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1. Introduction to Part 0 

1.1 Background 

The city of Nijmegen is located at the banks of the river Waal. Heavy traffic on the old 
Waal bridge (arch bridge, completed in 1936) and the urban road network requires a 
second river crossing. Based on the architectural look of the bridge, the design 
competition was won by the consortium. A succession of concrete arches with masonry 
cladding on the parapets were chosen for the approach bridge, to unite the new bridge 
with the shape of the existing bridge and with the cities Roman history. Concrete arches 
are applied in many bridges. Nevertheless, piers supporting the arches and robust end 
supports to confine these arches is a unique solution. When analysing other concrete 
arch bridges, either the arches are confined directly by the foundation or tensile ties are 
applied. 
 
The structural verification of the succession of the flexibly supported, slender arches, 
raised questions on the nonlinear structural behaviour. The axial forces reach values up 
to     of the Euler buckling load and the flexibility of the support leads to high bending 
moments. In the structural design, the bending moment magnification due to 
geometrically nonlinear behaviour is based on the design of columns. The well-known 
engineering formula for geometrically nonlinear behaviour         is combined with 
stability analysis and structural analysis. As the ratio of the Euler buckling load and the 
design load is    , the engineering formula yields a magnification factor of     on the 
bending moments to account for the geometrically nonlinear behaviour. Using this 
factor, a nonlinear analysis can be left out, which saves time in the design process, but it 
ignores the true geometrical nonlinearity, the equilibrium of the deformed structure.  
 

 

 Figure 1: Side view to Northern approach bridge 

1.2 Thesis outline 

The main objective of the thesis is to provide insight in the theory and analysis of the 
geometrically nonlinear behaviour of arched structures. The objective splits into two 
parts. On one hand there is the checking of the design assumption, on the other hand it 
should guide future design of similar structures.  
 



 
 
Part 0:Extended Summary - Introduction to Part 0 

 

Geometrically nonlinear behaviour of arches in 2D Part 0 - Page 2 of 134 
MSc Thesis    

The research is carried out within the framework of the Nijmegen city bridge. Loads, soil 
properties and geometry of the city bridge design are heavily used as backbone of the 
practical part of the investigation.  

1.2.1 Research questions 

The scope of the investigation is determined by the research questions: 
 
- What are the theoretical backgrounds of the geometrically nonlinear behaviour of 

arched structures? 
 
- How do the internal forces change, when geometrically nonlinear behaviour is 

accounted for in the analysis of arched structures? 
 
- Is there a link between Euler buckling and geometrically nonlinear behaviour in 

arched structures? 
 
- How to deal with the geometrically nonlinear behaviour of arched structures in 

practice? 

1.3 Parts 

The research is carried out and reported in four separate parts, upholding their 
individual characters and representing the chronology of the research process. 
Together, the parts provide the answers to the research questions. 

1.3.1 Part 1 – Literature and buckling  

In the first part the orientation phase of the investigation is reported. Obviously, the 
approach bridge design has been studied, but the main part of the orientation phase 
consisted of literature study, in which buckling stability was considered. Since in 
engineering, stability and geometrical nonlinearity are closely related via the         
factor, studying buckling seemed a good starting point. The theory was extended with a 
sensitivity analysis to investigate the influence of the different parameters to the Euler 
buckling capacity of arches. 

1.3.2 Part 2 – Single arch analysis 

As buckling theory did not provide answers to the geometrically nonlinear question in 
arch analysis, structural behaviour of arches was studied. The differential equation for 
arch structures provided insight into the linear and nonlinear analysis. In the derivation 
of the differential equation the effect of the deformations on the arch shape is 
neglected       and the thrust is assumed to be constant       , leading to the 
linear behaviour.  
 

   
   

   
   

   

   
      

 
The differential equation including the nonlinear effect reads: 
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These differential equations are analysed for different loads, different support 
conditions and geometrical imperfections are included. However, originally, the 
differential equations described models for arches with rigid supports in which only 
vertical deformations are considered. Horizontal deformations   are not incorporated in 
the differential equation. Horizontal support translation is added in the determination of 
the horizontal thrust: 
 

   
  

  
 
  

  

 

 

   
  

  
 

 

        
 

 
For low support stiffness, the model does not lead to reliable results. All results are 
compared with finite element analyses. Additionally, the Euler buckling loads are 
determined in the finite element models and the corresponding magnification factors 
are compared to the geometrically nonlinear analyses.  The second part finishes with an 
investigation of different arch geometries. The geometrically nonlinear analysis is 
performed for different spans and different rise to span factors. 

1.3.3 Part 3 – Multiple arches 

A succession of arches is fundamentally different from a single arch in the way the 
confinement is secured. In a single arch the horizontal thrust is exited after arch 
deformation. In a succession, arches are mutually supported in horizontal direction by 
adjacent arches. Horizontal translation of intermediate spans are small compared to 
single arches with equivalent support stiffness, although towards the end spans the 
degree of confinement decreases. 

 
Figure 2: Principal difference in confinement, single arch (l) and multiple arches (r) 

 
In the multiple arch models, first the influence of the adjacent spans is investigated. The 
supports are modelled by their spring stiffness. In the following investigation, the arch 
models are extended with the actual substructure, to determine the effect of the 
support flexibility more accurate.  

1.3.4 Part 4 – Further investigation 

Physically nonlinear behaviour and the transverse load distribution could not be 
investigated in this thesis thoroughly due to time constraints. However, a brief 
introduction for future research is provided in this part. The influence of cracking at the 
supports is investigated by reducing the Young’s modulus of the material. Fictitious  
Young’s moduli are derived with M-N-κ diagrams. 
 
The transverse load distribution can only be investigated with a three dimensional 
model. Point supports or line supports and transverse prestressing determine the 
transverse load distribution. A single arch is modelled and the effect of the support 
condition and the prestress is displayed. 
 
The appendices are added to this report on cd-rom. 
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2. Results and Conclusions 

2.1 Single arch 

The theoretical background of the engineering formula         shows that the 
formula provides the exact magnification in only few cases. Nevertheless, for columns it 
is a good approximation. In arches there are two fundamental differences. Often the 
lowest buckling load corresponds to a buckling mode that is not affine with the 
deformations. Furthermore, the external loading that causes the internal normal forces 
is different for arches, when compared to columns.  
 
Comparing the differential equations for linear and geometrically nonlinear analysis of 
arches, an imaginary second order load is represented by the term      . When 
judging analysis results, this second derivative of the deformations can be visualised by  
           . In Figure 3, this is displayed. Easily can be seen that the bending 
moment magnification factor is not constant along the arch, as the bending moment 
distributions have different shapes. 
 

 
Figure 3: Visualisation second order load 

 
Checking the bending moment magnification computed via geometrically nonlinear 
analysis with the magnification factor provided by stability analysis, the affine buckling 
mode results in a better approximation compared to the non-affine mode, but the 
approximation remains poor, especially for lower stiffnesses. 
 
Additionally, in second order theory, the influence of geometrical imperfections should 
be taken into account. An amplitude for the imperfection is provided and it should be 
applied to the lowest horizontal and lowest vertical buckling modes. It is allowed to 
model the buckling modes by sine waves. The geometrical imperfection leads to higher 
bending moments in linear analysis, due to the deviation with respect to the thrust line 
and to slightly higher bending moment magnification. 
 
Although different internal forces are found in linear and nonlinear analysis with and 
without geometrical imperfections, the bending moments are highly sensitive to the 
bending stiffness   . The linear perfect model versus the nonlinear imperfect model will 
vary by a factor     to    , while the bending moments for the lowest and highest 
realistic Young’s modulus vary a factor  . 
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2.2 Multiple arches 

In structures consisting of a succession of flexible supported arches, the end spans 
behaves like the flexible supported single arch, due to the moderate confinement. The 
intermediate spans resemble the rigid supported single arch, as the displacement at the 
supports is low. However, the shape of the bending moment distribution is similar, the 
values are different. In arched structures, a small displacement at the support cannot be 
neglected. 
 
The end spans will yield the highest bending moments. Due to the low confinement, 
bending moments are high in linear analysis. Moreover, a large share of the horizontal 
thrust   is excited in the end span and deformations are high, leading to high second 
order bending moments. 
 
For a succession of arches it is hard to find an affine buckling mode, since partial 
buckling, buckling of a single or a small number of arches, is generally governing. 
Application of the engineering formula         is misleading due to the large number 
of buckling modes and the previously described poor agreement with the true nonlinear 
behaviour. 
 
Two geometrical imperfections are investigated by manually drawing the imperfect 
shape. The anti-symmetrical (two half sine waves) imperfection is combined with a 
tandem axle loading at        and the symmetrical (three half sine waves) imperfection 
is combined with the tandem axle loading at mid span. The second combination causes 
the highest bending moments and the highest bending moment magnification.  
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3. Recommendations for design 

The imaginary second order loading, as a function of the reverse bending moment 
distribution, provides the better tool to judge the geometrically nonlinear behaviour of 
arches. Other than in column design, there is only a poor relation with the Euler buckling 
capacity in nonlinear arch behaviour. Along the arch, different magnification factors will 
be found, as first order and second order bending moments have different distributions. 
With the second order load supposition, these different distributions for first order and 
second order bending moments can be explained. 
 
However, structural behaviour of arches relies heavily on stiffnesses. Bending stiffness, 
axial stiffness, the stiffness provided by the substructure and surrounding soil and the 
arch geometry together determine the deformed shape and the internal forces. Higher 
bending stiffness will result in higher bending moments, while higher translational 
support stiffness lead to higher normal forces and lower bending moments.  
For higher stiffness in general, deformations will be smaller and the geometrically 
nonlinear effect will be smaller too.  
 
Nevertheless, the bending stiffness and the horizontal confinement are the decisive 
parameters in arch design, even geometrical nonlinearity has less crucial influence. The 
fictitious Young’s modulus that can be taken into account can vary largely, since the 
fictitious uncracked stiffness can reach values of                 and the cracked 

cross-section at the ultimate bending moment capacity and including creep effects can 
result in               . It is advisable to investigate the fictitious Young’s modulus 

in detail during design and to apply different fictitious stiffnesses in the cracked and 
uncracked zones of the arch. Although not investigated in this thesis, a more extensive 
soil stiffness analysis is worth considering in case higher soil stiffness is to be expected.  
 
In geometrically nonlinear analysis, an imperfection should be modelled to incorporate 
the effects of execution tolerances and material non-homogeneity. The imperfection 
results in high bending moments due to the high normal forces. For these imperfections, 
the buckling modes should be adapted. It is allowed to model the imperfection by sine 
waves. When modelling the imperfection manually by adapting the nodal coordinates, 
its effect is accounted for in linear and nonlinear analysis and the engineer keeps control 
over the model. In Scia Engineer it is not possible to include an imperfection based on a 
buckling mode in linear analysis.  
 
When including the imperfection manually, there are two options. A geometrically 
nonlinear analysis or an approximation via linear analysis and the magnification factor 
via the affine buckling mode. In both approaches, the number of load cases should be 
reduced, as for both nonlinear and stability analysis an analysis run is required for each 
load combination. The stability analysis is little faster, but less accurate.   
 
When using Scia Engineer for nonlinear analysis, solver settings are important. The 
program is equipped with several solvers, of which the “Timoshenko” solver is not 
capable of handling variations in normal forces during nonlinear analysis, which should 
not be used in nonlinear arch analysis. Furthermore, the applied elements are straight, 
even when selecting curved shapes during the geometry input, requiring a small mesh 
size when evaluating arches. So when analysing arches, it is recommended to investigate 
stiffnesses.
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4. List of symbols 

  Area 
  Amplitude  
  Width 
  Rotational spring stiffness 
  Concrete 
  Design value 

       Derivative 
  Young’s modulus, Exposure (all loading) 
   Fictitious Young’s modulus 

  Point load 
  Rise 
    Concrete compressive strength 
    Yield strength reinforcement 

  Permanent load 
  Horizontal thrust 
  Horizontal thrust – second order effect only, height 
  Moment of inertia 
  Translational spring stiffness 
    Span 
  Bending moment 
  Bending moment – second order effect only 
  Mean value 
  Normal force 
  Critical load factor:      
  Distributed (area) load, prestress 
  Variable load 
  Distributed (line) load 
   Euler buckling load 
  Radius, resistance 
  Arch length, steel 
  Temperature 
  thickness 
  Deformation in x-direction 
  Shear force 

    Deformation in z-direction 
      Axis system 
  Arch axis 
  Angle, factor 
  Partial safety factor 
  (small) difference 
  Strain 
  Angle 
  Curvature 
  Poisson factor 
  Reinforcement ratio 
  Rotation 
  Load combination factor 
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5. Design City Bridge Nijmegen 

Creating a new river crossing by means of a bridge has always a huge impact on the 
urban development. Therefore most cities will opt for a so called ‘landmark’ in which the 
bridge not only will meet technical standards. It will fulfill an important step in the urban 
planning of the surrounding area. The Nijmegen City Bridge is no exception. Ambitions 
are high and the municipality laid down a number of benchmarks, which should guide 
the design of the bridge. 

 
- Visibility and amenity of the rivers landscape 
- Cohesion in the current image and the future image of the urban area  
- Artwork which represents the state of the art in architectural and technical 

potential 
- Residential quality, both on top and under the bridge 
 
For the main span, a steel mono-arch bow string is applied. A series of concrete arches 
shape the approach bridges. Visibility of the landscape is secured  by the combination of 
a span of 42.5 m and only two piers at the grid lines. The arched shapes, together with 
the masonry lining on the parapets, refer to the city’s Roman history and to the other 
traffic bridge that crosses the river. 
 
In Figure 4 the architectural design is shown.  
 

 
Figure 4: Architectural Design [VisAB] 

5.1.1 Approach bridge 

The characteristic dimensions of the arched structure are: 
 
Span:             Thickness at crown:           
Width:          Thickness at heel:             
Radius:                      
Rise:                      
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Figure 5: Plan view of the bridge 

 
Figure 6: Side view of the bridge [VisAR] 

 
Both the Northern (     ) and Southern (     ) approach bridges (Figure 5 and Figure 
6) are so called integral structures, in which there are no expansion joints and all piers 
and arches are monolithically connected. Only at the interface between the approach 
bridges and the main span, expansion joints are applied. It is advantageous only using 
two expansion joints, since these joints have to be replaced several times during the 
lifetime of a bridge. However, horizontal confinement is essential for membrane action. 
The main piers at the river banks and the abutments located at the dikes, should provide 
this confinement. Not using expansion joints and confining the structure, will lead to 
high stresses due to imposed deformation, caused by shrinkage, creep and temperature 
differences. Analysis showed that part of the imposed deformation also causes vertical 
deformation. The residual part of the imposed deformation is restrained and leads to 
stresses. 
 
The arches are reinforced with mild steel only, no prestress is applied in the longitudinal 
direction. In transverse direction prestress is applied in the integrated cross beams to 
span the pier to pier distance and to compensate the high tensile stress as a result of the 
concentrated shape of the supports. The cross beams are integrated in the design by 
thickening the concrete arches at the supports to 1,500 mm. 
 
The spandrel volume is filled with foamed concrete. On top of the fill, the pavement 
consisting of mixed aggregates and asphalt is placed. The bridge accommodates five 
traffic lanes and a separate area for pedestrians and cyclists, requiring together a width 
of     . 
 
The horizontal road alignment of the approach bridge consists of two curved parts with 
radii of       and       . To minimize the disturbance in the flow profile of the river, 
the piers are placed parallel to the direction of the water flow. The skew angle is 
accounted for in the arch geometry. Since the skew angle varies between     and    , 
there is no need to account for the torsion effects in the analysis (threshold value:    ). 
The bridge is founded on cast-in-situ piles.  

North South 

South North 
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6. Design of the approach bridge 

 
Figure 7: Top view (left) and side view (right) of approach bridge North 
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7. Loads 

In the design of the approach bridge, a large amount of load cases are analysed. The 
same loads should be applied in this investigation to have a good correspondence. 
Nevertheless, some simplifications are applied to minimize the load cases and 
combinations, to have a workable research problem. The remaining load set contains the 
characteristic loads that are exerted on the bridge, such as permanent loads and traffic 
load. Exceptional load cases, e.g. maintenance trucks are not considered. 
 
The second reason to reduce the load combinations is the fact that in nonlinear analysis 
the superposition principle is not valid. This has a major impact on the analysis methods. 
In linear analysis all load cases are analysed separately and to obtain the results, the 
force distributions of each load case are summed according to the defined load 
combinations. In nonlinear analysis each load combination has to be dealt with solely. 
Next to that, nonlinear analysis requires more time, since load is applied incrementally 
and solutions are calculated iteratively for each load increment. For nonlinear analysis, 
the number of load combinations should therefore be reduced to a small number of 
governing combinations, in order to have a solvable problem in terms of required time 
and capacity of the computer. 
 
The shown loads are based on the design of BAM Infraconsult bv. All background 
information and extended calculation can be found in the document: “DO - 
Berekeningsrapport aanbrug Noord PN1 t/m PN16”, Document ID: “SN-2.1.1.4-C-TM-RA-
2238”. In this report only an overview is given. All tables and figures in this chapter are 
copied out of this document. 

7.1 Self-weight and dead loads 

Loading due to self-weight is calculated by the structural analysis software, based on the 
material densities. For the analytical model, the self-weight is determined via the cross-
section            , leading to a line load of            . 
 
Reinforced concrete:              
Plain concrete               
Steel                  

7.1.1 Pavement 

The road pavement consists of a base layer (mixed aggregates,            , variable 
thickness) and a        asphalt layer (           ). Due to the variable thickness 
of the base layer, the load varies over the width of the bridge. 
 
2D model: line load          
 
3D model: 
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7.1.2 Barrier 

Barriers will be placed to separate the traffic from the footpath (east side) and the 
inspection path (west side). The weight of the barrier is       . On top of the barrier a 
windscreen will be placed, (      ). Leading to two line loads          . 

7.1.3 Parapets 

A concrete wall, finished with masonry, cap stones and a handrail comprise the parapets. 
The concrete wall has a thickness of       . For the masonry (       ) a weight 
            is assumed. The cap stones and the handrail weigh          . Due to 
the variable height of the parapets, the loading is non-uniform. The concrete wall has a 
height of         with respect to the top level of the pavement. 
 
Table 1: Dead weight (single) parapet 

 

7.1.4 Pipes 

Ten pipes are required for the functioning of the bridge, each weighing          . In 
the 2D model, a line load of           is applied. In the 3D model, the load is divided 
over two lines, one line           (east side) and the other line           (west side). 

7.1.5 Foamed concrete 

On top of the arches, there is a spandrel fill of foamed concrete. The chosen material has 
a density of          . For the upper      , a mixture with a higher density of 
            is applied. Due to the porous micro structure, water saturation of the 
spandrel fill was investigated. The permeability of the foamed concrete appeared to be 
sufficiently low to neglect this phenomenon. 
 
Table 2: Dead weight foamed concrete 

 

7.2 Shrinkage and creep 

Due to shrinkage, additional stresses occur in the arch structure. Autogenous and drying 
shrinkage are taken into account via a fictitious temperature load. Calculations are based 
on NEN-EN 1992-1-1:2005 Appendix B1. 
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Table 3: creep factor         and shrinkage     

 

7.2.1 Shrinkage and creep combined 

Since drying shrinkage is a slow process, its effects may be reduced due to creep. With a 

creep factor of        , the reduction factor is 
    

 
     .  

