximate analysis of frames:

for lateral loads, 454–458
for vertical loads, 445–454

assumed points of inflection, 454
computer analysis of frames, 458–459
development lengths, 459–468

negative-moment reinforcement, 462–465
positive-moment reinforcement, 459–462

equivalent rigid-frame method, 451–453
lateral bracing, 459
limit design, 434–444

under ACI Code, 442–444
collapse mechanism, 436–437
plastic analysis (equilibrium method), 438–441

portal method, 454, 456–458
preliminary member design, 445
qualitative influence lines, 431–434

Corbels, 249–251
Corrosive environments, 26
Counterfort walls, 395, 396
Cover:

hooks, 201
rectangular beams, 86–87

Cracks, 170–176
ACI Code provisions, 175–176
flexural, 170–175
in retaining walls, 424–425
types of, 170–171

Cracked concrete–elastic stresses stage (flexural
analysis), 35–36, 41–47
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Cracking, shear, 226–230
Cracking moments, 38–41, 613, 616
Creep, 15–16, 581, 582
Critical load combination, 84
CRSI (Concrete Reinforcing Steel Institute), 24
Curvature effect, 582
Cutting off bars, 184–187, 208–211

D
Dead loads, 28
Deep beams:

shear design for, 253–254
skin reinforcement for, 95
strut and tie design, 675

Deflections, 154–164
calculation of, 157–160
and cambering, 156
continuous-beam, 164–170
control of, 155–156
importance of, 154–155
long-term, 160–162, 589
masonry lintels, 613–616
maximum, 156
minimum thicknesses for beams/slabs, 155
of prestressed concrete, 586–590
rectangular beams, 85
simple-beam, 162–164

Design codes, 6–7
Design loads, 32–33
Design methods, 65–66. See also specific topics
Development lengths, 197–208

for bundled bars, 197–199
combined shear and moment effect on, 206–207
for compression bars, 204–206
in continuous structures, 459–468

negative-moment reinforcement, 462–465
positive-moment reinforcement, 459–462

critical sections for, 206
defined, 189–190
rectangular beams, 102
and shape of moment diagram, 207–208
for tension reinforcing, 189–197
for welded wire fabric in tension, 203–204

Diagonal tension:
defined, 224
and use of stirrups, 231

Direct design method:
openings in slab systems, 528
two-way slabs, 495–531

with beams, 517–522

depth limitations and stiffness with interior beams,
503–505

depth limitations and stiffness without interior
beams, 500–502

distribution of moments in, 506–511
factored moments in columns and walls, 528
interior flat plates, 511–514
live load placement, 514–517
transfer of shear and moments between slabs and

columns, 522–528
Doubly reinforced beams, 127–136

compression steel on, 127–132
design of, 132–136

Dowel action, 227
Drainage, for retaining walls, 397–398
Drop panels, 492
Durability of concrete, 21

E
Earthquake loads, 32, 84
Eccentricity, of short columns, 281, 282, 294–301
Economical design:

beams formwork, 3
column, 273–274
stirrup spacing, 247–249
walls, 563

Effective length factors (slender columns), 318–323
determined with alignment charts, 321–322
determined with equations, 322–323

Elastic second-order analysis (slender columns), 328
Elastic shortening, in prestressed concrete, 580–581
Elastic stresses, 41–47
Empirical design method, 549–551
End blocks, stresses in, 595
Environmental loads, 30–32
Equilibrium method, 438–441
Equilibrium torsion, 474
Equivalent fluid pressures, 402
Equivalent frame method (two-way slabs), 495–496,

532–546
properties of columns, 538–540
properties of slab beams, 535–537

Equivalent rigid-frame method, 451–453
Erdei, Charles, 207
Expansion joints, in retaining walls, 425–426

F
Factored loads, 65
Fairbairn, W., 4
Fairweather, V., 32
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Ferguson, P. M., 207
Fiber-reinforced concrete, 20–21
Flanges, 112
Flat plates, 492, 493, 497, 511–514
Flat slabs, 492, 493, 497
Flexural analysis (beams), 35–64

concrete cracked–elastic stresses stage, 35–36, 41–47
cracking moment, 38–41
ultimate or nominal moments, 48–51
ultimate-strength stage, 36–38
uncracked concrete stage, 35, 38–40