                               

                 
 
The fictitious temperature load is in case        : 

   
      
 

 
               

       
          

 
Parts of the structure with a higher thickness are less sensitive to drying shrinkage. For 
        the fictitious load is            . To apply the fictitious temperature load 
for         to the entire structure is thus a conservative approach. 

7.3 Prestressing load 

The integrated crossbeams are prestressed to accommodate for the high tensile stresses 
which occur due to the concentrated supports in transverse direction. The positioning of 
the prestress leads to an upward load in the middle third (      ) of the span.  
 

 
Figure 8: Cross-section prestressed integrated beam 

 

 
Figure 9: Side view prestress cables integrated beam 

 
The loads due to prestressing are displayed in Table 4. Only the results are shown. 
Designing the prestressing system is not part of the research.  
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Table 4: Prestress loads 

 Middle cable Side cable 

Distributed upward                         
Distributed downward                         
Concentrated load anchor vertical                
Concentrated load anchor horizontal                 

 
However, the prestress loads on the cross beams can only be modelled in three-
dimensional models. In two-dimensional models the transverse direction is neglected. 

7.4 Temperature load 

Loading due to temperature differences can be divided daily and annual fluctuations. 
According to Eurocode EN 1991-1-5, temperature differences can be split up in a mean 
part (   ), a gradient (   ) and a nonlinear part (eigen temperatures,    ). 

7.4.1 Annual temperature differences 

The annual temperature variation causes expansion or contraction. No gradient or 
nonlinear temperature load occur, since it is a slow process. Note that the integral 
character of the structure causes bending moments when expanding or contracting due 
to compatibility conditions (e.g. restrained rotations). 
 
The prescribed values, which are based on a design lifetime of 50 years (      ), are 
recalculated for the design lifetime of 100 years (      ) and bridge type.  
             

               
        
 
Annual temperature difference, which should be taken into account: 
           
             

7.4.2 Daily temperature differences 

Daily temperature differences lead to expansion or contraction and a gradient (linear 
approach). Two load cases should be considered, heating (solar radiation) and cooling 
(release of heat via radiation) of the bridge deck. The prescribed value may be reduced 
with a factor     , which is equal to     for the heating of the bridge deck. Both heating 
and cooling are defined as temperature variation at the top edge of the bridge, with a 
linear decrease to the bottom edge (intrados of the arch).  
 
              
                 

 
 
 

7.4.3 Nonlinear temperature distribution 

Nonlinear temperature load causes eigen stresses, next to the previously described 
linear approach. Since the fill (minimum       ) insulates the top edge (extrados) of 
the arch, the nonlinear part is neglected. Since it does not lead to deformations of the 
structure, it has no influence on the bending moment magnification. 

Figure 10: Daily temperature 
load 
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7.4.4 Combining temperature loads 

The loading should be combined in two ways: 
 
              and               
 
Since the annual temperature load is much higher, only the second combination is 
applied. Leading to combination factors of                and              . 

7.5 Traffic load 

Eurocode EN 1992-2 defines four load models, which should be taken into account in 
design. Load model 2 is used for design checks of local phenomena and is omitted in the 
research. Load model 3 is not applicable in the project. Arches are sensitive to 
asymmetrical loading and traffic load should be investigated on half spans too. 

7.5.1 Load model 1 (UDL & Tandem System) 

In this model, the bridges topside is divided in theoretical lanes, loaded with a uniformly 
distributed load and tandem axle systems (Table 5). The bridge has a width of        in 
between the barriers, leading to 5 theoretical lanes (    wide) and a remainder of 
     . The lanes should be applied in the most unfavourable configurations for the 
bridge. Lane 1 is placed in three positions, the middle, maximum East and maximum 
West. There is a magnification factor    which might be applied when higher loads are 
to be expected. The city council decided that on all loads in LM1,       .  
 
Table 5: Traffic loads in Load Model 1 

Lane Tandem axle system Uniformly Distributed Load 

1                                
2                               
3                               

4, 5 &  
remaining 

-               

 

       
Figure 11: Geometry tandem axle load and distribution on multiple lanes (LM1) 
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The foamed concrete fill spreads the concentrated wheel 
loads, Figure 12. The corresponding angle is assumed to be 
   . In the concrete arch, spreading of     is assumed. At 
midspan the thickness reaches its smallest value, leading 
to a loaded area                 . Thus in the 3D 
model, wheel loads are applied of          (lane 1), 
         (lane 2) and          (lane 3). 
 
The 2D model will be loaded by a line load,        
                     and point loads,         . 

7.5.2 Load model 4 (Crowd) 

A crowd which loads the entire bridge should be taken into account. 

     
   

      
            in which           . 

 

In the 2D model, a line load is applied                                     

7.5.3 Braking load 

60% of the vertical tandem axle load and 10% of the uniformly distributed vertical load, 
as used in lane 1 of load model 1, should be applied in horizontal direction. For the 
complete approach bridge this leads to a breaking force of        . The maximum 
value that should be taken into account is       . 

7.5.4 Sidewalk and cycle track 

A uniformly distributed load should be applied of        . When combined with load 
model 1, a value of         may be used. The cycle track has a width of       . 

7.6 Support settlements 

Due to different foundation stiffness’s, the support do not subside evenly. Besides this 
unexpected settlement of the foundation may arise.  
 
According to geotechnical investigations differential settlements up to       may arise. 
      settlement should be accounted for after completion of the bridge. Support 
settlement is a slow process as well and might be reduced to 54% due to 
aforementioned creep effects. Thus a support settlement of       in longitudinal 
direction is applied. 
 
In the 3D model, a differential settlement of       in transverse direction is taken into 
account. 
 
Since SCIA Engineer (structural analysis - FEM software) is not able to define a support 
settlement on a flexible support, the settlement is modelled as a load on the foundation. 
It’s value is determined by trial-and-error until the desired deformation is reached. 

7.7 Other loads 

In design, several load cases should be investigated, next to the previously mentioned 
loads. In this research, only the governing loading is regarded. Loads that are not 
regarded, since their influence is of minor importance for the geometrically nonlinear 
analysis:  

 
Figure 12: Wheel load spreading 
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Main span 

The main span loads the first pier of the approach bridge. 

Stairs 

In the approach bridge, stairs are designed for pedestrians to be able to reach the 
wetlands easily. There is only one pier equipped with stairs for each approach bridge. 

Soil 

Loading of the bridge due to the weight of soil consists of two mechanisms. The first 
mechanism is the weight of the soil on top of the pier foundation and the horizontal soil 
pressure. Next to that, when the surrounding area settles and the bridge does not, the 
soil adheres to the foundation. It thus mainly leads to a loading of the foundation. 

Wind 

For bridges with constant height a wind load of            should be applied. For the 
arches, it only leads to a small in-plane loading in transverse direction. 

Fire 

Fire under the bridge might lead to heating of the structure and eventually to spalling of 
concrete. Since the approach bridge crosses wetlands, it is unlikely that vehicles will load 
the bridge by fire. 

Water flow and ice 

Both water flow and ice load will lead to a loading on the piers. The ice load in 
longitudinal direction of the approach bridge might affect the behaviour of the arches.  

Rain and snow 

Loading due to snow need not be combined with traffic load and is thus not governing. 
Rainwater load may lead to high loads when it accumulates. Since the pavement has a 
slope, water will be drained sufficiently.  

Maintenance truck 

For inspection and maintenance purposes, a boom truck (32 ton) on the main road or on 
the footpath should be taken into account, together with traffic loading in load model 1. 

Construction Planning 

Since it is impossible to build the bridge in one stage, several static systems occur during 
construction. During building, the loading is applied in steps (e.g. pumping the foamed 
concrete backfill), which might lead to the governing loading situation. 

Execution of Road Engineering Works 

The most unfavourable loading pattern during maintenance of the pavement, is 
complete removal of the pavement on two half spans and maintenance equipment on 
the adjacent halves of the arch span. The load may be considered separately form the 
traffic load. 

Fatigue Load 

A number of truck types and their occurrence are prescribed in codes. In design, the 
resistance against this loading should be investigated. It does not affect second order 
calculations. 
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Ship collision 

There is a possibility that ships run into the structure. For the first pier, several load cases 
are determined. The governing two load cases are the load parallel to the bridge axis 
(       ) and the load with an angle of     to this axis (        parallel and         
normal to the bridge axis). 
 
The secondary channel crosses the approach bridge. Ship collision is possible on the piers 
as well as on the superstructure. For the piers a load of         parallel and        
normal or a load of       normal to the bridge axis are taken into account. For collision 
to the superstructure, a load of      is applied over a width of     (    from the 
centre of the pier). 

Earthquake 

Seismic activity in the Netherlands is rare and earthquake acceleration is rather small 
(        ).  

7.8 Load combinations 

The load cases are merged into load groups. In the design, 36 principal combinations (for 
ultimate limit state and serviceability limit state) are formed out of these load groups, 
leading to a large number of load combinations that are investigated. 
 
As stated before, this investigation focusses on the structural nonlinear behaviour of the 
arches. Therefore only few governing combinations will be regarded.  
 
For the load combinations Eurocode EN 1990 is applied. 

7.8.1 Serviceability limit state 

To limit the number of load combinations, only the characteristic combination is 
regarded in serviceability limit state, since no combination factor is applied on the first 
variable load case. In the frequent and quasi-static combinations, this combination factor 
is applied.  
 
The considered combination is described by: 

                                
      

  

7.8.2 Ultimate Limit State 

In ultimate limit state, the STR limit state is investigated in this thesis. STR deals with the 
failure and excessive deformations of structures: 
      
 
In which: 
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The partial load factors and combination factors are applied according to NEN-EN-
1990/A1:2005/NB:2009. These coefficients have been changed in the currently valid 
code NEN-EN-1990+A1+A1/ C2:2011/NB:2011. Since the design has been carried out 
according to the 2009 standard, the values from this 2009 standard have been applied. 
 

Table 6: Partial load factors  Table 7: Combination factors 

Permanent load  Combination 

       = 1.35                   = 0.75 

       = 1.2                     = 0.5 

       = 1.0                 = 0.6 

         = 1.2                       = 0.75 

Variable load     

           = 1.35     

   = 1.5     
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Table 8: Load combinations ULS 
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Serviceability limit state leads to a similar set of load combinations. 

7.9 Load groups 

To identify the nature of the loading, the load is applied via load groups. This way, 
distinction can be made between ‘standard’ and ‘exclusive’ load groups. In standard load 
groups, several load cases can occur simultaneous, whilst exclusive load groups imply 
that only a single load in the group should be applied in the load combination.  
 
Table 9: Load group type (variable loads)  

Load group Type Load group Type 

Support settlement Exclusive UDL_Middle Standard 
Annual temperature Exclusive UDL_Edge2 Standard 
Daily temperature Exclusive TS_Edge1 Exclusive 
Braking Exclusive TS_Middle Exclusive 
UDL_Crowd Standard TS_Edge2 Exclusive 
UDL_Edge1 Standard   

7.10 Characteristic load combination  

To obtain representative results for the city bridge design in the analytical calculations,  
characteristic load combinations are used, containing: 

- Self-weight                  
- Fill and parapets                                     

- Pavement                       

- Traffic load                           

- Tandem axis                      

 
All distributed loads     summed and using partial safety factors              :  
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7.11 Foundation 

7.11.1 Soil 

In the geotechnical inquiry, a longitudinal soil profile was drawn, based on several cone 
penetration tests. Part of the profile is shown in Figure 13. A large part of the local soil 
consists of sand (indicated by white and yellow areas) with a top layer clay (the green 
areas).  

 
Figure 13: Longitudinal soil profile [GeoDR] 

7.11.2 Pile systems 

Two cast-in-situ pile systems are used: 
- Vibro Pile 556/610 

Driven cast-in-situ pile, in which the steel tube will be pulled out while vibrating it, 
leading to an extra compaction of the soil and concrete. 

- Casing Bore Pile           at main pier and           at the side channel 
Drilled pile with steel casing and concrete fill. 

 
The casing bore piles are applied at the main pier due to the high loading of the main 
span. At the future secondary channel, also casing bore piles are used. Here a much 
deeper foundation level should be reached, compared with the adjacent spans. For all 
other foundations, the vibro pile system is chosen. 

7.11.3 Foundation plan 

The vibro pile is used in a     array, with skew angle 8:1. For the drilled piles, an array 
of     is applied, without skew angle. Each pier consists of two columns and each 
column has its own footing. For the main pier, drilled piles in a     array are applied. 

 
Figure 14: Characteristic column footing with vibro piles (left) and drilled piles (right) 

 
Figure 15: Foundation main pier 
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7.11.4 Soil stiffness 

The soil stiffness and the reaction forces are modelled with flexible supports in all 
directions. The stiffnesses are determined by a geotechnical analysis. Since soil is an 
inhomogeneous material and testing is limited, the uncertainty should be accounted for. 
CUR recommendations advice a bandwidth which can be obtained by multiplying the 

characteristic values with factors       and   . Now two structural analyses should be 
performed using the upper and lower value. 
 
The horizontal confinement of the arches is one of the most important parameters in the 
design of the superstructure and a higher horizontal soil stiffness is beneficial for the 
load transfer. Nevertheless, the determination of the soil stiffness is not a topic in this 
thesis. The thesis focusses on the design verification by the structural engineer, in which 
the foundation stiffness is a boundary condition. However, the horizontal stiffness will 
be regarded as parameter to investigate its influence with respect to the second order 
effect in the superstructure.  

7.12 Arched structure 

The arches have a constant radius of curvature (        ) and a thickness of       , 
which increases to          at the support over a length of        The rise of the 
arch’s centreline is       . For the arches, concrete C35/45 with a decreased Young’s 
modulus  is used.  

 
Figure 16: Arch geometry 

7.12.1 Model 

In the two dimensional model, the arches are modelled with curved beam elements 
(             ). The discontinuous shape of the piers and the loading that increases 
towards the supports, lead to tensile stresses between the piers. This area adheres to 
the structure like a hammock. The material stiffness decreases when tensile stresses 
occur. This is modelled via decreasing the width of the elements. Besides that, to model 
the distributed loads correctly, including the self-weight, the extra span length due to 
the skew angle should be taken into account. 
 
In the three dimensional model shell elements are used. Shell elements provide 
sufficient information to design the structure and it requires much less computer 
capacity and computation time, compared with volume elements.  

7.12.2 Transverse beams 

The arches are supported directly by the piers, so 
strictly speaking there are no transverse beams. 
However, the arch’s thickness increases at the 
supports and to compensate the tensile forces, 
transverse prestress is applied at the supports. 
Together this creates an internal beam (Figure 17), 
which is used to phase the construction.  

Figure 17: ‘Hidden’ prestressed transverse beam 

 



 
 
Part 1: Introduction and Orientation - Loads 

 

Geometrically nonlinear behaviour of arches in 2D Part 1 – Page 26 of 134 
MSc Thesis 

7.13 Piers and footing 

                   
 
Figure 18: Pier with footing, visualization (left), FE model and cross-section (right) 

 
The piers have a wing-like shaped cross-section as can be seen in Figure 18. Typical 
dimensions are       at the base and       at the top.  
 
The footing is           in case the vibro piles are used. The drilled pile foundations 
have a footing of             with a concrete plinth of            . 
 
The height of the piers is different for each set of piers, since not all foundation levels 
are equal (different at the secondary channel) and due to the vertical alignment of the 
bridge, the top sides of the piers have different levels as well. In the two-dimensional 
model, the piers are modelled as straight beam elements, split up into five elements 
with different cross-sectional properties. The footings are modelled as straight beams.  
 
In the three-dimensional model, shell elements are used for the piers, including the 
variation in thickness. Plate elements (only bending) are used for the footings. For the 
piers concrete C35/45 and for the footings concrete C28/35 is used. 
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8. Buckling and magnification factors 

Normal forces in structures will cause bending moments due to deviations from the 
perfect shape, that might be caused by for example execution tolerances, material 
inhomogeneity and deformations due to loading. These deviations can be modelled by 
an initial deformed shape. This initial deformation will increase due to the normal force 
and this will lead to bending moments. 
 
To determine the magnitude of the effect, a geometrically nonlinear analysis should be 
performed. In several basic cases, this will result in the magnification factor        , 
in which   represents the critical load factor, the ratio between the buckling capacity 
and the acting load. For other cases, different magnification factors will be found, but 
the magnification factor         appears to be a good estimation. 

8.1 Buckling of rigid bar 

The definition of stability of equilibrium is sufficient to derive the buckling load of rigid 
bars. 
  
The equilibrium of forces is called stable in case after a small perturbation the system 
tends to return to its original equilibrium position. [Har07, translated] 
 
When considering a rigid bar supported by a translational spring and loaded by a normal 
force (Figure 19), there is a drifting force caused by the load and a counteracting force 
that is provoked in the spring. Three different cases can be considered: 
 
                                      stable equilibrium 
                                      labile equilibrium 
                                      neutral equilibrium 
 

 
 
Figure 19: Buckling model rigid bar [Har07] 

 
The buckling load is the boundary between stable and labile equilibrium. To calculate 
this load, the neutral equilibrium should be considered. For the rigid bar it will lead to: 
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8.2 Euler buckling 

Leonhard Euler derived the formula to calculate the buckling load of a flexible, perfectly 
straight and homogenous beam (Figure 20).  

 

 
Figure 20: Euler buckling model  flexible beam [Har07] 

 
The equilibrium of the drifting and counteracting forces lead to: 
        
 
The bending moment is replaced by          . 
             
 
In this differential equation, two boundary conditions are required: 
                   
 

Introducing    
 

  
  will result in            

 
Using the trial solution      , then the characteristic equation is obtained: 
                  
 

Substituting the result and using Euler’s formula                  

     
       

                         
 
The boundary conditions lead to:     . To have a nontrivial solution     . The last 
condition can be fulfilled by requiring           . Which is true for  

   
   

 
                       

 

 
  
  

 
   

 
         

    

  
                    

    

  
 

8.2.1 Eigen value analysis 

All possible buckling loads    are eigenvalues of the differential equation (homogenous 
boundary value problem):             , since all values    will lead to nontrivial 
solutions. The corresponding buckling shapes                  are called the 

eigenfunctions.  
 
When discretizing the problem, as is done in finite element analysis, the same strategy 
can be applied. The eigenvalues of the stiffness matrix should be calculated and 
analogously the buckling modes are represented by the eigenvectors. 
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8.3 Derivation magnification factor 

When including an initial deformation, the magnification of the deformation can be 
determined in a geometrically nonlinear analysis. 

8.3.1 Rigid bar 

When modelling an initial imperfection    and assuming a second order deformation  , 
then the equilibrium of bending moments will result in: 
 
                           

 
Figure 21: Rigid bar with imperfection [Har07] 

 
As stated in paragraph 8.1, the buckling load is given by         . When introducing 
        , the equilibrium can be rewritten to: 
 
                    
 

  
     

       
   

    
 

    
   

   
 

   
   

8.3.2 Flexible bar – sine shaped imperfection 

 
Figure 22: Flexible bar with imperfection [Har07] 

 

When assuming a sine shaped imperfection              
  

 
  (Figure 22) on a flexible 

bar, the normal force will cause bending moments in the bar. Due to these bending 
moments, the deformation increases, which causes higher bending moments.  
 
Assuming that equilibrium is found at a deformation  , the differential equation reads: 
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Introduction    
 

  
  and   

 

 
, the differential equation is: 

 
              

                   
 
The boundary conditions are                             
A particular solution to the differential equation is                  . This solution 

meets the boundary conditions and no homogenous solution has to be considered, since 
all integration constants will appear to be equal to zero. 
 
Substitution of the solution in the differential equation will lead to the deformation   : 
                                        
 

  

  
 
 
 
 
 
 

 
  

 
 
    
  

 

 
 
    
 

   

                               
  

     
    

  

  

  

  
  

    
 

   
    

8.3.3 Flexible bar with parabolic imperfection 

In case the imperfection of the bar (Figure 22) is assumed to have a parabolic shape 

         
 

  
       , the same differential equation and boundary condition can be 

considered. The solution reads [Har07]: 
 

     
 

     
  
    

  
     

    
  
 
 

                                
 

  
 

 
The maximum deformation at       is given by: 

  
 

 
  

 

     
  
      

  
 
 

    
  
 
 

      

In this case, the magnification is not equal to        . However, when plotting both 
graphs, it can be concluded that the differences are small. 

  
Figure 23: Magnification of deformations - exact and approximation [Har07] 
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8.3.4 Flexible bar with transverse load 

In case the flexible bar is perfectly straight and homogenous, a load is applied in 
transverse direction, bending moments develop to transfer the load, which result in a 
deformation. This deformation will increase due to normal force. 
 
Considering a two hinged bar with a point load   at midspan and normal force  . The 
deflection of the bar due to the point load   can be calculated with the standard 
engineer formula: 

    
   

    
 

 
Solving the differential equation will yield the deformation [Har07]: 

  
  

  
 
        

  
 
    

  
 
 
 
 

 
 

  

 
Substituting      : 

  
 

 
  

 

 
  
 
 
   

    
  
 
 

 
  
 
 

   
   

    
 

 

 
  
 
 
   

    
  
 
 

 
  
 
 

       

 
Again, there is no mathematical relation with the       formula. However, in case the 
normal force           , the differences appear to be smaller than 1.3% [Har07]. 
 
To estimate the bending moment in the bar, there are two possibilities, in which the 
second equation is a better representation of the model. 
 

  
 

   
                       

 

   
   

 
The magnification factor is exact for the sine shaped initial deformation. For all  shapes 
of the initial deformations that are smaller than the sine shape, but with an equal 
amplitude, the factor       overestimates the geometrically nonlinear effect and is 
thus a conservative but safe approach. 

8.3.5 Difference for arched structures 

The most important difference between the geometrically nonlinear behavior of arches 
and compression members like columns is the loading. In columns the normal force is an 
external load on the system, independent from transverse loads and deformations. In 
arches the transverse load causes the normal force and deformations of the member.  
The normal force in arched structures cannot be considered separately from the 
transverse loading and the deformations. 
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8.4 Arch buckling 

The main advantage of arches and shells is the possibility of spanning large areas with 
relatively slender cross-sections, since loads are transferred mainly via compression. 
These normal forces may reach values up to         . Arches may buckle in-plane or 
out-of-plane. The out-of-plane buckling is not governing for the city bridge design, due to 
its width of 25 m. Therefore only in-plane buckling will be considered. 

8.4.1 In-plane buckling circular arch 

The in-plane buckling of arches is analytically solvable for few specific cases only, for 
example the radially loaded circular arch, which is discussed by Timoshenko in [Tim61]. 
The geometry of the arch and loading, will lead to normal forces only (    ).  
 
Solving the differential equation will result in the critical load q. 
   

   
    

    

  
 

 

Introducing      
   

  
 and boundary conditions:                     

   

   
       

 
                    
                              

                                                        
 

 
 

 
Substituting the result       (the smallest root that satisfies the condition of 
inextensibility) in the formula for    will lead to the critical load on the arch. The 

buckling mode is represented by        
  

 
 , see Figure 24. 

 
Figure 24: Buckling radially loaded circular arch [Tim61] 

 
For cylindrical vaulted shells hinged along the straight edges, the same equation is valid, 

in which the plate stiffness 
   

        
 is substituted instead of the bending stiffness   . 

 
In Figure 25 snap through buckling and anti-symmetrical (sway) buckling are shown. Both 
buckling modes can be defined by sine shapes. However, like all pure buckling problems, 
the amplitude of the mode is not solveable. 
 

                    
  

 
                                         

   

 
  

 
In case the translation of the supports is prevented and the bar is inextensible, snap 
through buckling will not occur. However, the snap through mode can still be reached via 
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the sway buckling mode, in which the buckled shape develops itself anti-symmetrically 
to the snap through mode. 

 
Figure 25: (a) snap through buckling and (b) anti-symmetrical buckling [Moo07]. 

 
The radial loading pattern on a circular member occurs for example in pressure vessels 
or in storage tanks. However, in case     (complete ring) the critical load according to 
arch buckling is      , since for     both supports have the same position. For arch 
bridges, the radial load does not occur often. A large share of the load is based on gravity 
(self-weight, dead-weight and part of the variable load). Buckling due to these loads are 
more complicated to determine analytically, especially when the deformations are taken 
into account. Alternatively, the problem can be solved by an eigenvalue and eigenvector 
analysis, which is implemented in most finite element programs.  
 
For shallow arches, in which the rise is relatively small with respect to the span, snap 
through buckling is likely to be governing. For less shallow arches, the swaying buckling 
mechanism will be governing for in-plane stability. Buckling shapes with three or more 
half sine waves all lead to a lower buckling length, compared to the buckling modes as 
shown in Figure 25 and thus a higher buckling load. 

8.4.2 In-plane buckling parabolic arch 

The parabolic arch with a uniform load carries load via normal force only too, when the 
axial shortening of the member is not taken into account.  
 

 
Figure 26: Uniformly loaded parabolic arch [Kar12] (redrawn) 

For the parabolic arch, the critical load may be calculated by the formula, in which the   
values are provided by [Kar12] and [Tim61].  

      
  

  
 

 
Table 10: K factors [Kar12] 

f/l 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 

Hingeless 60.7 101.0 115.0 111.0 97.4 83.8 59.1 43.7 
2 hinged 28.5 45.4 46.5 43.9 38.4 30.5 20.0 14.7 
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8.5 Shell stability 

The stability of shell structures is fundamental different with respect to global instability 
of columns and walls. Even instability of arch structures (see paragraph 8.4) is 
incomparable with shell instability. In shells, a kind of plate buckling mechanism occurs, 
as can be seen in Figure 27, in which the first, the fifth and twelfth buckling modes of a 
spherical shell are displayed. 

 
Figure 27: Buckling modes 1, 5 and 12 of spherical shell [BPe08]. 

 
Though, the concrete arches in the approach bridge differ from spherical shells with 
respect to the occurrence of ring normal forces. However, the structure is not a spherical 
shell but a barrel vaulted shell (“tonschaal” in Dutch). 

8.6 Barrel vaulted concrete roofs 

The barrel vault shells is a unique design solution which has not yet been applied before 
in bridge design. Thus there is no literature on barrel vaulted shells loaded by traffic. 
However, barrel vaults have been applied in the first half 20th century in roof systems, 
popular at that time due to the economic material use. In 1961 the Dutch journal 
‘Cement’ published an overview of shell-structures in the Netherlands, containing 28 
barrel vault shells.  
 
With respect to roofing there has been research executed on barrel vault shells and 
some information is available in literature. Nevertheless, the increasing labour costs 
reduced the use of the barrel vaulted shells and together with the development of finite 
element analysis tools, research on the analysis of the barrel vaults stopped as well. 
 
Still some information on barrel vault shells is available. In [Far92], there is a chapter on 
barrel vaulted roofs. The load transfer is visualized by means of a plot of stress 
trajectories (Figure 28), the three-dimensional load transfer (beam action in    direction 
and arch action in    direction) is clearly visible. 
 

 
Figure 28: Stress trajectories in a simply supported barrel vaulted shell [Far92]. 
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8.6.1 Buckling modes vaulted cylindrical shell roofs 

The roof system is mainly applied in industrial halls, which requests for large column free 
space. Literature on these roofs focussed on roofs supported by only four columns. 
Depending on the span ratio          (a) beam action is predominant when           (b) 
arch action is important for          or an intermediate load transfer occurs (c). 
Depending on the span ratio, different buckling modes occur as can be seen in Figure 29. 

 
Figure 29: Buckling modes of roof cylinders [Far92]. 

 
In the approach bridge design, the shells span in transverse direction by beam action and 
in longitudinal direction mainly by arch action. The accessory spans are          and 
          which lead to            . Arch action in longitudinal direction is thus 
the main load carrying mechanism, when considering the geometry of a single span in 
the approach bridge. Using two dimensional arch models and neglecting the transverse 
direction is the most appropriate step in the geometrically nonlinear analysis of arches. 
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9. Parameter analysis arch buckling 

The sensitivity of the buckling capacity of arches is investigated when varying the cross-
section, the span and the rise of the arch. For each parameter, the critical loads are 
obtained with Scia Engineer (eigen value analysis, based on a unity load) for several 
translational support stiffnesses. In the buckling analyses, both the symmetrical and anti-
symmetrical buckling modes (eigenvector) are considered, since it is not known in 
advance which mode is governing. For the considered circular arches, the pure 
(bifurcation) buckling will not occur, since bending moments and deformations will be 
present. 

9.1 Critical loads beam model 

In Figure 30, the critical buckling loads are displayed for the arch, when varying the 
translational support stiffness. The first analysis is based on a beam cross-section 
          . The results are obtained via linear stability analysis. Only in-plane 
buckling is considered. Out-of-plane buckling is very unlikely to occur in the city bridge 
and therefore it is not considered in the analysis. 
 

 
Figure 30: Buckling loads for flexible supported arch 

 
For low support stiffnesses, the symmetrical mode will lead to the governing buckling 
load. Increasing the support stiffness, will lead to a higher buckling load, since more 
energy is required for the displacement of the supports. However, in the anti-
symmetrical buckling mode the supports do not displace and the support stiffness is only 
an indirect parameter. At some point, the buckling load of the symmetrical mode will be 
that high, that the anti-symmetrical buckling mode will be governing.  
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The high buckling loads for lower support stiffnesses are explained by the fact that the 
normal forces that occur in the arch depend nonlinearly on the support stiffness (see 
part 2). Lower support stiffness will lead to lower normal forces and consequently higher 
bending moments. The arch behaviour reduces and the arch will act more like a curved 
beam. Thus decreasing support stiffness will lead to higher buckling loads. Especially in 
case           , the low normal forces cause increasing critical loads. 
 
In case the support stiffness    , there is no constraint and no 
horizontal thrust. The normal force at the crown of the arch is zero as 
well. However, due to the curved shape and the direction of the 
support reaction, normal forces will develop to preserve equilibrium 
when combined with the support reaction and the shear forces ( 
Figure 31). The buckling load will thus keep a finite value. 

9.2 Parameter study based on a 3D model  

Besides the support stiffness, several other parameters influence the buckling load of 
arches. In [Tim61] a formula for the critical load  is found, in which    depends on the 
rise to span ratio. [Kar12] uses the same formula, with slightly different values for   . 

       
  

  
 

Based on this information, the investigated parameters are the span, the cross-sectional 
height and the rise to span ratio. Additionally, the effect of half span loading and the 
effect of the width on the buckling load are researched. Since a three dimensional model 
is used, the load will be higher and the line supports will be longer, when increasing the 
width. Although the three dimensional model will lead to three dimensional buckling 
modes, only the two previously considered in plane arch buckling modes are 
investigated. In the three dimensional buckling modes, the cross-section rotates along 
the span. In stability analysis, the buckling loads of these three dimensional buckling 
modes appeared not to be governing. The investigated – two dimensional - buckling 
modes are displayed in Figure 32. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Investigated buckling modes 

 
 

 Figure 31 
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Varying width 

Since the loads and the supports are defined per unit width, the size effect of the width 
can be investigated by just extending the model. For the three dimensional models, 
several support stiffnesses are investigated for the width ranging from        to      . 
The support stiffness   in the legends is stated in        . 
 

      
Figure 33: Influence of the width on the buckling load   

The results show that the buckling load   hardly varies when changing the width of the 
structure, in case line supports and uniformly distributed loads are applied. Only the 
anti-symmetrical mode shows a small deviation for the lower stiffnesses. However, for 
low support stiffnesses, the mode is not governing. The choice to investigate only the 25 
m width, as applied in the city bridge design, is justified due to the small variation. 

Cross-sectional height 

The critical load is determined for different cross-sectional heights. Since the moment of 
inertia   for the cross-section is linearly related to the critical buckling load according to 
literature, consequentially the height should be related cubically to the buckling load. 
Therefore, the dotted line is plotted, representing    is multiplied by the weighted 
average of all calculated results. 
 

 
Figure 34: Buckling load   for different cross-sectional heights 

 
As can be seen in Figure 34, there is good correspondence with the cubic relation. For 
the symmetrical buckling mode, the relation of the height and the load with the support 
stiffness is not unambiguous. For larger cross-sectional heights, the lower support 
stiffness will cause higher buckling loads (see 9.1). For the lower cross-sectional heights, 
the buckling load decreases for lower support stiffness. This can be explained by the 
lower bending stiffness, which leads to lower bending moments in case the arch deforms 
(analogous to a cable). These lower bending moments result in higher normal forces and 
that causes lower buckling loads. The relation between buckling load and support 
stiffness completely inverts for different bending stiffnesses. Thus, the support stiffness 
  and bending stiffness    should be considered simultaneously.  



 
 
Part 1: Introduction and Orientation - Parameter analysis arch buckling 

 

Geometrically nonlinear behaviour of arches in 2D Part 1 – Page 39 of 134 
MSc Thesis 

Span 

The length of a member determines the buckling length together with the boundary 
conditions. As stated in the Euler buckling formula, the buckling load is inverse 
proportional to the square buckling length (    ), in case an external normal force is 
applied. However, for arches the normal force is caused by a uniform distributed load, 
which depends on the length too. Cubic inverse proportionality (    ) seems a 
reasonable relation for the distributed critical buckling load and the member length. This 
relation is stated for more elementary models in literature too. 
 

  
Figure 35: Buckling loads for different span lengths 

Again a dotted line is plotted, in these graphs representing    , factored by a weighted 
average of the computed results.  

Rise to span ratio 

For parabolic and circular arches, the rise to span ratio determines the shape of the arch. 
[Tim61] determined the values for the factor    as a function of the rise to span ratio 
(Figure 37), to compute the buckling load             

  for a parabolic arch with 
uniform distributed load. The large influence of the boundary conditions on the buckling 
length and the buckling load is illustrated in the figure. The two governing buckling 
modes are already taken into account in the    values. Figure 36 illustrates this. These    
values are backwards calculated based on the eigenvalue analysis (finite element 
software), which appear to match reasonably with the values that are found in literature. 
For low rise to span ratios,  the symmetrical buckling mode is governing, whilst the anti-
symmetrical mode is governing for the higher ratios. 
 

 
 

 
Circular arches with uniform distributed load are evaluated as well for different rise to 
span ratios. Two combinations are analysed, first a span of      with cross-sectional 
height of        and second a span of      and cross-sectional height       . 

  Figure 37: Values    factor [Tim61] Figure 36: Comparing FE and literature [Tim61] 
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For the circular arch similar results are obtained. The main difference with the parabolic 
shape, is the considerably lower capacity of the circular arch for rise to span ratios 
        . However, rise to span ratios larger than 0.5 are hardly applied in bridge 
design. A semicircle has a rise to span ratio of    , a full circle has ratio    . The highest 
buckling loads are obtained for rise to span ratios of     to     for circular arches and     
to     for parabolic arches. 

Half span loaded 

 
Figure 40: Half span loaded 

 
Loads that act on a part of the arch will cause high bending moments and lower normal 
forces and thus leading to the governing situation for the reinforcement design of 
concrete arches. The effect of half loaded spans on buckling is analysed and the results 
are displayed in Figure 41.  
 

            
Figure 41: Buckling load half loaded and fully loaded arches 

 
Since only a linear calculation is performed, the deformed shape is not taken into 
account. Therefore, only the lower normal forces are revealed in the results. The lower 
normal forces, in case only a half span is loaded, will lead to higher buckling loads.  
 
 

Figure 38: Rise to span – circular L=40 m Figure 39: Rise to span - circular L=25 m 
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When combining the fully loaded span and the half loaded span, the buckling load 
appeared to decrease according to the reciprocal relation, with an error of only 1%: 

 

         
 

 

                 
 

 

                 
 

9.3 Final remark on arch buckling sensitivity 

The relation found in literature between bending stiffness, rise and span, derived by 
using the differential equation for arch buckling, based on the two basic models 
(parabolic with uniform load and circular with radial load), remains applicable for more 
complex situations which are evaluated via stability analysis in finite element software. 
The major difference is the factor for the rise to span ratio (  ), which is much lower for 
circular arches with high rise to span ratios (in Figure 42 the governing factors are 
displayed in one graph for different circular arches). Although for rise to span ratios 
between     to     a large scatter is found in the results, the values have the same order 
of magnitude, compared with the factors that are given by [Tim61] for the parabolic 
arch. 

 
Figure 42: Rise to span factors    

 
The arch buckling analysis is based on literature and finite element software. The 
analytical solution is not a practical approach, as stated in [Kar12], for example to model 
different boundary conditions on the radially loaded circular arch, the differential 
equation is given by: 
 
   

   
  

   

   
 
   

   
 
   

  
 
   

   
 
   

   
    

 
In case no radial load, but for example gravity load is considered, the differential 
equation will be more complicated, since deformation leads to a changing angle 
between load and arch axis. Furthermore, the solution will contain variable coefficients 
[Kar12]. Thus, solving the mathematical statement will be complicated and cumbersome, 
when it is kept in mind that answers are easily obtained via finite element analysis. 
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10. Introduction to Part 2 

This part deals with the basic structural mechanics that are involved in the analysis of 
arched structures. Main goal is to investigate the differences between the linear and 
geometrically nonlinear approaches, in order to obtain knowledge required for the 
judgement of software output.  
 
Therefore, literature has been studied to investigate the assumptions that are made to 
linearize arch analysis and to accept or reject these assumptions when analysing 
geometrically nonlinearity. Next the differential equation for arch structures has been 
reviewed and analysed for linear and geometrically nonlinear behaviour. The analysis 
path via the differential equation will lead to an imaginary load that is caused by the 
product of the normal force and the second derivative of the deformation. For several 
load cases the analyses are carried out. 
 
Main sources in literature for this part are [Bou89] and [Wel12]. 
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11. Theory of arches 

11.1 Classical methods 

11.1.1 Three hinged arch 

From the analysis point of view, the three hinged arch is the most basic one. Due to the 
third hinge, the arch is statically determined and normal forces and bending moments 
can be determined by using the static equilibrium equations. 
 