Flexural cracks, 170–175
control of, 171–175
defined, 170–175

Flexural members, splices in, 211–212
Flexure–shear cracks, 171, 226
Floating foundations, 348, 349
Fly ash, 21
Footings, 347–393

combined, 348, 349, 372–378
design of:

for equal settlement, 378–379
isolated footings, 357–364, 369–372
wall footings, 352–357

isolated, 347, 348
rectangular, 369–372
square, 357–364

load transfer from columns to, 364–369
mat (raft, floating foundation), 348, 349
pile caps, 348, 349
plain concrete, 383–386
for round or regular polygon-shaped columns, 364
soil pressures:

actual, 350–351
allowable, 351–352
for retaining walls, 404–405

subject to axial loads and moments, 380–382
transfer of horizontal forces to, 382–383
types of, 347–349
wall, 347, 348, 352–357

Friction, 401
along ducts in prestressed concrete, 582
shear, 249–251, 382–383

Fully prestressed members, 596

G
Gabions, 397
Gergely-Lutz equation, 172
Girders, 458
Glossary, 699–701
Governing load combination, 84

Gravity retaining walls, 394, 395
Grout, 605

H
Hangers, 227–228
Headed bars, 23, 214–215
Heel (retaining walls), 394, 416
Hennebique, F. S., 4
High-early-strength cements, 8
High-strength concretes, 19–20
High-strength steels, 571–572
Historical data, 3–5
Hooks, 199–203
Horizontal forces, transferred to footings, 382–383
Hyatt, T. S., 5

I
IBC, see International Building Code,
Ice loads, 30–31
Impact effects, on rectangular beams, 83
Impact loads, 29
Inclined cracks, 171
Interaction diagrams (short columns), 284–301

code modifications of, 292–294
development of, 284–289
for eccentrically loaded columns, 294–301
use of, 290–292

Intermediate moment frames, 692, 693
Internal friction, 401
International Building Code (IBC), 7, 23, 33
Isolated (single-column) footings, 347, 348

rectangular, 369–372
square, 357–364

J
Jackson and Moreland alignment charts, 322
Joints, in retaining walls, 424–426

K
Kern, 380
Kirby, R. S., 4

L
Lally columns, 266
Lambot, J., 4
Lap splices, 211–214
Lateral bracing, for continuous structures, 459
Lateral loads:

for continuous structures, 454–458
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Lateral loads: (continued )
design of two-way slabs for, 496
in seismic design, 688–691

Lateral pressure, on retaining walls, 399–404, 408
Lateral support, for rectangular beams, 95
Laurson, P. G., 4
L beams, 127
Le Brun, F., 4
Leet, K., 15
Length effect, 582
Leyh, George F., 212
Lightweight aggregate concrete, 224
Lightweight concrete, 18
Lightweight concrete modification factor, 192
Limit design:

continuous structures, 434–444
under ACI Code, 442–444
collapse mechanism, 436–437
plastic analysis (equilibrium method), 438–441

plastic design vs., 435
Limit states, 154
Lintels, masonry, 611–616

cracking moment, 613, 616
deflections, 613–616
shear design of, 612–613

Live loads, 29–30
Loads, 28–36

axial:
columns, 266, 274–277
footings subjected to, 380–382
short columns subject to bending and, 281–316

balanced, 288
dead, 28
design, 32–33
environmental, 30–32
factored, 65
on footings, 378–382
ice, 30–31
impact, 29
lateral:

for continuous structures, 454–458
design of two-way slabs for, 496
in seismic design, 688–691

live, 29–30
longitudinal, 29
miscellaneous, 29
rain, 31
seismic (earthquake), 32, 84
in seismic design, 687–691
service, 36, 41, 65
snow, 30–31
traffic, 29

vertical:
for continuous structures, 445–454
in seismic design, 687–688

wind, 31–32, 84
working, 36, 65

Load and resistance factor design (LRFD), 435
Load-bearing walls:

empirical design method, 549–551
masonry walls with out-of-plane loads, 616–623
rational design method, 552–554