 
Figure 43: Statically determined - three hinged arch 

 
By considering the section at the hinge, the horizontal thrust is determined via: 

               

         
 

 
    

 
Now the horizontal thrust is known, the bending moment distribution along the x-axis 
can be determined (in the applied axis system, the arch height ‘    ’ is defined by 
negative coordinates): 

     
 

 
                

11.1.2 Two hinged arch 

The two hinged arch is simply statically undetermined. By solving one of the unknown 
parameters, the problem can be solved by considering the static equilibrium. 

Horizontal Thrust 

Regarding the horizontal thrust as the parameter to solve, seems the most appropriate 
way to decompose the problem. When replacing one support by a sliding support, the 
arch becomes a curved beam and a horizontal displacement occurs as a result of the 
vertical deflection. For small rotations it holds that the horizontal displacement equals 
rotation times vertical distance. Combining this with the definition of curvature ( ) and 
integrating it over the arch length, the horizontal displacement is known.        
represents the bending moment as a result of the beam action (without the horizontal 
thrust). 
 

             and      
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In the second step, a horizontal force   is applied, which counteracts the horizontal 
deformation. This deformation can be calculated via the bending moment    , 
analogous to the displacement due to beam action. 
 

    
    

  
  

    

   
   

  
  

    

 

 
By setting the sum of the horizontal deformations equal to zero             , an 
approximated value for the horizontal thrust is obtained. The shortening of the arch and 
translation are not taken into account. 
 
The shortening of the arch can be evaluated via Hooke’s law. When neglecting the 
influence of bending moments, the shortening of a cable can be used: 
 

    
 

  
      

  

  
 
 

   
   

   

 
  

  
 

 

  
  

  

  
 
 

  
   

   

  

 
For example, when analysing a parabolic arch with a uniform distributed load, evaluating 
the integral will lead to [Wel12]: 
 

    
  

  
   

  

 
 
 

 
 
 

  

 
For the rise and span as used in the design of the approach bridge (           
      ), this leads to an increase of 9.8% compared to a straight member with the same 
normal force, length and cross-section. Thus for shallow arches, the last term can be 
neglected: 
 

    
  

  
 

 
Flexibility of the horizontal support can be taken into account via the spring stiffness. 
 

   
 

        
 

 
The horizontal displacement of the support: 
 

                       
       

  
  

    

  
   

  
  

    

 
  

  
 

 

        
 

 
The thrust of the two hinged system is then solved. 
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In which   may take the rise of the arch into account in the shortening of the arch. 
 
For shallow arches, the arch length and the horizontal length are almost equal. In those 
cases the classical arch formula is obtained by replacing ‘ds’ by ‘dx’, allowing no 
translation of the support (          ) and applying    . 

 

   
 

       
    

    

 
  

        
 

 
  

 

Sensitivity to support stiffness 

Both the shortening due to compressive strain and the flexible horizontal support 
conditions, lead to a lower horizontal thrust when stiffness decreases. In the graph 
(Figure 44) the horizontal thrust is plotted as a function of only the support stiffness. The 
red line indicates the horizontal thrust in case no displacement of the support occurs 
and axial deformation is neglected. 
 

 
Figure 44: Influence support stiffness on horizontal thrust (span 42.5 m rise 5.75 m and load 100kN/m) 

11.1.3 One hinged and hingeless arches 

As previously described, the two hinged arch is simply statically undetermined. One 
unknown variable can be solved by the classical arch formula. The other (three) 
unknown variables form a statically determined structure, which can be solved by the 
equilibrium equations. 
 
Arches with one hinge or hingeless arches are multiple statically undetermined 
structures. Applying the classical arch formula is not possible, since unknown bending 
moments, which occur at the support, should be incorporated in      . With one 
equation, it is impossible to solve multiple variables. Thus a different approach is 
required, to analyze these structures. A robust solution strategy for these structures can 
be found in the differential equations that describe beam and arch behaviour. 
 
 
 

H 
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11.2 Members to compose the differential equations 

11.2.1 Cable / Arch action 

Already in 1675, Robert Hooke published an anagram in his book ‘Description of 
Helioscopes’, which stated: 
 
 “Ut pendet continuum flexile, sic stabit contiguum rigidum inversum” 
 
Which can be translated to: “As hangs the flexible line so, but inverted, will stand the 
rigid arch” [Kur08]. 
 
Cable and arch action are based on the same principle of load transfer via normal forces. 
The difference is the bending stiffness, which is theoretically only present in arches. Arch 
action without bending is described by the same differential equation as used for cable 
structures. The difference is the direction of the load   and the direction of the 
horizontal force  . The differential equation for a cable structure reads: 

 
Figure 45: Model of cable action 

 
Horizontal equilibrium:                                
 

Vertical equilibrium:                             
  

  
 

 

Geometrical relation:              
  

  
 

 
 
 
 
 

11.2.2 Euler-Bernoulli beam model 

The beam model refers to the load carrying mechanism via bending. The assumptions in 
the Euler-Bernoulli model are the linear elastic material behaviour (application of 
Hooke’s law), the assumption that plane cross-sections remain plane after deformation 
and cross-sections that are initially perpendicular to the beam axis remain perpendicular 
to the deformed beam axis. 
 
From equilibrium follows, when higher order terms are neglected: 
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Figure 46: Model for beam action 

The kinematic relations relate the curvature to the deformations: 

                   
 

 
 
  

  
                  

  

  
                       

 
When assuming small rotations: 

       
      

      
 
 

 
                            

 

  
 

 
 
  

  
 
  

  
 
   

   
 

 
The link between kinematic and equilibrium equations is determined via the constitutive 
equations, in which the bending moment is linked to the curvature: 
 
At the neutral axis:             
 
Fibre at distance   to the neutral axis:                
 

Strain of a fibre:       
  

 
 

        

  
   

  

  
      

 
Hooke’s law:                     
 
Bending moment:                                  
 

Combining:      
  

  
        

  

  
                      

   

   
   

 
 
 
 
In case of a constant cross-section along the x-axis. 
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11.2.3 Geometrically Nonlinear 

When deflections and rotations increase, several assumptions made in the derivation of 
the differential equation of the Euler-Bernoulli beam model are not valid anymore. In 
this paragraph the differences are shown. Source and further reading: [Fer99]. 

Equilibrium 

The effect of large rotations on the equilibrium of a infinitely small beam part leads to 
different equilibrium equations, in which the rotation of the element is regarded and the 
load is divided in a part normal and parallel to the ‘t’ axis. 
 

                                                

 

                                                

 

      

                                             
 

 
         

 

 
Figure 47: Nonlinear equilibrium 

 
D.G. Fertis proposes in “Nonlinear Mechanics” to neglect the higher order terms 
      .    is a small angle and therefore                      . Also, the 

kinematic relation   
 

 
 

  

  
 is applied, which lead to: 

 
  

  
 
 

 
                      

  

  
 
 

 
                          

  

  
     

 
Similar to the Timoshenko beam model, this leads to a set of two differential equations 
which should be fulfilled simultaneously. 
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Constitutive relation 

The constitutive law does not change         , when it is assumed that even at 
large displacements, strains are still small and therefore the material behaves linear 
elastic. 

Kinematic relation 

In the kinematic relation small deformations assume                      
 
The mathematical expression for the curvature of a line in two dimensional space: 
 

  
 

 
 

   

            
 

 
(in which the displacement    is differentiated with respect to  ) 
 
In case of small rotations, the term in the denominator is approximately 1, leading to the 
relation      , which is used in the Euler-Bernoulli beam model. 

Differential Equations 

When combining the nonlinear equilibrium and the mathematical expression for 
curvature, the following system of differential equations is obtained. 
 
 
 
 
 
 
 
 
 
 
 
These equations will provide more detailed information, when these equations are 
solvable. However, as long as the Euler – Bernoulli assumptions are valid, the Euler – 
Bernoulli beam model is preferred, since it is less complicated to solve analytically. 
Therefore, the linearized Euler – Bernoulli model is applied in the investigation. 
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11.3 Differential Equations Arch 

 
Figure 48: Axis system arch 

 
The structural behaviour of an arch can be described by the combined system of a cable 
and a beam, in case the assumptions of the Euler-Bernoulli beam model are valid. 
The differential equation for the arch according to [Bou89] is: 
 

   
   

   
   

       

   
      

 
In which ‘z’ defines the rise of the arch and ‘w’ represents its deformation. The 
differential equation is valid for arches that are supported during execution. A constant 
horizontal force is assumed as its increase is rather small. In geometrically nonlinear 
analysis, this cannot be neglected and therefore the differential equation is adapted to: 
 

   
   

   
        

       

   
      

11.3.1 Linearization (first order) 

In most arches, the deflection is often much smaller than the rise of arch       and 
when the arch deflects only little, the increase of the horizontal thrust is neglectable 
      . Then the differential equation simplifies to: 
 

   
   

   
   

   

   
      

 
Solving this differential equation (based on the boundary conditions) will lead to a 
displacement function that is depending on the thrust  . Analogous to the classical arch 
formula, the thrust can be determined by considering the translation of the support. 

 
Figure 49: Translation   due to deformation   [Wel12] 
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Dividing both sides with    and integrating once with respect to   gives: 

    
  

  
 
  

  
   

 

 

 

 
In this formula, axial shortening and flexible supports can be accounted for via: 

    
  

  
 
  

  
   

 

 

 
 

        
 
  

  
 

 
The horizontal thrust     is the only unknown parameter in the formula and can be 
solved.  

11.3.2 Geometrically nonlinear approximation for arches (second order) 

In arched structures, bending moments provide the compatibility with the boundary 
conditions and the applied load (difference between thrust line and arch axis). Small 
differences in horizontal thrust and small deformations can lead to rather large 
variations in the bending moment distribution. Next to that, the deformations lead to a 
magnification of normal forces and bending moments which will increase the 
deformations again. This so called second order effect is neglected in linear calculation. 
For a more accurate description of the arch behaviour, the variation in the deflection 
and the thrust should be incorporated. In that case, the differential equations read: 
 

   
         

   
        

         

   
        

   

   
      

 
In which a distinction is made for linear deflections (  ) and the nonlinear (  , second 
order) deflections. The results from the linearized part can be subtracted, leading to 
 

   
    

   
        

         

   
    

   

   
   

 
In this differential equation, the thrust and deflection as calculated in the linear analysis 
cause a mathematical second order load on the arch (     ). There is no external 
loading (      ) in the second order analysis. The internal load is visualized in Figure 
50 by the solid line, which represents the second derivative.  

 
Figure 50: Displacement arch and two derivatives (not to scale, example with flexible supports) 

 
The linear and nonlinear part lead to an analogous mathematical statement. Solving it 
will require the same steps. The differences are visible in the calculated parameters: 
       versus        ). Note that these differential equations do describe the basic 
structural behaviour of the system, but that these equations are based on the Euler-
Bernoulli beam model, with the corresponding assumptions. 
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12. Analysis single arch 

12.1 Analytical strategy 

The analytical solution to the mathematical model is determined by using a Maple 
worksheet. Maple is an analytical mathematical software program. Solving the 
mathematical statement with the worksheet is a quick approach, once the worksheet is 
written. It thus enables investigation of multiple load cases and boundary conditions. 

12.1.1 First order 

Geometry 

The circle shape can mathematically be described by:              
 

 
 
 

    . 

Integrating this will lead to complicated expressions, due to the quadratic function in the 
square root. A Taylor series expansion is a solution to this problem, since only 
polynomials are integrated. For smooth functions, like the arch axis, the approximation 
is quite accurate and it provides a good alternative in case it is not possible to integrate 
the exact function. The series is truncated after the 10th term, based on a visual 
comparison of the two plots. 
 
                                                                      
                                                              

Differential Equation and Boundary Conditions 

The mathematical analysis starts with solving the differential equation to obtain the first 
order deformation (note the change of variables with respect to chapter 11.3, which is 
necessary for programming with Maple): 

   
   

   
   

   

   
      

 
It will lead to a displacement function in which the four integration variables and the 
horizontal thrust have to be solved                       . The integration 
constants can be solved with boundary conditions, after defining the bending moment 

and rotation        
   

   
        

  

  
 . 

 
For example, two hinged supports:  
At                        
At                            
 
Other support conditions can be accounted for in the boundary conditions: 
- Clamped supports       
- Flexible support                               
- Support settlement                  

Horizontal thrust 

After solving the integration constants, the displacement function        is obtained, 
in which only the thrust has to be solved. Note that in computing the thrust  , 
translational flexibility of the support is taken into account. This flexibility is not 
modelled via the differential equation. The required formulae are given in paragraph 
11.3.1. 
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First Order Results 

Once the displacement and horizontal thrust are known, the force distributions 
(       can be determined. 
 

         
  

  
                             

   

   
  

  

  
 

 

                                                       
   

   
 

12.1.2 Second order 

The next step is to include the second order effect. For this, the interaction between the 
thrust and the deformation should be incorporated. The differential equation in 
paragraph 11.3.2, when rewritten to the new variables (which are used in Maple), reads: 
 

   
       

   
       

       

   
       

   

   
      

 
To get rid of the abridged multiplication (the brackets), the equation is rewritten. 
Subtraction of the linear equation leads to (the apostrophes indicate differentiation with 
respect to the x-coordinate): 
 
                                                     
 
                                                                                                                             

 
                                                                        
 
In this differential equation the bending term          and the arch term       
combine to an upward pressure. This should be in equilibrium with the downward ‘load’ 
that is caused by the other terms           and          . When neglecting the 
second term of this load (   ), the differential equation simplifies to:  
 
     

             
       

     
 
Note that new second order variables are introduced (     ) which are different from 
the actual second order deformation ( ) and thrust ( ). This differential equation is 
mathematically analogous to the linear differential equation (                ). 
The parameters which are to be solved are    and  . However, neglecting part of the 
imaginary second order load, will lead to an underestimation of the second order 
internal forces.  
 
A solution to this underestimation can be found in dividing the second order 
deformation in a series: 
 
                            …… 
 
The displacement    is caused by the deformation   and the horizontal thrust      . 
The next step is to apply an imaginary load, based on     . Since this load will lead to an 
increase in horizontal thrust and an increase in deformation, parameters    and    are 
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defined. The calculated deformation    can then be used as the loading         to 
compute iteratively the internal forces as a result of the second order effect. 
 
The total displacement and thrust are defined as: 
 
                  …… 
                      …… 

Overview of the analysis 

Analysis – step 1: 
                                                                                        
 
Analysis – step 2: 
     

             
                                         

     
 
Analysis – step 3: 
     

                 
                               

     
 
Analysis – step 4: 
     

                    
                     

     
 
Summing the above displayed differential equations, will show a deviation from the 
original differential equation. The terms that are missing (without the truncation error) 
are: 
 
                 /               
 
In analysis step 3, the term        is added and in analysis step 4 the other terms 
     

     
    are added.  

 
Solving problems iteratively requires numerical stability or convergence. Each next 
iteration should yield results that are an order of magnitude smaller compared to its 
previous iteration. In the MAPLE worksheet, each iteration step is programmed 
manually. In the second iteration of the nonlinear part, a relatively low increase in 
horizontal thrust was found,          for the hinged and clamped supports. Since in 
linear analysis values for   of about           are computed, truncating the analysis 
after this second iteration seems reasonable. However, the flexible supports with low 
support stiffness yields    values larger than          and thus requiring more iteration 
steps. It has been chosen to apply a third iteration step for all support conditions. Note 
that the differential equation neglects the horizontal deformations of the arch and will 
remain a poor model for low support stiffnesses, irrespectively of the number of 
iterations.  
 
On the other hand, truncating the analysis should not be based on the increase in 
horizontal thrust solely. The increase of bending moments should converge too. As a 
small deviation in horizontal thrust causes a much larger deviation in the bending 
moments, due to the arch’s rise. A small example will illustrate this effect: 
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The results of the second order analysis (normal forces, shear forces, bending moments 
and deformations) are only due to the second order “loading” effect. These results 
should be summed with the first order results to obtain the total result.  
 
The bending moment magnification can be found via: 

      
   

   
           

               

   
                   

   

 
 

12.2 Finite Element Analysis by Scia Engineer 

To compare the analytical results with a numerical computation, the structure is 
modelled in the finite element program Scia Engineer. Whereas finite element programs 
are often written for mechanics and academic research, Scia Engineer was developed 
with focus to practical use in the construction industry. Therefore, code checking of 
cross-sections is implemented in the post-processing and the mesh generation is 
automated to a high degree, to name some examples. The program requires only basic 
knowledge in computational mechanics for structural analysis. Consequentially, there 
are a lot of default settings in the program, which is convenient in most cases, but it may 
lead to erroneous output, most probably, in exceptional cases. Therefore, a small 
overview of the program’s characteristics is given, source: [Sci10] and [Sme07]. 

12.2.1 Elements, nodes and degrees of freedom 

Basically, two element types are implemented in Scia Engineer, beam elements and shell 
elements. Other elements, like wall elements (only normal forces), are deduced from 
these elements. Both beam elements and shell elements have nodes with six degrees of 
freedom and both elements use linear interpolation polynomials. Beam elements and 
shell elements can thus be connected without compatibility problems. Translations   , 
   and    and rotations   ,    and    determine the internal forces in beams 

(              and   ) and plates (                        and    ). Solid 

elements are not incorporated. 
 
The beam elements are linear elements with two nodes. Although curved shapes can be 
modelled easily (circles, parabolas, splines and Bezier curves are implemented), only the 
nodal coordinates coincide with these curves. The finite elements will be straight. Shear 
stiffness is taken into account in the deformations (Timoshenko beam model), which 
might be neglected optionally (Euler – Bernoulli beam model). The interpolation for the 
displacements along the local x-axis is linear for    and cubic for    and   . For the 

rotations (        ), a quadratical interpolation is used. The internal forces are 

                           

For the Nijmegen city bridge (rise         ), assuming the horizontal 
thrust has values in the order of 35,000 kN and the bending moment at 
midspan has values in the order of 6,000 kNm. 
 
An underestimation of 1% with respect to the horizontal thrust, will lead to 
an increase in the calculated bending moment of: 

Which means an increase of 33.5%. This illustrating the importance of a 
correct computation of the horizontal thrust.    
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calculated analytically (e.g.            ) in the integration points. These results are 
linearly extrapolated over the element length. To model curved structures with beam 
elements, the mesh fineness is the paramount variable in obtaining good representation 
of the continuous model, since too large mesh sizes will not follow the continuous 
curved shapes well. 
 
When reviewing the finite element mesh of a model with shell elements (or membrane-
bending elements), the elements seem to be quadrilateral with four nodes and thus 24 
degrees of freedom. Nevertheless, during analysis, the quadrilaterals will be constructed 
out of four triangular sub elements, which share a fifth node that will be inputted by the 
program. The location of the fifth node is defined as the intersection of the two lines 
that connect the midpoints of two opposite lines of the quadrilateral (Figure 52). This 
definition has the benefit that in case the quadrilateral becomes a triangle (three nodes 
in line), no singularity problems are encountered. For the shell elements, both Mindlin 
and Kirchhoff plate bending theories can be chosen. For thick plates, the shear 
deformation influences the structural behaviour and the Mindlin theory should be 
applied (including twisting bending moment decreasing to zero at free edges, implying 
an increasing shear force at these edges, Figure 51, [Bla10]). The Kirchhoff theory does 
not account for the shear deformations. For thin plates Kirchhoff and Mindlin can be 
used, the results will be quite similar. The Kirchhoff theory requires finite elements with 
sizes about plate thickness or larger. While for the Mindlin theory, a mesh refinement is 
necessary near the edges to obtain the correct output. As a rule of thumb, five elements 
should be applied in the edge zone to model the edge effect when using Mindlin theory. 
The width of the edge zone is about plate thickness. 

        
 
 

The membrane (plane stress) effect is calculated with three degrees of freedom,       

and   . The displacement field is interpolated quadratically and thus strains vary linearly 
in the elements. Bending and shear forces are linked with degrees of freedom       
and   , in which the displacements    in the plane finite element coordinates are 

interpolated quadratically too. The rotations    and    are interpolated linearly. Like 

the beam elements, the internal forces in shells are computed analytically and the 
elements are plane too. Internal forces are computed in the integration points, linearly 
interpolated and presented in the nodes. So again, for curved surfaces a sufficiently 
dense mesh is required to approximate the curves by plane elements. 

12.2.2 Analysis 

The solver determines the nodal displacements of the finite element model, by solving 
the system of equations       (in which   is the stiffness matrix, vector   
represents the loading and vector   are the nodal displacements). In elementary linear 

Figure 51: Mindlin theory for thick plates      Figure 52:  Shell element lay out 
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algebra, these problems are solved with Gaussian elimination (row reduction) or via the 

pre-multiplication with inverse stiffness matrix (       ). For large stiffness 
matrices (its size is approximately six times the number of nodes), there are faster 
methods. In Scia Engineer, two solvers can be chosen for the linear analysis, a direct and 
an iterative solver. 

 
The direct solver determines the nodal displacements according to the Cholesky 
decomposition, in which the stiffness matrix is decomposed into the product of a lower 
triangular matrix and its conjugate transpose matrix. The nodal displacements are 
computed via substitution. The algorithm can solve so called multiple right-hand side 
equations, for example      . In structural engineering this means that in a single 
analysis run, multiple load cases are evaluated. Compared with the single right-hand 
side methods, it requires more computational capacity in terms of RAM  (random access 
memory), but it is an efficient (fast) algorithm. When RAM disk space is insufficient, the 
solver will split the problem in parts, write the data to the computer’s hard disk and 
solves first the single parts and then composes the solution out of these solved parts. 
Since writing to the hard disk is a much slower process than to the RAM, analysis time 
increases largely.  
 
The iterative solver should be used when the direct solver is not functioning properly, 
due to low RAM capacity or numerical instability. The iterative solver is based on the 
Incomplete Cholesky conjugate gradient method. The method is based on an 
approximate decomposition (Incomplete Cholesky), which preconditions the stiffness 
matrix. Then the problem is solved by a numerical, iterative algorithm (conjugate 
gradient method), which will be truncated when the force convergence norm is reached. 
It is capable of solving only one right-hand side during an analysis. The methods benefits 
are the much lower required RAM size and its ability to solve with higher accuracy for ill-
conditioned matrices (determinant approximately zero). Compared with the direct 
solver, the iterative solver is faster when models are large and there are only few load 
cases. 

Nonlinear analysis 

Several nonlinearities that occur in structures have to be taken into account in the 
structural analysis. The geometrically nonlinear behaviour is the main nonlinearity, in 
which equilibrium of forces is satisfied on the deformed structure. Nonlinear material 
behaviour, support nonlinearity and initial deformations can be modelled too. Nonlinear 
analysis is carried out via several linear analyses. The different solution procedures that 
can be chosen for the nonlinear analysis are Timoshenko, Newton-Raphson, Modified 
Newton-Raphson and Picard. For all solvers, convergence is checked based on the 
increase of displacements, see paragraph 12.2.3. 
 
The Timoshenko solver determines the normal force distribution prior to the nonlinear 
analysis. Therefore, no load increments are possible and normal forces will maintain 
constant during nonlinear analysis. The solver uses the secant stiffness method (Figure 
53), in which the stiffness matrix is iteratively adjusted and analysis is repeated until the 
convergence norm is reached. Assumptions in the Timoshenko algorithm are small 
displacements, small rotations and small strains. 
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Figure 53: Nonlinear load-deflection curves, secant and tangential stiffness analysis methods 

 
The Newton-Raphson solver uses the tangential stiffness and modifies the stiffness 
matrix in each iteration. Loads can be applied incrementally, varying normal forces are 
taken into account and large deformations can still be analysed. Drawbacks of the 
Newton-Raphson method is that it might not find numerical equilibrium when the 
approaching the top of the load deflection diagram and it is slower than the Timoshenko 
solver. 
 
Modified Newton-Raphson is a variant to the Newton-Rapshon algorithm. The method 
uses the tangential stiffness, but it does not update the stiffness matrix in each iteration. 
It uses the tangential stiffness of the first iteration until convergence is reached in a load 
increment. Furthermore, in case critical points are reached, the program reduces the 
magnitude of the load increment and recalculates the stiffness matrix . A refinement of 
the increment step size at critical points cannot be inputted manually in the program. 
When using the Newton-Raphson solver, this local refinement is not possible in Scia 
Engineer. Although the total number of increments can be increased for smaller step 
sizes, this is a less convenient strategy, since most structures behave approximately 
linear for the lower loads. 
 
Like the Timoshenko method, the Picard solver uses the secant stiffness method to find 
the nodal displacements. Nevertheless, the Picard method provides more accurate 
results. Normal forces may vary and large displacements can be analysed. The Picard 
solver might be an alternative to the Newton-Raphson methods, in case these methods 
do not reach convergence, but the Picard is a slower algorithm. 

12.2.3 Arch model thesis 

The applied model will be described in paragraph 13.1. For the arch, (linear) beam 
elements with an average mesh size of 250 mm are used. Since normal forces are 
variable in arch analysis, the Timoshenko solver should not be employed. Since no 
critical points will be met (except in case the load will be highly increased or the cross-
section decreased), the other solvers could be used (Newton-Raphson, Modified 
Newton-Raphson and Picard). A quick check of the three solvers led indeed to similar 
results. The Newton-Rapshon solver is used for the analyses, since it is the fastest solver, 
according to the program’s manual. The load is applied in 10 increments with a 
convergence norm of 0.001, which can be adapted in Scia Engineer via the solver 
precision ratio: 
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13. Solving the differential equations 

13.1 Model 

The theory in chapter 11 and 12 is used to investigate the geometrically nonlinear 
behaviour of the single arch, which is modelled (Figure 54) in Scia Engineer. The same 
parameters are applied in the analytical model. Although several load cases and 
boundary conditions are investigated, for the arch geometry, only the dimensions 
according to the city bridge design are considered in this chapter. Span       , rise 
      , width     , height       . In chapter 15, different geometries are 
investigated. 

 
Figure 54: Single arch model 

13.1.1 Supports (boundary conditions) 

Two basic support conditions are investigated, the hinged support and the clamped 
support, in which translation of the supports is not allowed. A more realistic model for 
the foundation or substructure is a flexible support with rotational and translational 
stiffness. To agree with the analytical model, only one support is modelled with the 
translation flexibility. The support stiffness is estimated, based on comparable internal 
forces between the city bridge and the single arch model. Important aspect in the 
estimation is the fact that a single arch is different from a series of arches next to each 
other, since in the latter case, an arch is supported by adjacent arches. Since no exact 
representation of the city bridge model can be achieved with the single arch model, it 
makes no sense to fine tune the support stiffnesses. To investigate the influence in more 
depth, lower and higher stiffnesses are assumed: 
 
                                           (Flexible low) 
                                                (Flexible) 
                                        (Flexible high) 

 
In Scia Engineer, a third support is required to avoid rigid body rotation around the x-
axis, since the two dimensional arch (a line) is modelled in a three dimensional space. 

13.1.2 Material stiffness 

Concrete C35/45 is used for the arches in the city bridge. The material has a Young’s 
modulus                  and when creep is taken into account (100 years, 
       ) the elasticity reduces to                     . However, the Young’s 

modulus is used for a homogenous and linear elastic cross-section. The amount of 
reinforcement and cracking should be modelled via a fictitious Young’s modulus. As a 
rule of thumb,     of the original stiffness can be used (                 ).  

 
In case a higher accuracy is required, estimation formulae (for example the formulae 
provided in table NB-1 of the Dutch national annex to Eurocode 2 (EN1992-1-1), see 
Table 11), bending moment – curvature (M-N-κ) diagrams (Figure 55) or a physically 
nonlinear finite element analysis can be utilized. Note that a physically nonlinear 
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analysis requires all reinforcement to be modelled and after cracking, internal forces and 
deformations should match the nonlinear material behaviour, requiring high computer 
capacity and long computation time.  
 
Table 11: Fictitious Young's modulus for combined bending and normal forces  

(NEN-EN-1992-1-1+C2:2011/NB:2011 - paragraph 5.8.5 - table NB-1) 

 
 
The mutual influence between the Young’s modulus and the bending moments is a 
complicating mechanism. The higher the Young’s modulus, the higher the bending 
moments that will be computed. After cracking, the stiffness decreases, leading to lower 
bending moments. A high Young’s modulus is thus a safe approach, but might be too 
conservative.  
 
Including the geometrically nonlinear behaviour, a lower Young’s modulus leads to 
lower bending moments, but deformations will be relatively larger, increasing the 
second order bending moments. 

 
Figure 55: Bending moment - curvature relation for different normal forces 
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For the analyses, the fictitious stiffness is used. The derivation of this formula is based 
on the secant stiffnesses found in bending moment – curvature diagrams for 
instantaneous load combinations, including creep effects. 
 
                               

       

 
In which   represents the reinforcement ratio and    is the ratio between the normal 
force due to loading and the plastic normal force capacity of the cross-section. 

  
       

  
                   

   
                   

 

 
The fictitious stiffness is determined based on the cross-section               , top 
and bottom reinforcement        , normal force          ,                
and              .  

 
Leading to a reinforcement ratio:          
And normal force ratio:             
 
The fictitious Young’s modulus:                  

 
The effect of the Young’s modulus on the structural behaviour is investigated by using 
different values in the range             to             , see paragraph 13.4.2. In 
part 4, the stiffness is determined with the M-N-κ relations, providing more detailed 
information on the fictitious Young’s modulus. Due to time constraints, it was not 
possible to adapt the analyses in this part to the more detailed Young’s moduli. 

13.1.3 Geometrical Imperfections 

Arches are slender structures. Imperfections, for example due to execution tolerances, 
will lead to additional bending moments in structural elements that are axially loaded. 
The most unfavourable imperfection for compressed columns is the buckling mode with 
the lowest buckling load, especially when it is affine with the first order deformation due 
tom transverse loading.  
 
For arched structures, it should be kept in mind that the lowest buckling load is obtained 
in the anti-symmetrical buckling mode, while the deformation is symmetrical for a large 
part of the load. So both the lowest symmetrical and lowest anti-symmetrical buckling 
mode are considered. 
 
Stability analysis only provides the shape of the buckling modes. Buckling analysis always 
encounters solutions in which one unknown (the amplitude of the deformations) 
remains unsolved. Rules for the amplitude of the geometrical imperfection that should 
be taken into account are provided in the codes (Eurocode NEN-EN 1992-2 art. 5.2 note 
(106)). The amplitude that should be taken into account is: 
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The first buckling mode is anti-symmetrical in most cases. It is modelled by a sine wave 
(Figure 56): 

             
 

 
 
 

                 
   

 
  

 

 
Figure 56: Anti-symmetrical geometrical imperfection (exaggerated amplitude) 

 
The symmetrical buckling mode is modelled similarly. 

            
 

 
 
 

                 
   

 
  

 

 
Figure 57: Symmetrical geometrical imperfection (exaggerated amplitude) 

 
Which again can be expanded into a truncated Taylor series. Note that the Taylor series 
expansion will lead to good approximations for smooth functions only.  

The investigated load cases are: 

- Uniformly distributed load 
- Non-uniform load 
- Half span loaded 
- Point loads  
- Support settlements (       ) 
- Geometrical imperfections (combined with distributed load and asymmetrical posi-

tioned point loads). 
 
Next to these load cases, different cross-sectional heights, different Young’s moduli and  
stepwise increasing load are investigated. 

13.2 Results different loading patterns 

The characteristic results of the analytical analysis and the Scia Engineer computations 
are displayed in the tables. All corresponding Maple worksheets and Scia Engineer 
output are added in the appendices. 
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13.2.1 Uniform load 

A uniform load,                , is applied to the structure. The value is chosen 
based on the actual serviceability limit state load that varies between     and 
         .  

  

Table 12: Uniform loading (bending moments and displacements at midspan) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
Hinged [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -38,816 -38,981 2,596 3,468 0.0392 0.0470 
Scia Engineer -38,807 -38,951 2,643 3,678 0.0410 0.0513 

Clamped       
Analytical -39,385 -39,654 1,961 2,374 0.0315 0.0345 
Scia Engineer -39,392 -39,656 1,968 2,422 0.0326 0.0363 

Flexible low       
Analytical -34,437 -42,325 21,289 29,906 1.0396 1.3124 
Scia Engineer -34,479 -45,787 21,073 36,056 1.0460 1.6661 

Flexible high       
Analytical -37,620 -38,875 5,817 7,155 0.1840 0.1999 
Scia Engineer -37,680 -39,063 5,778 7,247 0.1857 0.2068 

 

13.2.2 Non-uniform load 

Permanent load and uniform distributed traffic load in serviceability limit state are 
considered. This load can be approximated by                        . 

 

Table 13: Non-uniform loading (bending moments and displacements at midspan) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
Hinged [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -31,104 -31,133 -1,956 -2,518 -0.0079 -0.0128 
Scia Engineer -30,866 -30,919 -1,865 -2,494 -0.0070 -0.0125 

Clamped       
Analytical -30,183 -30,207 -927 -1,104 0.0046 0.0035 
Scia Engineer -30,027 -30,051 -898 -1,093 0.0050 0.0038 

Flexible low       
Analytical -27,480 -31,882 13,105 16,798 0.7922 0.9347 
Scia Engineer -27,305 -32,866 12,885 18,480 0.7871 1.0658 

Flexible high       
Analytical -29,473 -30,084 1,342 1,437 0.1149 0.1183 
Scia Engineer -29,299 -29,983 1,369 1,438 0.1151 0.1198 
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13.2.3 Half span loaded 

Loading only half span, leads to high bending moments in arches. The uniform 
distributed load (            ) is investigated. 

 
Table 14: Half span loaded (bending moments and displacements at 0.25 L) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
Hinged [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -19,408 -19,448 27,721 38,067 0.4042 0.5486 
Scia Engineer -19,403 -19,192 27,603 42,500 0.4543 0.7619 

Clamped       
Analytical -19,693 -19,757 13,679 15,789 0.1641 0.1877 
Scia Engineer -19,696 -19,482 13,510 16,048 0.1832 0.2239 

Flexible low       
Analytical -17,218 -18,773 31,560 39,693 0.7111 0.8487 
Scia Engineer -17,240 -18,714 30,974 43,119 0.7687 1.0630 

Flexible high       
Analytical -18,810 -19,107 18,901 22,504 0.2875 0.3333 
Scia Engineer -18,840 -18,824 18,424 22,892 0.3131 0.3948 

13.2.4 Tandem axle load 

The Eurocode axle loading is considered (Loadmodel 1). Three axle systems of         
and            , lead to two        point loads in the two dimensional model at a 
distance of      . Modelling point loads is a conservative approach, as the load spreads 
through the pavement and the backfill,  An axle system can be anywhere on the bridge 
span. For the investigation, it is placed at a distance of        and           . 

 

Table 15: Point loads  (bending moments and displacements at 0.25 L) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
Hinged [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -1,271 -1,271 3,803 3,852 0.0381 0.0387 
Scia Engineer -1,238 1,237 3,852 3,914 0.0432 0.0444 

Clamped       
Analytical -1,622 -1,262 2,635 2,651 0.0182 0.0183 
Scia Engineer -1,211 -1,209 2,766 2,786 0.0204 0.0206 

Flexible low       
Analytical -1,126 -1,131 4,013 4,051 0.0574 0.0580 
Scia Engineer -1,096 -1,100 4,011 4,102 0.0621 0.0632 

Flexible high       
Analytical -1,218 -1,219 3,057 3,079 0.0276 0.0278 
Scia Engineer -1,179 -1,178 3,142 3,169 0.0303 0.0307 
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13.2.5 Support settlement 

A settlement of       is investigated, in accordance with the geotechnical analysis for 
the city bridge. It is combined with the uniform load. Hinged supports are not 
considered, since support settlement will not alter the force distribution. In Scia 
Engineer, the settlement is modelled via a flexible support. 

 
 

Table 16: Support settlement (bending moment at right support, displacement at midspan) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
Clamped [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -39,385 -39,654 2,854 3,351 0.0415 0.0445 
Scia Engineer -39,392 -39,658 1,968 2,423 0.0421 0.0458 

Flexible low       
Analytical -34,437 -42,325 6,453 7,432 1.0496 1.3224 
Scia Engineer -34,479 -45,787 6,418 9,378 1.0508 1.6707 

Flexible high       
Analytical -37,620 -38,875 3,511 2,757 0.1940 0.2098 
Scia Engineer -37,680 -39,063 3,211 2,485 0.1949 0.2161 

13.3 Geometrical Imperfections 

The geometrical imperfections that are taken into account are explained in paragraph 
13.1.3. The anti-symmetrical imperfect shape is loaded by the half span load and the 
symmetrical imperfection is loaded over its full span. These combinations provide the 
most unfavourable situations. 

13.3.1 Anti-symmetrical 

 
 

Table 17: Geometrical imperfections anti-symmetrical (bending moments and deformations at 0.25 L) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
Hinged [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -19,390 -19,449 28,227 38,754 0.4143 0.5625 
Scia Engineer -19,405 -19,183 27,607 43,420 0.4543 0.7841 

Clamped       
Analytical -19,650 -19,720 13,927 16,065 0.1681 0.1922 
Scia Engineer -19,696 -19,541 13,513 15,706 0.1832 0.2176 

Flexible       
Analytical -18,368 -18,862 22,376 27,133 0.3791 0.4440 
Scia Engineer -18,427 -18,561 21,469 27,995 0.4045 0.5328 
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13.3.2 Symmetrical 

  
Table 18: Geometrical imperfections symmetrical (bending moments and displacements at midspan) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
Hinged [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -38,848 -39,035 3,460 4,611 0.0469 0.0573 
Scia Engineer -38,810 -38,997 2,626 4,614 0.0409 0.0606 

Clamped       
Analytical -39,598 -39,912 2,637 3,206 0.0367 0.0408 
Scia Engineer -39,394 -39,831 1,952 3,157 0.0325 0.0418 

Flexible       
Analytical -36,876 -39,021 9,320 11,708 0.3258 0.3611 
Scia Engineer -36,852 -39,351 8,478 11,690 0.3196 0.3764 

13.4 Results different arch stiffnesses 

The influence of the member stiffness of the arch is investigated, based on the model 
with the non-uniform load and flexible supports. 