Load factors:
and effective moment of inertia, 160
rectangular beams, 82–84

Long columns, 263
Longitudinal loads, 29
Long-term deflections, 160–162, 589
LRFD (load and resistance factor design), 435

M
MacGregor, J. G., 36, 127
Masonry, 602–630

concrete masonry units, 602–603
flexural tensile reinforcement of, 607
grout, 605
lintels, 611–616
mortar, 603–605
reinforcing bars in, 605–606
shear walls with in-plane loading, 623–628
specified compressive strength of, 606–607
walls with out-of-plane loads:

load-bearing, 616–623
non–load-bearing, 607–611

Mass density, 13
Mat (raft, floating foundation) footings, 348, 349
Maximum considered earthquake, 684
Maximum steel percentage, 73
Mechanically anchored bars, 214–215
Middle strips (two-way slabs), 496–497
Minimum steel percentage, 74–75
Modular ratio, 41
Modulus of elasticity, 12, 13, 16, 25

apparent, 12
dynamic, 13
initial, 12
long term, 12
secant, 12
slender columns, 324
static, 12–13
tangent, 12

Modulus of rupture, 16, 35, 38–39
Moment frames, classes of, 691–698
Moment magnifier procedure (slender columns), 328
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nonsway (braced) frames, 328–333
sway (unbraced) frames, 333–337

Moments of inertia:
effective, 158–160
slender columns, 324

Moment strength, torsional, 477
Monier, J, 4
Mortar, 603–605
Müller-Breslau, Heinrich, 432

N
National Concrete Masonry Association (NCMA), 602
Nawy, E. G., 13
Nilson, A. H., 13
Nominal strength, 48–51
Nominal values (CMUs), 603
Nonlinear second-order analysis (slender columns), 328
Non–load-bearing walls, 547–548, 607–611
Nonsway (braced) frames (slender columns), 317–318,

320, 328–333

O
One-way slabs, 99–102

defined, 492
simple-span, 99–102

Ordinary moment frames, 691–692

P
Partially prestressed members, 596
Pedestals, 263
Pile caps, 348, 349
Plain concrete footings, 383–386
Plastic analysis (equilibrium method), 438–441
Plastic centroid, 282–284
Plastic design, limit design vs., 435
Plastic hinge, 435–440
Points of inflection, assumed, 454, 455
Poisson’s ratio, 13–14
Ponding, 31
Portal method, 454, 456–458
Portland cement, 7–9
Posttensioning, 570, 575
Pozzolana, 3
Precast walls:

non-prestressed, 548
retaining walls, 397

Prestressed concrete, 567–601
advantages of, 569
for composite construction, 595
continuous members, 596
deflections of, 586–590
disadvantages of, 569

elastic shortening in, 580–581
friction along ducts, 582
materials used for, 570–572
partial prestressing, 596
posttensioning, 570, 575
prestress losses, 579–582
pretensioning, 569–570
relaxation and creep in tendons, 581
shapes of prestressed sections, 576–579
shear in, 590–595

approximate method, 590
design of reinforcement, 591–595

shrinkage and creep in, 581
stress calculations, 572–576
stresses in end blocks, 595
ultimate strength of sections, 582–587

Pretensioning, 569–570
Primary moments (columns), 263
Principal stresses, 223–224
Proportions (rectangular beams), 85

Q
Qualitative influence lines, 431–434

R
Raft footings, 348, 349
Rain loads, 31
Ransome, E. L., 4
Rational design method (load-bearing walls), 552–554
Rectangular beams, 82–111

bundled bars, 98
cantilever, 102
continuous, 102
design of, 85–94
lateral support, 95
load factors, 82–84
one-way slabs as, 99–102
sizes of, 96
skin reinforcement, 95
steel area for predetermined dimensions, 96–98

Rectangular isolated footings, 369–372
Reinforced concrete:

advantages, 1–2
defined, 1
disadvantages, 2–3
history, 3–5
use of structural steel vs., 5–6

Reinforcement location factor, 191
Reinforcement size factor, 192
Reinforcing bars:

bond stresses, 187–189
bundled, 98
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Reinforcing bars: (continued )
development lengths for, 197–199
lap splices for, 212

cutting off or bending, 184–187, 208–211
headed, 214–215
in masonry, 605–606
mechanically anchored, 214–215
rectangular beams:

minimum spacing of, 87–89
selection of, 86

splices:
compression, 213–214
in flexural members, 211–212
tension, 213

Reinforcing steel, 22–26
axle, 24, 27
billet, 24, 27
coatings, 26
compatibility of concrete and, 6
corrosion, 9, 25, 26
deformed, 4, 22–25
epoxy coated, 26
grades, 24–25
identifying marks, 26–27
maximum percentage of, 73
minimum percentage of, 74–75
plain, 22–23
rail, 26–27
SI sizes, 25–26
welded wire fabric, 22–25

Relaxation, in prestressed concrete
tendons, 581

Retaining walls, 394–430
bridge abutments, 396, 397
buttress, 395, 396
cantilever, 394–396

design procedure for, 413–424
estimating sizes of, 409–413
without heel, 396
without toe, 396, 397

counterfort, 395, 396
cracks in, 424–425
drainage for, 397–398
failures of, 398
footing soil pressures for, 404–405
gravity, 394, 395
joints in, 424–426
lateral pressure on, 399–404
precast, 397
semigravity, 394, 395, 405–407
surcharge on, 408
types of, 394–397

Retrofitting, 32
Righting moment (retaining walls), 396
Roman cement, 3
Rusch, H., 15

S
Safety, 65–67

with cantilever retaining walls, 414–415
with columns, 271–272

Salmon, C. G., 5
Schlaich, J., 681
SDC (seismic design category), 683, 687
Secondary moments (columns), 263
Seismic design, 683–698

categories of, 683, 687
for classes of moment frames, 691–698
loads, 687–691
maximum considered earthquake, 684
risk and importance factors, 686–687
soil site class, 684–685

Seismic design category (SDC), 683, 687
Seismic (earthquake) loads, 32, 84
Self-consolidated concrete, 10
Semigravity retaining walls, 394, 395, 405–407
Service, 36
Serviceability, 154–183

cracks, 170–176
ACI Code provisions, 175–176
flexural, 170–175
types of, 170–171

deflections, 154–164
calculation of, 157–160
continuous-beam, 164–170
control of, 155–156
importance of, 154–155
long-term, 160–162
simple-beam, 162–164

effective moments of inertia, 158–160
Serviceability limit states, 154
Service loads, 36, 41, 65
Settlement (footings), 378–379
Shear:

ACI Code requirements for, 232–237
column, 457
in column footings, 359–364
design for, 231–232

deep beams, 253–254
design problems, 237–247
stirrup spacing, 237–242, 247–249

and development length, 206–207
girder, 458
in prestressed concrete, 590–595
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approximate method, 590
design of reinforcement, 591–595

in short columns subject to axial load and bending,
301–302

and tensile strength, 223
two-way slabs:

shear resistance, 497–500
transfer between slabs and columns, 522–528

Shear cracking (reinforced concrete beams), 226–230
Shear friction, 249–251, 382–383
Shearheads, 492, 498, 499
Shear spans, 675–676
Shear strength:

of concrete, 17–18, 225–226
and lightweight aggregate concrete, 224
of members subjected to axial forces, 251–253

Shear stresses:
in concrete beams, 223–224
in two-way slabs, 497–500

Shear walls, 554–562
ACI provisions for, 558–559
arrangements of, 556–557
masonry, with in-plane loading, 623–628

Short columns:
compression blocks and pedestals, 263
subject to axial load and bending, 281–316

biaxial bending, 302–309
capacity reduction factors, 309–311
interaction diagrams, 284–301
plastic centroid, 282–284
shear in, 301–302