 

13.4.1 Cross-sectional height 

Table 19: Different heights (bending moment at sagging maximum, displacement at midspan) 

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
h = 350 mm [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -27,719 -30,976 2,025 2,230 0.2170 0.2271 
Scia Engineer -30,338 -31,721 2,421 3,335 0.2143 0.2261 

h = 450 mm       
Analytical -29,284 -30,467 3,064 3,148 0.2200 0.2328 
Scia Engineer -29,933 -31,324 3,339 3,614 0.2202 0.2368 

h = 600 mm       
Analytical -28,513 -29,549 6,144 6,491 0.2135 0.2231 
Scia Engineer -29,182 -30,422 6,115 6,508 0.2169 0.2323 

h = 750 mm       
Analytical -27,509 -28,411 -11,566 -12,235 0.2042 0.2117 
Scia Engineer -28,184 -29,261 11,119 11,926 0.2087 0.2219 
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13.4.2 Young’s modulus 

Table 20: Different Young’s moduli, (E in [       bending moment and displacement at midspan)  

 Horizontal thrust   Bending moment   Displacement   

 Linear 2nd order Linear 2nd order Linear 2nd order 
E = 7,500 [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical 29,386 30,636 -1,698 -1,995 0.2269 0.2411 
Scia Engineer 30,029 31,482 -3,017 -3,347 0.2263 0.2432 

E = 15,000       
Analytical 28,914 30,013 -3,906 -4,351 0.2160 0.2269 
Scia Engineer 29,576 30,866 -4,533 -4,812 0.2182 0.2344 

E = 25,000       
Analytical 28,395 29,394 -6,661 -7,194 0.2087 0.2175 
Scia Engineer 29,066 30,264 -6,718 -7,152 0.2121 0.2267 

E=35,000       
Analytical 27,927 28,858 -9,293 -9,893 0.2036 0.2114 
Scia Engineer 28,600 29,718 -9,013 -9,630 0.2076 0.2210 

 

Increasing the bending stiffness    via both the Young’s modulus or the cross-sectional 
height, will lead to slightly (    ) lower displacements   and lower normal forces  . 
The translation at the supports depends on this horizontal thrust and thus decreases 
only little for higher bending stiffnesses. The arch’ curvature due to the translation is 
approximately constant, leading to higher bending moments for higher bending 
stiffnesses, since       .  
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13.5 Results increasing load 

Based on the model with flexible supports and the non-uniform load, the influence of 
increasing load is investigated, since the second order effect is larger for higher loads. 
The non-uniform load is multiplied with factors varying between     and   .  

 

Table 21: Increasing load (bending moment and displacement at midspan) 

 Horizontal thrust   Bending moment   Displacement   

 1st  order 2nd order 1st  order 2nd order 1st  order 2nd order 
      [kN] [kN] [kNm] [kNm] [m] [m] 
Analytical -14,523 -14,794 1,626 1,718 0.1092 0.1119 
Scia Engineer -14,852 -15,170 1,373 1,434 0.1100 0.1139 
            
Analytical -29,046 -30,178 3,252 3,668 0.2184 0.2300 
Scia Engineer -29,704 -31,049 2,745 3,031 0.2201 0.2368 
            
Analytical -43,570 -46,241 4,878 5,943 0.3277 0.3557 
Scia Engineer -44,556 -47,775 4,118 4,881 0.3301 0.3710 
            
Analytical -58,093 -63,093 6,504 8,674 0.4369 0.4909 
Scia Engineer -59,408 -65,549 5,491 7,165 0.4401 0.5205 
            
Analytical -72,616 -80,881 8,130 12,046 0.5462 0.6382 
Scia Engineer -74,260 -84,692 6,863 10,302 0.5502 0.6925 
            
Analytical -87,139 -99,795 9,756 16,315 0.6554 0.8010 
Scia Engineer Error: Singular Stiffness-Matrix (buckling load (      ) almost reached) 

            
Analytical -116,186 -142,108 13,008 29,129 0.8739 1.1948 
Scia Engineer       
            
Analytical -145,231 -193,469 16,260 52,212 1.0924 1.7394 
Scia Engineer  
            
Analytical -217,848 -442,862 24,390 281,434 1.6385 5.4019 
Scia Engineer       

 
Geometrically nonlinear theory is confirmed by this table. In first order analysis, the 
bending moments, normal forces and deformations increase linearly. In second order 
analysis, the results increase non-proportional when increasing the load, as can be seen 
by the increasing bending moment magnification factors in Table 22. 
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13.6 Bending moment magnification arches 

13.6.1 Different loading patterns 

In Table 22, the bending moment magnification factors are displayed for the models 
investigated in paragraphs 13.1.3 to 13.5. The factors are computed manually by 
dividing the second order bending moment by the first order bending moment. Note 
that these magnification factors vary along the arch axis (see paragraph 16.1) and that 
depending on the load, the bending moments are considered at mid span, at the 
support or at      . 
 
Table 22: Bending moment magnification factors - different loads and support conditions          

Uniform Load Analytical Scia Non-uniform load Analytical Scia 

Hinged 
Clamped 
Flexible low 
Flexible high 

1.34 
1.21 
1.40 
1.23 

1.39 
1.23 
1.71 
1.25 

Hinged 
Clamped 
Flexible low 
Flexible high 

1.29 
1.19 
1.28 
1.07 

1.34 
1.22 
1.43 
1.05 

Half span load Analytical Scia Point loads Analytical Scia 

Hinged 
Clamped 
Flexible low 
Flexible high 

1.37 
1.15 
1.26 
1.19 

1.54 
1.19 
1.39 
1.24 

Hinged 
Clamped 
Flexible low 
Flexible high 

1.01 
1.01 
1.01 
1.01 

1.02 
1.01 
1.02 
1.01 

Geometrical 
imperfection - 
Anti-symmetr 

 
 
Analytical 

 
 
Scia 

Geometrical 
imperfection - 
symmetrical 

 
 
Analytical 

 
 
Scia 

Hinged 
Clamped 
Flexible 

1.37 
1.15 
1.21 

1.57 
1.16 
1.30 

Hinged 
Clamped 
Flexible 

1.33 
1.22 
1.26 

1.76 
1.62 
1.38 

Support  
settlements 

Analytical Scia Height Analytical Scia 

Clamped 
Flexible low 
Flexible high 
 

1.17 
1.15 
0.79 

1.23 
1.46 
0.77 

h=350 
h=450 
h=600 
h=750 

1.10 
1.03 
1.06 
1.06 

1.38 
1.08 
1.06 
1.07 
 

Young’s moduli Analytical Scia Loads Analytical Scia 

E=7,500 
E=15,000 
E=25,000 
E=35,000 

1.17 
1.11 
1.08 
1.06 

1.11 
1.06 
1.06 
1.07 

0.5 q 
1.0 q 
1.5 q 
2.0 q 
2.5 q 
3.0 q 
4.0 q 
5.0 q 
7.5 q 

1.06 
1.13 
1.22 
1.33 
1.48 
1.67 
2.24 
3.21 
11.54 

1.04 
1.10 
1.19 
1.30 
1.50 
- 
- 
- 
- 

 

 

 

 



 
 
Part 2: Single arch analysis (2D) - Solving the differential equations 

 

Geometrically nonlinear behaviour of arches in 2D Part 2 - Page 72 of 134 
MSc Thesis  

Different Young’s modulus                 

After writing the MAPLE worksheets for the analytical geometrically nonlinear analyses, 
the obtained intermediate answers were compared with finite element models (Scia 
Engineer). In these ‘quick checks’, a (default) Young’s modulus                 

was applied. Erroneously this Young’s modulus was not adapted in the analysis of the 
different load cases and support conditions. To match the results with the estimation 
formula, all analyses were repeated with the value                .  

 
Since the erroneous analyses lead to a different data set, it is chosen to display briefly 
the magnification factors that were found in these analyses. The different magnification 
factors that were found, when only varying the Young’s modulus, illustrate the theory. 
Increasing the Young’s modulus lead to lower deformations and lower second order 
bending moments. Simultaneously, the bending moments (first order) increase for 
higher Young’s moduli. Both effects lead to smaller bending moment magnification 
factors. To display the effect of the Young’s modulus, the results of the analyses with the 
erroneous Young’s modulus, are displayed in Table 23.  
 
Table 23: Bending moment magnification factors - erroneous Young's modulus          

Uniform Load Analytical Scia Non-uniform load Analytical Scia 

Hinged 
Clamped 
Flexible low 
Flexible high 

1.14 
1.09 
1.22 
1.10 

1.15 
1.09 
1.38 
1.11 

Hinged 
Clamped 
Flexible low 
Flexible high 

1.12 
1.08 
1.17 
1.05 

1.14 
1.09 
1.30 
1.05 

Half span load Analytical Scia Point loads Analytical Scia 

Hinged 
Clamped 
Flexible (avg.) 

1.15 
1.07 
1.09 

1.20 
1.08 
1.13 

Hinged 
Clamped 
Flexible (avg.) 

1.00 
1.00 
1.00 

1.01 
1.00 
1.01 

Geometrical 
imperfection - 
Anti-symmetr 

 
 
Analytical 

 
 
Scia 

Geometrical 
imperfection - 
symmetrical 

 
 
Analytical 

 
 
Scia 

Hinged 
Clamped 
Flexible (avg.) 

1.15 
1.07 
1.09 

1.22 
1.10 
1.15 

Hinged 
Clamped 
Flexible (avg.) 

1.13 
1.09 
1.11 

1.45 
1.44 
1.18 

Support  
Settlements 

Analytical Scia Height Analytical Scia 

Clamped 
Flexible low 
Flexible high 
 

1.06 
1.15 
0.97 

1.06 
1.35 
1.05 

h=300 
h=450 
h=600 
h=750 

1.04 
1.05 
1.05 
1.04 

1.20 
1.06 
1.06 
1.06 

   Loads Analytical Scia 

   0.5 q 
1.0 q 
1.5 q 
2.0 q 
2.5 q 
3.0 q 
4.0 q 
5.0 q 
7.5 q 

1.04 
1.08 
1.12 
1.17 
1.23 
1.31 
1.49 
1.74 
3.14 

1.04 
1.09 
1.15 
1.22 
1.30 
1.41 
1.78 
- 
- 
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13.6.2 Differences analytical solution and Scia Engineer models 

For most analysed load cases, the results computed by Scia Engineer and the analytical 
solution coincide really well. However, especially in case the stiffness of the flexible 
supports is low, larger differences are found in the results. It should be kept in mind that 
the geometrically nonlinear behaviour is accounted for in the arch action part of the 
differential equation, but the bending action is still based on the Euler-Bernoulli beam 
mode. In this model linear relations are assumed (Hooke’s law and small rotations) in 
the derivation of the differential equation. For lower support stiffnesses, the 
deformations and rotations will be higher. The lower the support stiffness, the poorer 
the approximation of small rotations will be. The relation between deformation and 
curvature results in overestimated curvatures when the relation       is used.  
The exact form (paragraph 11.2.3) will lead to smaller curvatures (since the 

denominator:              is always larger than 1). Since the bending moments are 
based on the curvatures (      ), the bending moments will be overestimated with 
respect to the deformations too.  

Neglected term in arch shortening when determining horizontal thrust 

Small deformations are assumed once more in the horizontal displacement of the arch, 
which will be visible when considering the arch length before and after loading [Wel12]. 
 
The arch length before loading ( ) is given by: 

      
   

   
          

   

   
        

  

  
 
    

   
      

 

 
 
  

  
 
 

  
   

   
 

 
(the last term is a Taylor approximation) 
Similarly, the length of the deformed arch (  ) can be computed: 

   
  

  
    

 

 
 
      

  
 

 

  

   

   

 

 
Since both lengths should be equal (    ) 

 
 

 
 
  

  
 
 

  

   

   

  
 

 
 
      

  
 

 

  

   

   

 
  

  
 

 
Which can be simplified to: 

 
  

  

  

  
   

   

   

  
 

 
 
  

  
 
 

  

   

   

 
  

  
   

 
When comparing the result with the formula in paragraph 11.3.1, it can be seen that the 
second term is neglected in the analysis. In case             (small rotations) this 
approximation is justified. In case rotations are large, neglecting this term causes 
overestimation of the deflection and thus overestimation of bending moments. 

Translation in x-direction 

The most fundamental difference between the analytical model and the finite element 
model is the horizontal displacement, which is not a parameter in the analytical model 
(only vertical deformations), while in FE analysis it is taken into account. In the analytical 
model, the support stiffness only determines the magnitude of normal forces, whereas 
the nodes in the FE model do displace horizontally. The horizontal displacement curves 
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the arch. The bending moments due to this curvature will carry part of the load and thus 
lower bending moments are to be expected in geometrically nonlinear finite element 
analysis.  
 
However, in the analysis it appeared that for flexible supported arches with low support 
stiffness, the bending moments in FE analysis are larger than analytically determined in 
the geometrically nonlinear analysis, while in the linear calculation, the analytical 
method leads to the larger bending moments. For low support stiffnesses, the 
translation of the support reaches values between       and       . The corresponding 
lowering of the arch crown, solely based on a circular arch with constant length, reaches 
values with order of magnitude of respectively       and      . This lower rise of the 
arch will lead to larger normal forces and thus larger bending moments in geometrically 
nonlinear analysis. The bending moment magnification will be much larger in FE analysis 
since in linear analysis the bending moments are smaller, whilst in nonlinear analysis the 
bending moments are larger, compared with the analytical results. 
 
For arches with low support stiffness, it should be concluded that a geometrically 
nonlinear finite element analysis will lead to more accurate results. However, basic 
principle in arch design is to ensure the confinement of the arch, to obtain large normal 
forces and small bending moments. 

Geometrical imperfection 

For the geometrical imperfection, large magnification factors are found in Scia Engineer. 
When using the buckling mode to model the geometrical imperfection, it will only be 
taken into account in the nonlinear analysis. To perform a stability analysis, a linear 
static analysis is required in advance. When calculating magnification factors, the 
magnification will include the geometrically nonlinear behaviour and the extra internal 
forces due to the imperfection. In the analytical model, the imperfection is applied in 
the arch elevation and thus incorporated in the linear analysis too. To evaluate the 
linear geometrically imperfect force distribution in the arch in Scia Engineer, the 
imperfect shape should be drawn, see Figure 50 and Figure 56. For a single arch, this is a 
realistic approach. In case several arches are considered, like the city bridge, drawing 
the imperfect shape is a too labour intensive for practical application. The symmetrical 
geometrical imperfection is manually drawn (as spline) in Scia Engineer for a single arch. 
The results are displayed in Table 24. 
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Table 24: Geometrical Imperfections symmetrical (bending moments and displacements at midspan) 

 Horizontal thrust   Bending moment   Displacement   

 linear 2nd order linear 2nd order linear 2nd order 
Hinged [kN] [kN] [kNm] [kNm] [m] [m] 

Analytical -38,848 -39,035 3,460 4,611 0.0469 0.0573 
Scia Engineer 
 

-38,810 -38,997 2,626 4,614 0.0409 0.0606 

Scia Engineer 
Imperf. drawn 

-38,868 -39,023 3,534 4,821 0.0476 0.0605 

Clamped       
Analytical -39,598 -39,912 2,637 3,206 0.0367 0.0408 
Scia Engineer 
 

-39,394 -39,831 1,952 3,157 0.0325 0.0418 

Scia Engineer 
Imperf. drawn 

-39,537 -39,884 2,331 2,958 0.0380 0.0431 

Flexible       
Analytical -36,876 -39,021 9,320 11,708 0.3258 0.3611 
Scia Engineer 
 

-36,852 -39,351 8,478 11,690 0.3196 0.3764 

Scia Engineer 
Imperf. drawn 

-36,925 -39,348 9,318 12,000 0.3288 0.3801 

 
Drawing the imperfection manually will lead to slightly higher bending moments in 
nonlinear (2nd order) analysis, but its influence on the linear (1st order) bending 
moments, the goal of the investigation, demonstrates the large share of the initial 
imperfection on the magnification factor between linear and geometrically imperfect 
nonlinear analysis. 

13.7 Loading according to ultimate limit state – city bridge Nijmegen 

All considered load cases in chapter 13 are generalised loads, somehow based on the 
loads of the city bridge Nijmegen, to investigate the different load cases. When 
considering the bending moment magnification more specific for the city bridge, the 
ultimate limit state loads should be considered. Furthermore, the support stiffnesses 
should be more realistic, thus internal forces and deformations should resemble the 
results of the structural analysis of the entire approach bridge model. 

13.7.1 Load 

The loads in ultimate limit state (including partial safety factors,            ) are: 

- Self-weight                   
- Fill and parapets                                       
- Pavement                   

        
- Traffic load 

o Uniformly distributed load           
o Pedestrian load                 

                      
 

- Tandem axle                   
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13.7.2 Support stiffness 

When considering the results that are computed during design, it can be seen that there 
are two characteristic boundary conditions for the city bridge design. The translation at 
the support is relatively large at the supports and much smaller in the intermediate 
spans. Therefore two combinations are considered: 
 

- Flexible high ULS                                                 

- Flexible low ULS                                                         
 

 
Figure 58: Linear bending moment distribution city bridge 

13.7.3 Results 

Since deformations determine the second order internal forces, the low and medium 
stiffnesses as described in paragraph 13.1 are investigated in combination with the city 
bridge load too. As to be expected, the higher support stiffness leads to much lower 
second order bending moments.  
 
Table 25: ULS loading city bridge (Bending moments at tandem axle 0.25 L, displacements at mid span) 

 Horizontal thrust   Bending moment 
  

Displacement   

 1st  
order 

2nd 
order 

1st  
order 

2nd 
order 

1st  
order 

2nd 
order 

Flexible high ULS [kN] [kN] [kNm] [kNm] [m] [m] 
Analytical -41,493 -42,028 6,049 7,305 0.0868 0.0990 
Scia Engineer -42,227 -42,787 6,459 8,212 0.0622 0.0607 

Flexible low ULS       
Analytical -37,053 -46,121 19,871 24,118 0.8115 1.0275 
Scia Engineer -37,875 -52,393 19,950 32,441 1.0981 1.9119 

 
Table 25 illustrates the geometrically nonlinear theory. When increasing the load from 
serviceability limit state to ultimate limit state, the internal forces increase and the 
bending moment magnification factors increase as well. The magnification factors on 
the bending moments in Table 25 are respectively 1.21 – 1.27 – 1.21 – 1.63. As stated in 
paragraph 13.6.2, the analytical model is not accurate for large deformations (low 
stiffnesses), which can easily be seen in the table.  
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13.7.4 Incremental loading 

In the previous analyses, the load is applied in one step. However, all structures will be 
built incrementally and thus will deform incrementally. This will affect the final 
deformation in a second order analysis. For the Nijmegen city bridge load, the effect is 
analysed. The load is divided in four steps: (1) Self-weight, (2) Parapets and backfill, (3) 
Pavement and barriers and (4) traffic load. The deformed shape due to a load step is 
used in the geometry for the next step. 
 