Shotcreting, 8, 21
Shrinkage, 14–15
SI examples:

axially loaded columns, 277–278
beam analysis, 51
cracking, 176
development length, 215–216
rectangular beam design, 103–104
SI units, 7, 25
stirrup spacing, 256–257
T beams and doubly reinforced beams, 136–138
torsion, 483–486
wall footings, 386–388

Silica fume, 19–20
Simple-beam deflections, 162–164
Single-column footings, see Isolated footings,
Skin reinforcement (deep rectangular beams), 95
Slabs:

continuous, 446–450
minimum thicknesses for, 155

one-way:
defined, 492
simple-span, 99–102

two-way, 492–531
analysis of, 495, 517–522
with beams, 492, 494, 517–522
columns, 522–528
column strips, 496–497
defined, 492
depth limitations and stiffness, 500–505
design of, 495–496
direct design method, 495–531
distribution of moments in, 506–511
equivalent frame method, 495–496
factored moments in columns and walls, 528
flat plates, 492, 493, 511–514
flat slabs, 492, 493
for lateral loads, 496
live load placement, 514–517
middle strips, 496–497
openings in slab systems, 528
shear resistance, 497–500
transfer of moments and shear between slabs and

columns, 522–528
waffle slabs, 492–493

Slate, F., 13
Sleeve splices, 212
Slender columns, 263, 317–346

ACI Code treatment of slenderness effects, 328
analyses of:

first-order, 323–324
second-order, 328

avoiding, 325–326
effective length factors, 318–323

determined with alignment charts, 321–322
determined with equations, 322–323

in nonsway (braced) frames, 317–318, 320
magnification of column moments in, 328–333
sway (unbraced) frames vs., 324–327

in sway (unbraced) frames, 317–318, 320
analysis of, 336–341
magnification of column moments in, 333–337
nonsway (braced) frames vs., 324–327

unsupported lengths, 318
Slippage, in prestressed concrete, 582
Smith, Albert, 454
Snow loads, 30–31
Soil pressures:

active, 401
actual, 350–351
allowable, 351–352
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Soil pressures: (continued )
for footings:

actual, 350–351
allowable, 351–352
of retaining walls, 404–405

on retaining walls, 399–404
Soil site class, 684–685
Special moment frames, 692–693
Spiral columns, 264

ACI Code requirements for, 270–271
failure of, 266–268

Splices:
compression, 213–214
in flexural members, 211–212
tension, 213

Split-cylinder tests, 16
Spreadsheets:

beam analysis, 52–54
columns, 278–279
deflection calculator, 177–178
development length, 216–217
doubly reinforced beams, 141–143
footings, 388–390
masonry shear walls, 628–629
prestressed concrete, 597
rectangular beams, 105–106
shear design, 257–258
short columns, 311–312
slender columns, 342–343
T beams, 138–141
torsion, 487
two-way slabs, 528–530
walls, 564–565

Square isolated footings, 357–364
Stability index, 317–318
Statically determinate torsion, 474
Statically indeterminate torsion, 474
Static moment, 506
Steel:

prestressed, 571–572
reinforcement with, see Reinforcing steel,

Steel area, for rectangular beams of predetermined
dimensions, 96–98

Stems:
cantilever retaining walls, 409–410, 413–414, 424
T-beams, 112

Stirrups, 201, 207
ACI Code requirements, 232–235
and design for shear, 231–235
in footings, 353
purpose of, 231
spacing of, 233–234, 237–246

ACI Code requirements, 232–235
economical, 247–249

torsional reinforcing, 471–474
for web reinforcement, 227–230

Straight-line design, 65
Strains in flexural members, 70–71
Straub, H., 4
Strength analysis (beams), 65–81

balanced sections, 71
balanced steel percentage, 75–76
brittle sections, 71
compression-controlled sections, 71
derivation of beam expressions, 67–70
design methods, 65–66
minimum percentage of steel, 74–75
strains in flexural members, 70–71
strength design advantages, 66
strength reduction factors, 67, 71–74
structural safety, 66–67
tension-controlled sections, 71