The bending moments for each load step are displayed in Figure 59 for high support 
stiffness. In all bending moment distributions, the geometrically nonlinear behaviour is 
included. 

 
Figure 59: Bending moments - single load cases – high support stiffness 

 
When summing the bending moments after each load step with the bending moments 
calculated in previous steps, the diagrams in Figure 60 are obtained. 

 
Figure 60: Bending moments – summed with results previous load steps – high support stiffness 
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Comparing iterative loading and loading in one step 

The iterative loading analysis is compared with the previous analysis. In Figure 61- Figure 
63 the resulting bending moments are displayed for several support conditions. 

 
 
Figure 61: Bending moments - comparing iterative and non-iterative loading - high support stiffness 

 

 
Figure 62: Bending moments - comparing iterative and non-iterative loading - medium support stiffness 

 

 
Figure 63: Bending moments - comparing iterative and non-iterative loading - low support stiffness 

 
The results seem to coincide well visually, the iterative loading leads to bending 
moments that are 3% to 7% smaller compared with the loading in one step. So the more 
straightforward approach, to apply all load at the same time, leads to slightly higher 
forces and is therefore a safe assumption. 
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14. Comparing magnification factors 

In structural analysis of columns, geometrically nonlinear behaviour is captured in the 
bending moment magnification factor. For columns, the magnification factor is linked to 
the critical load factor, the quotient of the Euler buckling load and the actual normal 
force. For rigid bars and for a flexible bar with sine shaped imperfection, this factor 
defines the exact magnification factor. However, for differently shaped imperfections 
and transverse loads, the formula         is not exact, but the deviations are small. 
Especially when the critical load factor is low and the buckling mode is affine with the 
displacement caused by the load. 
 
To determine whether the affine buckling mode might provide a reasonable estimation 
for the magnifications of bending moments in a single arch, linear stability analyses are 
carried out in Scia Engineer, providing the buckling modes and the accompanying critical 
load factors. Theoretical magnification factors are then easily obtained. The models that 
are analysed, are the same models that are used in the previous investigation (Table 26) 
and the results of the geometrically nonlinear analyses are displayed in the table as well. 
The    values coincide with the anti-symmetrical buckling mode, the    values with the 
symmetrical buckling mode. The influence of a geometrical imperfection on the buckling 
load is not investigated and therefore not included in the table.  
 
In buckling analysis, a reduced Young’s modulus should be applied to account for the 
nonlinear material behaviour. In arches, the deformation and the normal forces increase 
simultaneously. Therefore, the tangent stiffness of the stress-strain relation should be 
used [Cem73-3]. For good coherence between the nonlinear analysis and the buckling 
analysis, it is assumed that the tangent stiffness for buckling has the same value as the 
fictitious Young’s modulus,                . 

 
Table 26: Bending moment magnification factors via buckling analysis 

 Stability analysis      Stability analysis Geometrically nonlinear 

Uniform Load                             Analytical Scia 

Hinged 
Clamped 
Flexible low 
Flexible high 

1.60 
3.36 
2.01 
2.77 

2.67 
1.42 
1.99 
1.56 

3.61 
5.47 
4.10 
4.67 

1.38 
1.22 
1.32 
1.27 

1.34 
1.21 
1.40 
1.23 

1.39 
1.23 
1.71 
1.25 

Non-uniform 
load 

                            Analytical Scia 

Hinged 
Clamped 
Flexible low 
Flexible high 

2.00 
4.40 
2.52 
3.55 

2.00 
1.29 
1.66 
1.39 

4.53 
7.17 
5.19 
6.01 

1.28 
1.16 
1.24 
1.20 

1.29 
1.19 
1.28 
1.07 

1.34 
1.22 
1.43 
1.05 

Half span load                             Analytical Scia 

Hinged 
Clamped 
Flexible low 
Flexible high 

3.19 
6.72 
4.01 
5.53 

1.46 
1.17 
1.33 
1.39 

7.22 
10.9 
8.21 
9.34 

1.28 
1.16 
1.24 
1.20 

1.37 
1.15 
1.26 
1.19 

1.54 
1.19 
1.39 
1.24 
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 Stability analysis      Stability analysis Geometrically nonlinear 

Point loads                             Analytical Scia 
Hinged 
Clamped 
Flexible low 
Flexible high 

50.16 
108.2 
63.16 
87.92 

1.02 
1.01 
1.02 
1.01 

114 
180 
130 
151 

1.01 
1.01 
1.01 
1.01 

1.01 
1.01 
1.01 
1.01 

1.02 
1.01 
1.02 
1.01 

Support  
settlements 

                            Analytical Scia 

Clamped 
Flexible low 
Flexible high 

3.36 
2.01 
2.77 

1.42 
1.99 
1.56 

5.47 
4.10 
4.67 

1.22 
1.32 
1.27 

1.17 
1.15 
0.79 

1.23 
1.46 
0.77 

Height                             Analytical Scia 
h=350 
h=450 
h=600 
h=750 

1.29 
2.42 
4.95 
8.91 

4.45 
1.70 
1.25 
1.13 

2.14 
4.22 
9.33 
17.7 

1.88 
1.31 
1.12 
1.06 

1.10 
1.03 
1.06 
1.06 

1.38 
1.08 
1.06 
1.07 

Loads                             Analytical Scia 
0.5 q 
1.0 q 
1.5 q 
2.0 q 
2.5 q 
3.0 q 
4.0 q 
5.0 q 
7.5 q 

6.28 
3.14 
2.09 
1.57 
1.26 
1.05 
0.79 
0.63 
0.42 

1.19 
1.47 
1.92 
2.75 
4.85 
21 
- 
- 
- 

11.2 
5.62 
3.75 
2.81 
2.25 
1.87 
1.41 
1.12 
0.75 

1.10 
1.22 
1.36 
1.55 
1.80 
2.15 
3.44 
9.33 

- 

1.06 
1.13 
1.22 
1.33 
1.48 
1.67 
2.24 
3.21 
11.54 

1.04 
1.10 
1.19 
1.30 
1.50 
- 
- 
- 
- 

  
The table illustrates the principle relation between the affine buckling mode and the 
bending moment magnification. The symmetrical buckling mode, which coincides best 
with the deformations due to the uniform load, appears to be a better representation 
for the bending moment magnification, when compared with the lowest (anti-
symmetrical) buckling mode. Additionally, for the half span load, the anti-symmetrical 
buckling mode is the better approximation, supporting the hypothesis of using the affine 
buckling mode. For arches there is no general analytical relation derived, which could 
link the buckling load to the bending moment magnification and for a statistical proof, 
the number of computations is too small. Especially since the buckling load is sensitive 
for variations in rise and span (chapter 15), which are not varied in the comparison with 
the geometrically nonlinear analysis in Table 26. 
 
Furthermore, the linear and the second order bending moment distributions have 
different shapes. Thus the bending moment magnification factor is not constant along 
the arch. The displayed results are given in the regions of maximum bending moments 
(at mid span or at a quarter of the span), which are the most important locations to 
determine the magnification. Nevertheless, comparing these values with the buckling 
load analyses via        , might lead to some differences, since only one value at one 
location along the arch is compared. To determine the order of magnitude of the factor 
in a quick check, the affine buckling mode provides a reasonable approximation for the 
bending moment magnification of the perfect structure. It does not cover the extra 
loading due to imperfections. For a more detailed result, the geometrically nonlinear 
analysis is required. 
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15. Different arch geometries 

The investigation of the geometrically nonlinear behaviour so far is based on the 
Nijmegen city bridge geometry. This part will provide insight in the bending moments 
and their magnification in nonlinear analysis for arches with different geometries. In the 
model, a strip of unit width (   ) is used. The different geometries will focus on the 
spans and rise-to-span ratios. The cross-sectional height will be adapted according to the 
span. For the spans values between      and       are investigated, the rise to span 
ratio varies from         to    . Values higher than     represent circle segments 
larger than     , which are not likely to be applied for structural purposes. The chosen 
combinations are displayed in Table 27. 
 
Table 27: Overview of investigated geometries 

Span 
    

               
      

        
      

        
      

        
      

        
      

10 300 1  2 3 4 5 
25 400 2.5 5 7.5 10 12.5 
50 500 5 10 15 20 25 
75 750 7.5 15 22.5 30 37.5 
100 1,000 10 20 30 40 50 

 
Since stiffness is a governing parameter, the geometries are combined with two support 
conditions (clamped and flexible supports) and two Young’s moduli (   and     ). For 

the flexible supports, stiffnesses                and             are used, so 
that support stiffness is higher for larger spans. The fictitious Young’s moduli are 
                and                  (see paragraph 18.2.1). Five spans, 

five span to rise ratios, two supports and two Young’s moduli lead to 100 combinations 
(       ).  
 
To limit the amount of data, only a single load case will be reviewed. Since the loading 
will depend on the backfill volume and this volume is depending on the span and rise, it 
has been chosen to neglect the nonlinear loading pattern and to use a uniform 
distributed load. An intermediate value is chosen, based on the ultimate limit state city 
bridge load, which varies between          and           . For the intermediate 
value of the load              is chosen. It is based on the vertical support reaction  
of the nonlinear load in single arch analysis (           ) divided by the half span 
length (          ). For the unit width strip, this leads to                     . 

 
Figure 64: Overview model 
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15.1 Analysis results 

A brief overview of the obtained results is provided in Table 28 to Table 31. 

15.1.1 Clamped arch 

Young’s modulus    

Table 28: Bending moments [kNm] for clamped arches with Young's modulus Ef 

Span 
    

   
    

Support 
Linear 

 
Nonlinear 

 
Factor 

Midspan 
Linear 

 
Nonlinear 

 
Factor 

10 1 -27.39 -28.00 1.02 19.02 18.24 0.96 
 2 13.70 13.45 0.98 13.68 12.93 0.95 
 3 45.96 46.09 1.00 23.02 22.17 0.96 
 4 85.58 86.22 1.01 39.03 38.49 0.99 
 5 133.72 134.94 1.01 60.98 60.85 1.00 
25 2.5 -26.24 -18.02 0.69* 45.46 49.99 1.10 
 5 127.96 134.54 1.05 64.54 68.96 1.07 
 7.5 312.09 324.58 1.04 132.84 142.14 1.07 
 10 553.44 577.14 1.04 236.44 254.93 1.08 
 12.5 851.35 894.87 1.05 375.24 410.26 1.09 
50 5 46.69 183.29 3.93 105.49 210.40 1.99 
 10 553.05 689.34 1.25 237.58 353.25 1.49 
 15 1269.67 1524.11 1.20 521.10 740.91 1.42 
 20 2228.62 2721.07 1.22 938.98 1372.25 1.46 
 25 3417.52 4373.02 1.28 1495.76 2363.27 1.58 
75 7.5 105.28 413.86 3.93 237.31 474.73 2.00 
 15 1245.16 1552.52 1.25 534.42 796.04 1.49 
 22.5 2858.09 3430.84 1.20 1172.23 1668.19 1.42 
 30 5016.09 6124.10 1.22 2112.40 3088.72 1.46 
 37.5 7691.21 9841.07 1.28 3365.14 5318.65 1.58 
100 10 187.31 736.66 3.93 421.85 844.78 2.00 
 20 2214.10 2760.94 1.25 950.00 1415.90 1.49 
 30 5081.90 6100.29 1.20 2083.82 2966.40 1.42 
 40 8918.57 10888.37 1.22 3755.20 5491.79 1.46 
 50 13674.45 17496.47 1.28 5982.25 9456.24 1.58 

 
* for the      span and       rise, the small negative bending moment decreases by a 
large factor. However, the absolute value of the reduction is only      . In Figure 70 it 
is explained that at some point along the arch, the bending moments can reduce in 
geometrically nonlinear analysis when compared with linear analysis, due to the 
imaginary second order load. For the other Young’s modulus and support conditions,  
reductions of the support bending moment for the arch                were 
found in analysis too. 
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Young’s modulus      

Table 29:Bending moments [kNm] for clamped arches with Young's modulus 2*Ef 

Span 
    

   
    

Support 
Linear 

 
Nonlinear 

 
Factor 

Midspan 
Linear 

 
Nonlinear 

 
Factor 

10 1 -27.39 -28.18 1.03 19.02 18.07 0.95 
 2 13.70 13.34 0.97 13.68 12.86 0.94 
 3 45.96 45.93 1.00 23.01 22.05 0.96 
 4 85.58 85.94 1.00 39.03 38.27 0.98 
 5 133.72 134.44 1.01 60.98 60.45 0.99 
25 2.5 -26.24 -22.73 0.87 45.46 47.04 1.03 
 5 127.96 130.93 1.02 64.54 66.17 1.03 
 7.5 312.09 318.17 1.02 132.84 136.90 1.03 
 10 553.44 565.15 1.02 236.44 244.99 1.04 
 12.5 851.35 872.77 1.03 375.23 391.72 1.04 
50 5 46.69 96.62 2.07 105.49 138.61 1.31 
 10 553.05 611.10 1.10 237.58 284.35 1.20 
 15 1269.67 1380.49 1.09 521.10 612.68 1.18 
 20 2228.63 2440.00 1.09 938.98 1116.04 1.19 
 25 3417.52 3812.03 1.12 1495.76 1831.48 1.22 
75 7.5 105.28 218.79 2.08 237.13 313.13 1.32 
 15 1245.16 1376.46 1.11 534.42 640.95 1.20 
 22.5 2858.09 3107.66 1.09 1172.23 1379.59 1.18 
 30 5016.09 5491.60 1.09 2112.40 2512.09 1.19 
 37.5 7691.21 8578.66 1.12 3365.13 4121.80 1.22 
100 10 187.31 389.82 2.08 421.85 557.47 1.32 
 20 2214.10 2447.92 1.11 950.00 1140.16 1.20 
 30 5081.91 5525.72 1.09 2083.82 2453.28 1.18 
 40 8918.58 9763.87 1.09 3755.20 4466.57 1.19 
 50 13674.45 15252.02 1.12 5982.25 7328.28 1.23 

 
 

  



 
 
Part 2: Single arch analysis (2D) - Different arch geometries 

 

Geometrically nonlinear behaviour of arches in 2D Part 2 - Page 84 of 134 
MSc Thesis  

15.1.2 Flexible arch 

Young’s modulus    

Table 30: Bending moments [kNm] for flexible supported arches with Young's modulus Ef 

Span 
    

   
    

Support 
Linear 

 
Nonlinear 

 
Factor 

Midspan 
Linear 

 
Nonlinear 

 
Factor 

10 1 -154.64 -157.67 1.02 90.12 91.74 1.02 
 2 -33.85 -34.10 1.01 39.61 39.20 0.99 
 3 20.39 20.57 1.01 35.93 35.21 0.98 
 4 66.37 67.04 1.01 47.51 47.05 0.99 
 5 115.89 117.15 1.01 67.86 67.82 1.00 
25 2.5 -112.93 -99.56 0.88 90.99 102.07 1.12 
 5 99.23 107.04 1.08 77.87 83.19 1.07 
 7.5 288.35 301.50 1.05 141.54 151.50 1.07 
 10 526.23 550.63 1.05 245.01 264.34 1.08 
 12.5 818.88 863.36 1.05 384.89 421.11 1.09 
50 5 -1.8 165.81 - 129.95 260.67 2.01 
 10 526.86 668.39 1.27 247.24 368.26 1.49 
 15 1234.86 1494.09 1.21 531.40 757.53 1.43 
 20 2180.66 2680.22 1.23 952.42 1395.50 1.47 
 25 3356.47 4323.43 1.29 1512.82 2396.65 1.58 
75 7.5 30.94 383.45 - 274.41 555.65 2.02 
 15 1178.57 1496.83 1.27 555.85 832.06 1.50 
 22.5 2750.26 3336.64 1.21 1202.17 1718.28 1.43 
 30 4859.97 5990.28 1.23 2155.02 3163.75 1.47 
 37.5 7489.28 9676.13 1.29 3420.86 5428.84 1.59 
100 10 84.84 688.31 - 472.18 963.38 2.04 
 20 2075.19 2641.90 1.27 991.33 1488.82 1.50 
 30 4836.07 5883.99 1.22 2150.32 3079.56 1.43 
 40 8555.60 10575.82 1.24 3853.30 5665.97 1.47 
 50 13201.83 17108.65 1.30 6112.09 9714.36 1.59 
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Young’s modulus      

Table 31: Bending moments [kNm] for flexible supported arches with Young's modulus      

Span 
    

   
    

Support 
Linear 

 
Nonlinear 

 
Factor 

Midspan 
Linear 

 
Nonlinear 

 
Factor 

10 1 -202.11 -204.97 1.01 124.42 125.29 1.01 
 2 -62.76 -63.26 1.01 58.10 57.63 0.99 
 3 2.36 2.32 0.98 46.12 45.29 0.98 
 4 51.79 52.13 1.01 54.42 53.75 0.99 
 5 101.73 102.44 1.01 73.55 73.12 0.99 
25 2.5 -182.88 -176.81 0.97 130.20 138.05 1.06 
 5 74.65 78.62 1.05 89.83 92.30 1.03 
 7.5 267.59 274.22 1.02 149.35 154.02 1.03 
 10 502.07 514.34 1.02 252.71 262.04 1.04 
 12.5 789.67 811.88 1.03 393.61 411.20 1.04 
50 5 -45.59 23.65 - 152.70 200.50 1.31 
 10 502.94 564.91 1.12 256.20 306.87 1.20 
 15 1202.82 1317.16 1.10 540.94 637.26 1.18 
 20 2136.19 2352.75 1.10 964.91 1149.10 1.19 
 25 3299.53 3702.26 1.12 1528.74 1875.43 1.23 
75 7.5 -34.54 103.75 - 308.57 408.44 1.32 
 15 1119.24 1257.90 1.12 575.26 692.31 1.20 
 22.5 2653.22 2912.17 1.10 1229.23 1451.62 1.18 
 30 4718.04 5209.10 1.10 2193.81 2616.99 1.19 
 37.5 7304.07 8217.16 1.13 3471.99 4265.18 1.23 
100 10 -3.15 225.27 - 517.93 689.63 1.33 
 20 1954.47 2200.44 1.13 1027.80 1240.53 1.21 
 30 4619.64 5082.65 1.10 2209.05 2613.12 1.18 
 40 8231.90 9110.85 1.11 3940.88 4707.15 1.19 
 50 12775.43 14409.79 1.13 6229.26 7661.05 1.23 
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15.2 Conclusion different geometries 

The results of the analyses in the tables of chapter 15.1 are displayed in graphs. The 
bending moment magnification factors at mid span and at the support are displayed as a 
function of the rise to span factor.  
 

 
Figure 65: Bending moment magnification at mid span 

 

 
Figure 66: Bending moment magnification at support  



 
 
Part 2: Single arch analysis (2D) - Different arch geometries 

 

Geometrically nonlinear behaviour of arches in 2D Part 2 - Page 87 of 134 
MSc Thesis  

Both the bending moments at support and at mid span increase for higher rise to span 
ratios. Simultaneously, the bending moment magnification reduces due to the lower 
normal forces that occur when the arch’s rise is high, only for the highest investigated 
rise to span ratio (       ), deformations are larger and magnification factors 
increase a little. 
 