Strength design:
advantages, 66
defined, 65

Strength limit states, 154
Strength reduction factors, 67, 71–74
Stresses:

bond, 187–189
in prestressed concrete:

calculation of, 572–576
in end blocks, 595

principal, 223–224
shear, 223–224
torsional, 475–476

Stress-strain curves, 11–12
Strut and tie design, 675–682
Superplasticizers, 10, 20
Surcharge, on retaining walls, 408
Sway (unbraced) frames (slender columns), 317–318, 320

analysis of, 336–341
magnification of column moments in, 333–337

T
Tables:

balanced ratios of reinforcement:
SI units, 672–674
U.S. customary units, 636–645

circular column properties, 647
column properties, 655
live loads (typical), 29
minimum web widths for beams:

SI units, 671
U.S. customary units, 635
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moduli of elasticity:
SI units, 669
U.S. customary units, 631

moment distribution constants for slabs, 648–654
reinforcing bar tables (areas, diameters, etc.):

SI units, 669–671
U.S. Customary units, 631, 634, 635

spirals for columns (size and pitch), 646
weights of common building materials, 28
welded wire reinforcement, 633
welded wire reinforcement sheets:

U.S. customary units, 632
T-beams, 112–127

analysis of:
general method, 114–117
specific method for T beams, 118–119

deflections, 164–170
design of, 120–127

Tensile strength of concrete, 16–17, 223
modulus of rupture, 16, 18
split cylinder test, 16–17

Tension, diagonal, 224
Tension controlled section, 71
Tension reinforcing:

development lengths for, 189–197, 203–204
hooks for, 199–203

Tension splices, 213
Ties, 201

circular, 271
spacing of, 270

Tied columns, 264
ACI Code requirements for, 270
as economical, 274
failure of, 266–268

Toe (retaining walls), 394, 414, 416–418
Torsion, 254–255, 470–491

ACI design requirements, 479–480
compatibility, 474–475
design of, 478–479
equilibrium, 474
moment strength, 477
reinforcing, 471–474

required by ACI, 476–480
using U.S. customary units, 480–483

stresses, 475–476
and toughness of concrete, 21
using SI units, 483–486

Torsional moment strength, 477
Torsional reinforcing, 471–474

required by ACI, 476–480
using U.S. customary units, 480–483

Torsional stresses, 475–476
Torsion cracks, 171
Traffic loads, 29
Transformed area, 36, 41
Transverse reinforcement index, 192
Trial-and-error (iterative method), 97–98
Truss analogy, 229, 677
Truss models, 679–681
Two-way slabs, 492–531

analysis of, 495, 517–522
with beams, 492, 494

direct design method, 517–522
equivalent frame method, 535–537

columns:
equivalent frame method, 538–540
factored moments in, 528
transfer of shear and moments between slabs and,

522–528
column strips, 496–497
defined, 492
depth limitations and stiffness, 500–505

with interior beams, 503–505
without interior beams, 500–502

design of, 495–496
direct design method, 495–531

with beams, 517–522
depth limitations and stiffness with interior beams,

503–505
depth limitations and stiffness without interior

beams, 500–502
factored moments in columns and walls, 528
interior flat plates, 511–514
live load placement, 514–517
transfer of shear and moments between slabs and

columns, 522–528
equivalent frame method, 495–496, 532–546

properties of columns, 538–540
properties of slab beams, 535–537

flat plates, 492, 493, 511–514
flat slabs, 492, 493
for lateral loads, 496
live load placement, 514–517
middle strips, 496–497
moments in:

distribution for nonprismatic members, 532–533
distribution of, 506–511
transfer between slabs and columns, 522–528

openings in slab systems, 528
shear:

shear resistance, 497–500
transfer between slabs and columns, 522–528
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Two-way slabs, (continued )
waffle slabs, 492–493
walls, factored moments in, 528

U
Ultimate strength, of prestressed concrete sections,

582–587
Ultimate-strength design, 65, 66. See also Strength

design
Ultimate-strength stage (flexural analysis), 36–38, 48–51
Unbraced frames, see Sway (unbraced) frames,
Uncracked concrete stage (flexural analysis), 35, 38–40
U.S. customary units:

tables and graphs, 631–668
torsional reinforcing using, 480–483

United States Geological Service (USGS), 684

V
Van Ryzin, G., 31
Vertical loads:

for continuous structures, 445–454
in seismic design, 687–688

Vibrations, 154

W
Waffle slabs, 492–493
Walls, 547–566

economy in construction of, 563
load-bearing:

empirical design method, 549–551
masonry walls with out-of-plane loads, 616–623

rational design method, 552–554
masonry:

load-bearing walls with out-of-plane
loads, 616–623

non–load-bearing walls with out-of-plane loads,
607–611

shear walls with in-plane loading, 623–628
non–load-bearing, 547–548, 607–611
shear, 554–562

Wall footings, 347, 348, 352–357
Wang, C. K., 5
Ward, W. E., 4
Wayss, G., 4
Web reinforcement:

ACI Code requirements for, 232–237
behavior of beams with, 229–230
defined, 224
for prestressed sections, 590
for shear cracking in beams, 227–229
T-beams, 112

Web–shear cracks, 171, 226, 227
Weep holes, 398
Weischede, D., 681
Welded wire fabric, 22–25

and shear cracks, 228–229
in tension, development lengths for, 203–204

Whitney, C. S., 68, 289
Wilkinson, W. B., 4
Wind loads, 31–32, 84
Wire Reinforcement Institute, 23
Wobble effect, 582
Working loads, 36, 65
Working stress design (WSD), 65–67
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Frequently Used Notation

α = depth of equivalent compression rectangular stress block for flexural members
Ab = cross-sectional area of a reinforcing bar
Ac = area of core of a spirally reinforcing column measured out to out of spiral
Ag = gross cross-sectional area of a concrete member
Al = total area of longitudinal reinforcing to resist torsion
As = area of nonprestressed tensile reinforcing
A′

s = area of compression reinforcement
Ask = area of skin reinforcement for a deep beam per unit of height on one side face of beam
Ast = total area of nonprestressed longitudinal reinforcing (bars or steel shapes)
At = area of one leg of a closed stirrup resisting torsion within a distance s
Av = cross-sectional area of shear reinforcing in a distance s in a flexural member
A1 = loaded area
A2 = maximum area of a supporting surface that is geometrically similar and concentric with the loaded area A1
b = width of the compression face of a flexural member
b = effective width of the flange of a T or L beam
bo = perimeter of critical section for shear for slabs or footings
bw = web width or diameter of a circular section
c = distance from extreme compression fiber to neutral axis
cb = smaller of: (a) the distance from center of a bar or wire to nearest concrete surface, and (b) one-half the

center-to-center spacing of bars or wires being developed
Cm = a factor relating an equivalent uniform moment diagram to the actual diagram
d = effective depth of a section measured from extreme compression fiber to centroid of tensile reinforcement
d′ = distance from extreme compression fiber to centroid of compression steel
db = bar diameter
dc = concrete cover thickness measured from extreme tensile fiber to closed reinforcing bar or wire
Dc = diameter of core of spiral column measured out to out of column
Ec = modulus of elasticity of concrete
Es = modulus of elasticity of steel
fc = computed compression flexural fiber stress at service loads
f ′

c = specified compression strength of concrete
f ′
m = specified compressive strength of masonry

fct = average splitting tensile strength of lightweight aggregate concrete
fr = modulus of rupture of concrete
fs = computed flexural stress in tensile steel at service loads
f ′

s = computed flexural stress in compression steel
ft = computed tensile flexural stress in concrete
fy = specified yield strength of nonprestressed reinforcing
h = total thickness of member
hf = thickness of compression flange of a T, L, or I section
Icr = transformed moment of inertia of cracked concrete section
Ie = effective moment of inertia of a section used for deflection calculations
Ig = gross moment of inertia of a section about its centroidal axis
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k = effective length factor for a compression member
ld = development length of a straight bar embedded in confined concrete
ldb = basic development length
ldh = development length of a bar with a standard hook
ldt = development length in tension of headed deformed bar
lhb = basic development length of a standard hook in tension
ln = clear span measured face to face of supports
lu = unsupported length of a compression member
Mcr = cracking moment of concrete
M1 = smaller end factored moment in a compression member, negative if double curvature
M2 = larger end factored moment in a compression member
M1ns = smaller factored end moment in a compression member due to loads that result in no appreciable sidesway
M2ns = larger factored end moment in a compression member due to loads that result in no appreciable sidesway
Ma = maximum moment in member due to service loads at stage deflection is computed
Mo = total factored static moment
Mu = factored moment at section
n = modular ratio (ratio of modulus of elasticity of steel to that of concrete)
Pc = Euler buckling load of column
Pno = pure axial load capacity of column
P0 = nominal axial load strength of a member with no eccentricity
qa = allowable soil pressure
qe = effective soil pressure
Rn = a term used in required percentage of steel expression for flexural members (Mu/φbd2)
s = spacing of shear or torsional reinforcing parallel to longitudinal reinforcing
Vnm = nominal shear strength provided by masonry (see Chapter 20)
Vns = nominal shear strength provided by shear reinforcement (see Chapter 20)
Vtu = torsional stress
w = crack width
wc = unit weight of concrete
yt = distance from centroidal axis of gross section to extreme fiber in tension
z = a term used to estimate crack sizes and specify distribution of reinforcing
β = ratio of long to short dimensions: clear spans for two-way slabs; sides of column, concentrated load or

reaction area; or sides of a footing
βdns = ratio used to account for reduction of stiffness of columns due to sustained axial loads
βds = ratio used to account for reduction of stiffness of columns due to sustained lateral loads
β1 = a factor to be multiplied by the depth d of a member to obtain the depth of the equivalent rectangular stress

block
δ = moment magnification factor to reflect effects of member curvature between ends of compression member
δs = moment magnification factor for slender columns in frames not braced against sidesway
εc = strain in compression concrete
εs = strain in tension reinforcement
ε′

s = strain in compression reinforcement
λ = modification factor reflecting the reduced mechanical properties of lightweight concrete; all relative to normal

weight concrete of the same compressive strength
λ� = a multiplier used in computing long-term deflections
μ = coefficient of friction
ξ = a time-dependent factor for sustained loads used in computing long-term deflections
ρ = ratio of nonprestressed reinforcement in a section
ρ′ = ratio of compression reinforcing in a section
ρb = ratio of tensile reinforcing producing balanced strain condition
φ = capacity reduction factor
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Typical SI Quantities and Units

Quantity Unit Symbol

Length meter m

Area square meter m2

Volume cubic meter m3

Force newton N

Weight newton per cubic meter N/m3

Quantity Unit Symbol

Stress pascal (N/m2) Pa

Moment newton meter N •m

Work newton meter Nm

Density kilogram per cubic meter kg/m3

Mass kilogram kg

SI Prefixes
Prefix Symbol Multiplication Factor

tera T 1012 = 1 000 000 000 000

giga G 109 = 1 000 000 000

mega M 106 = 1 000 000

kilo k 103 = 1 000

hecto h 102 = 100

deca da 101 = 10

deci d 10−1 = 0.100

centi c 10−2 = 0.010

milli m 10−3 = 0.001

micro μ 10−6 = 0.000 001

nano n 10−9 = 0.000 000 001

pico p 10−12 = 0.000 000 000 001

Conversion of U.S. Customary Units to SI Units

U.S. Customary Units SI Units

1 in. 25.400 mm = 0.025 400 m

1 in.2 645.16 mm2 = 6.451 600 m2 × 10−4

1 ft 304.800 mm = 0.304 800 m

1 lb 4.448 222 N

l kip 4 448 222 N = 4.448 222 kN

1 psi 6.894 757 kN/m2 = 0.006 895 MN/m2 = 0.006 895 N/mm2

1 psf 47.880 N/m2 = 0.047 800 kN/m2

1 ksi 6.894 757 MN/m2 = 6.894 757 MPa

1 in-lb 0.112 985 N •m

1 ft-lb 1.355 818 N •m

1 in-k 112.985 N •m

1 ft-k 1 355.82 N •m = 1.355 82 kN •m
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