For the spans     ,      and         equal magnification factors are found. For 
these spans, the cross-sectional height increases proportional to the span (       ). 
For the spans      and        this relation was not used, since bending stiffness 
was assumed to relate cubically to the cross-sectional height (        ) and thus 
higher cross-sectional heights were chosen. The much lower magnification factor for the 
spans      and        might be caused by the relatively high cross-sectional 
height, compared with the other three investigated spans. 
 

Span            

10 300 
25 400 
50 500 
75 750 
100 1,000 

 
The rise to span ratio         leads to unrealistically high magnification factors, due 
to the low first order bending moments. For the rise to span ratio’s         and     
the lowest magnification factors are found.  
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16. Conclusions single arch analysis 

16.1 Bending moment magnification 

The second order bending moment distribution in arched structures is a complex 
phenomenon, dictated by loads, geometry and stiffnesses, which determine together 
the mathematical second order load (     ). Since the deformed arch has    
continuity (  : first and second derivative are continuous), the second order load is at 
least    continuous (    only function itself is continuous) and the second order 
bending moment is    continuous again. Since the mathematical second order load 
      has a different distribution compared with the loads   and  , which are applied 
in the linear analysis step, the bending moment distributions have different shapes. This 
is illustrated in Figure 68, in which the non-uniform load and a tandem axle are applied 
to a single arch with flexible supports. Since the first order and second order bending 
moments have different shapes, the bending moment magnification varies along the 
arch span (Figure 69).  
 

   
Figure 67: First order deformation 

 
Figure 68: Bending moment distribution, first order, second order and total 
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Figure 69: Bending moment magnification 

 
The internal forces and deformations that are computed in the analysis of arched 
structures are influenced by many parameters, in which the stiffnesses are the most 
important. A uniform formula or rule of thumb cannot be given. The affine buckling 
appears to be a good approximation when designing for the maximum bending 
moments. However, to understand the principle of geometrically nonlinear behaviour in 
arches, a different way of thinking is required. Instead of linking geometrical nonlinearity 
to buckling, as is good practice in column design, the geometrically nonlinear behaviour 
of arches could better be envisioned in terms of the second order loading,      . This 
second derivative of deformations might be a vague concept, but it can be imagined via 
the analogy with the moment area method (Mohr’s theorems). This moment area 
method uses the Euler-Bernoulli bending theory to compute rotations and deflections 
(           ) by loading the structure with the reduced bending moment area. In 
second order analysis of arched structures, this reduced bending moment area can be 
used too. When multiplied by the horizontal thrust, the imaginary second order load is 
obtained (axial deformation are neglected) and second order bending moments can be 
computed. In Figure 70, the concept of the reduced bending moment area is presented 
for a flexible supported arch with uniformly distributed load. 
 

 
Figure 70: Visualization second order loading for engineering judgement (not to scale) 

Although several combinations of load cases and stiffnesses are investigated and results 
of analytical and finite element analysis coincide well, the internal forces depend on 
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stiffnesses. When assuming a stiffness parameter (Young’s modulus, cross-sectional 
dimensions, support stiffness) it should be kept in mind that the chosen value has a 
major influence on the obtained results. And especially for the low stiffnesses, 
irrespectively of which stiffness is low, the results of the models differ. 

16.2 SLS and ULS loading 

In terms of loading, the difference between serviceability and ultimate limit state are 
the partial safety factors. In linear analysis, the internal forces can be multiplied by this 
factor to obtain the internal forces in ultimate limit state. In geometrically nonlinear 
analysis, this superposition principle (linearly summing of results) is not valid. Increasing 
the load will lead to deformations that are larger than proportionally can be expected, 
based on the load increase. This nonlinear behaviour is illustrated in Figure 71. In this 
figure, the different approaches to the geometrically nonlinear behaviour are compared.  
The figure illustrates the non-proportional increase of bending moments when loading is 
increased from SLS to ULS.  
 
Conform Eurocode, only in ultimate limit state a nonlinear analysis is required to meet 
safety standards, since the nonlinear effect is larger for higher loads. However, in 
serviceability limit state, deformations will be larger than computed with linear theory 
too. For accurate results, a nonlinear analysis could be useful for SLS loading. It should 
be kept in mind that superposition is not valid and for each load combination, iteratively 
a solution has to be found. Restricting the number of load combinations in nonlinear 
analysis is thus essential. 
 

 
Figure 71: Comparing geometrically nonlinear and stability analyses 
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17. Introduction to Part 3 

The approach bridge structure consists of several arches, each arch mutually confining 
the adjacent spans in horizontal direction. Structural systems containing multiple arches 
benefit this mutual confinement, when compared to single arches. Since the horizontal 
thrust is excited mainly at the end spans, the deformations that emerge in the 
intermediate spans to acquire the horizontal thrust are smaller.  
 
In this part, models with multiple arches will be considered to investigate the mutual 
confinement. The main pier, the intermediate piers and the abutment provide stiffness 
to the multiple arch system. The horizontal stiffness of the substructure elements is 
investigated first. In a multiple arch system with flexible supports, the end spans suffer 
the lower degree of confinement. This edge disturbance results in higher deformations 
and higher bending moments. Next the number of spans is investigated for the edge 
disturbance to fade out. 
 
The geometrically nonlinear analysis is carried out for several multiple span models. First 
the arches are modelled with rotational and translational flexible supports (linear 
behaviour) at the heel of the arches. After this analysis, the substructure is added for a 
better representation of the structural system, as the actual response of the 
substructure in second order analysis is nonlinear. The last analysis in this part deals 
with the entire approach bridge model, made by BAM Infraconsult and modified for the 
nonlinear analysis.  
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18. Modelling 

18.1 Load 

The distributed load on the arches in ultimate limit state, thus including the partial 
safety factors (         ), can be approximated by                       . 

This load is visualised in Figure 72. As stated in part 1, this load includes permanent 
loads and distributed traffic load. This load is applied in all models. 

 
Figure 72: Non-uniform distributed load     

 
Additionally, tandem axle load, shrinkage and temperature load are modelled in the 
approach bridge model. For the temperature load, only the shortening due to cooling is 
analysed, since cooling lead to downward deformations and thus contributing to the 
second order behaviour. Heating will reduce the deformation due to permanent and 
traffic load and it is therefore not incorporated in analysis. All loads are summed into 
fifteen combinations, in which only the location of the tandem axle system differs. 

18.2 Arches 

In this part, the effect of multiple arches next to each other is investigated. Different 
geometries are not considered in this analysis. Only the city bridge arch design (span 
      , rise       , cross-section          ) is used. 

18.2.1 Young’s modulus 

The Young’s modulus is one of the stiffness parameters, determining the structural 
behaviour. As stated in part 2, a fictitious Young’s modulus can be estimated according 
to the Dutch national annex to Eurocode 2 (EN1992-1-1). 
 
                               

       

 
In part 2 (paragraph 13.1.2), the formula is evaluated, leading to                . 

A higher Young’s modulus will cause higher first order bending moments, but the 
smaller deformations result in smaller second order bending moments. Therefore, a 
higher Young’s modulus is investigated too in the multiple arch models. For this higher 
stiffness the value                   is used. It is higher than the maximum value 

that can be computed with the estimation formula, but lower than the initial concrete 
stiffness                 . Analysis of the M-N-κ relations in part 4 displayed 
higher stiffnesses up to                , since reinforcement contributes too. This 

fictitious stiffness of the uncracked cross-section leads to high bending moments and 
cracking. Due to cracking the stiffness will decrease and bending moments reduce. The 
fictitious stiffness of the cracked cross-section appears to be approximately    

                   , depending on the height of the cross-section and whether 
creep is or is not taken into account. 
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18.2.2 Finite element model 

The finite element analyses are based on two-dimensional models, in which (one-
dimensional) beam elements are used. For the analyses Scia Engineer is used. This 
program discretizes a curve into straight elements. An average mesh size of       is 
applied, so that at least    finite elements along a single arch are used. Shear 
deformations are taken into account and the direct solver is applied in linear analysis. 
For nonlinear analysis, the Newton-Raphson solver is used. Critical points will not be 
reached in the analysis, thus refining the size of the load increments is not required. The 
Timoshenko solver will neglect the increase in normal forces and should not be used. 

18.2.3 Number of arches 

Structural arch behaviour relies on confinement of the supports. Large share of the 
horizontal thrust is excited in the end supports (the main pier and the abutment). The 
intermediate supports contribute little, since the horizontal thrust of the two adjacent 
spans equalize in these nodes. Nevertheless, the end spans benefit this stiffening due to 
adjacent spans only on one side. The end supports provide only horizontal support after 
deformation. This leads to a kind of “edge disturbance” in which high bending moments 
occur in the end spans. The effect fades out over several spans. Based on a 30 span 
model (Figure 73), the influence of the end span disturbance is determined and 
visualised (Figure 73 and Figure 75). For this 30 span model, the upper and lower 
Young’s modulus and the high and low support stiffness are regarded. 
 

 
Figure 73: 30 span arch model – bending moment distribution 

 
Figure 74: 30 span arch model – displacements    along arch 

 
Figure 75: 30 span arch model - bending moment distribution – detail span 1 to 7 

 
All four combinations of support stiffness and Young’s moduli lead to similar shapes of 
the bending moment distribution, although the values of bending moment distributions 
differ. As can be seen in Figure 75 (bending moments for high support stiffnesses and 
low Young’s modulus), the first span, and the second span to a lesser extent, have 
different bending moment distributions due to the edge effect. From the fourth span 
and further away from the edge, the bending moments reach an almost constant 
distribution for these intermediate spans. 
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In structural analysis of these multiple arch models, at least three spans are required for  
the edge effect to fade out. Thus, when modelling two edges, at least seven spans 
should be modelled to cover both the behaviour at the edges and the behaviour of the 
spans that are not affected by the edges. This is illustrated by the bending moment 
distributions for three, five and seven spans (Figure 76). 
 

 

 

 
Figure 76: Bending moment distribution for 3, 5 and 7 span arch models 
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19. Analysis multiple arch models without substructure 

 
Figure 77: 7 span model without substructure 

19.1 Support stiffness 

19.1.1 Substructure 

For the arched structure in the approach bridge, four different cases can be 
distinguished in the design of the substructure. These four cases are the intermediate 
piers founded on drilled piles, the intermediate piers founded on vibro piles, the 
abutment and the main pier at the river bank. These elements all provide horizontal, 
vertical and rotational stiffness to the arched spans. In this analysis, the vertical stiffness 
(and support settlements) are not considered. When modelling only a part of the 
approach bridge, the neglected spans provide horizontal and rotational stiffness to the 
end spans of the reduced models. The stiffnesses that will be taken into account in 
analysis, are the horizontal and rotational stiffness. The values are determined by using 
the two-dimensional model of the approach bridge which is developed by BAM 
Infraconsult. In these models, the soil stiffness computed in the geotechnical analysis is 

divided by a factor    and a fictitious (secant) Young’s modulus                  is 

applied. This model is split into the required parts and then loaded by unit forces and 
unit bending moments (                           respectively). 
 

 
Figure 78: Three spans and river bank pier (left) 

                   
Figure 79: Single piers, founded on vibro piles (left) and drilled piles (right) 

 
Figure 80: Three spans and abutment (right) 
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19.1.2 Stiffnesses 

Structural linear analysis provides deformations (rotations and translations), via which 
the stiffnesses are computed easily by       and       . Nevertheless, this is not 
the exact representation of the model. The formulae are valid for springs. In the 
structural behaviour there are mutual influences (terms     and    ), since forces lead 
to rotations and bending moments to displacements as well. It is visualised in matrix 
notation: 
 

 
 
 
   

      
      

   
 
    

 
However, the flexible support conditions in the finite element software can handle only 
linear translational and linear rotational stiffnesses. Using the   and   values is the most 
obvious approach. The results of the substructure analysis are displayed in Table 32. The 
stiffnesses are computed manually and the values are rounded. 
 
Table 32: Substructure analysis results and stiffnesses 

 Translation 
       

Stiffness 
         

Rotation 
         

Stiffness 
            

3 span & river pier 905.2 110,000 12.5 8,000,000 
3 span & abutment 653.2 153,000 10.9 9,200,000 
Piers on vibro piles 

- Short 
- Medium 
- Long 
- Average 

 
1,375.7 
1,955.9 
1,931.4 
1,754.3 

 
 
 
 

57,000 

 
19.7 
21.4 
20.5 
20.5 

 
 
 
 

4,900,000 
Piers on drilled piles 

- Short 
- Long 
- Average 

 
4,142.5 
3,832.2 
3,987.4 

 
 
 

25,000 

 
28.8 
28.0 
28.4 

 
 
 

3,500,000 

 
To investigate the second order effects, the lower bound value is most probably 
governing. However, high support stiffness leads to higher normal forces and is 
therefore included in the investigation.  
 
Table 33: Substructure stiffnesses applied in analyses 

Support: Intermediate 
            

 
         

End 
            

 
         

Low stiffness 3,000,000 25,000 8,000,000 100,000 
High stiffness 5,000,000 60,000 10,000,000 150,000 

19.1.3 Soil stiffness 

The soil stiffness influences largely the support stiffness for the superstructure. When 
including the substructure in the structural model, the soil stiffness is a paramount 
parameter. However, geotechnical analysis is not in the scope of the thesis and similar 
to the design of structures, conservative values will be used in analysis. In the thesis, the 
soil stiffnesses are copied unaltered, together with the substructure, out of the existing 
models made by BAM Infraconsult and are regarded as given parameters.  
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19.2 Analysis 

Based on the linear structural analysis, seven spans are required in the investigation. 
When considering geometrically nonlinear behaviour, only the first, the second and the 
middle span will be researched. This limits the amount of data, while still providing 
information on three characteristic spans of the (symmetrical) multiple arch model.  
 
Four cases are investigated, by combining the low and high support stiffnesses with the 
lower and upper bound values for the fictitious Young’s modulus.  
 

 
 

 
 
Figure 81: Bending moment distributions without (upper) and with (lower) tandem axle loading at middle 
span 

 
The bending moment distributions have similar shapes for the different support 
stiffnesses (denoted by C&k low and high) and the fictitious Young’s moduli (   and 

    ). Therefore, for each span the bending moment distributions are graphically 

displayed only for the C&k low –    model. The bending moments that occur in the 

models with different stiffnesses are displayed numerically in the tables. 
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19.2.1 End span 

 
Figure 82: Bending moments endspan - linear 

 
Figure 83: Bending moments endspan - nonlinear 

 
 
Table 34: End span: characteristic values bending moment distribution 

End span 
Model 

          

[kNm] 

         

[kNm] 

           

[kNm] 

C&k low 
   

Linear -26,592.6 +8,915.5 -26,554.5 
Non-linear -30,529.7 +14,969.5 -30,192.0 
Difference -3,937.1 +6,054.0 -3,637.5 
Factor 
 

 1.15  1.68  1.14 

C&k low 
     

Linear -35,415.9 +14,594.5 -36,149.2 
Non-linear -38,709.1 +18,445.9 -38,776.3 
Difference -3,293.2 -3,851.4 -2,627.1 
Factor 
 

 1.09  1.26  1.07 

C&k high 
   

Linear -23,341.1 +7,042.4 -23,377.1 
Non-linear -24,871.6 +10,634.3 -24,798.6 
Difference -1,530.5 +3,591.9 -1,421.5 
Factor 
 

 1.07  1.51  1.06 

C&k high 
     

Linear -31,791.8 +12,207.4 -32,172.9 
Non-linear -33,934.3 +15,075.2 -33,996.0 
Difference -2,142.5 +2,867.8 -1,823.1 
Factor 
 

 1.07  1.24  1.06 
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19.2.2 Second span 

 
Figure 84: Bending moments second span - linear 

 
Figure 85: Bending moments second span - nonlinear 

 
Table 35: Second span: characteristic values bending moment distribution 

Second span 
Model 

          

[kNm] 

         

[kNm] 

           

[kNm] 

C&k low 
   

Linear -16,304.2 +3,459.2 -14,357.1 
Non-linear -13,634.0 +3,551.8 -12,418.5 
Difference +2,670.2 +92.6 +1,938.6 
Factor 
 

 0.84  1.03  0.87 

C&k low 
     

Linear -25,468.9 +6,356.8 -21,370.7 
Non-linear -24,557.6 +6,731.0 -20,568.8 
Difference +911.3 +374.2 +801.9 
Factor 
 

 0.96  1.06  0.96 

C&k high 
   

Linear -12,105.4 +2,731.2 -10,918.1 
Non-linear -10,436.0 +3,016.6 -9,845.4 
Difference +1,669.4 +285.4 +1,072.7 
Factor 
 

 0.86  1.10  0.90 

C&k high 
     

Linear -18,524.8 +3,958.2 -15,538.4 
Non-linear -17,486.7 +4,018.7 -14,871.5 
Difference +1,038.1 +60.5 +666.9 
Factor 
 

 0.94  1.02  0.96 
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19.2.3 Middle span 

Since the middle spans have an almost symmetrical bending moment distribution 
(Figure 86 and Figure 87), only the characteristic values of the left half span are 
displayed in Table 36 (at the support and the sagging and hogging maxima) 

 
Figure 86: Bending moments middle span - linear 

 
Figure 87: Bending moments middle span - nonlinear 

 
Table 36: Middle span: characteristic values bending moment distribution – left half span 

Middle span 
Model 

               

[kNm] 

         

[kNm] 

             

[kNm] 

C&k low 
   

Linear -9,519.7 +2,383.7 -563.1 
Non-linear -8,458.1 +2,743.5 -1,826.3 
Difference +1,061.6 +359.8 -1,263.2 
Factor 
 

 0.89  1.15  3.24 

C&k low 
     

Linear -14,893.9 +2,996.8 +2,059.4 
Non-linear -13,492.3 +2,709.2 +1,398.7 
Difference +1,401.6 -287.6 -660.7 
Factor 
 

 0.91  0.90  0.68 

C&k high 
   

Linear -7,572.7 +2,450.7 -1,509.2 
Non-linear -7,753.8 +2,894.9 -2,297.0 
Difference -181.1 +444.2 -787.8 
Factor 
 

 1.02  1.18  1.52 

C&k high 
     

Linear -9,616.5 +2,368.2 -538.2 
Non-linear -9,100.1 +2,456.9 -1,110.2 
Difference +516.4 +88.7 -572.0 
Factor 
 

 0.95  1.04  2.06 
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19.2.4 Middle span including tandem axle 

For bending moment distributions including loading by the tandem axle system, the 
support bending moments and the sagging bending moment at the tandem axle is 
provided. In all cases the tandem axle system is positioned at a quarter of the span and 
      towards midspan. 

 
 
Figure 88: Bending moments middle span including tandem axle - linear 

 
Figure 89: Bending moments middle span including tandem axle - nonlinear 

 
Table 37: Middle span: characteristic values bending moment distribution – left half span 

Middle span 
Model – tandem axle 

               

[kNm] 

         

[kNm] 

                

[kNm] 

C&k low 
   

Linear -15,045.2 +6,634.3 -10,455.2 
Non-linear -17,997.2 +9,346.7 -10,934.6 
Difference -2,952.0 +2,712.4 -479.4 
Factor 
 

 1.20  1.41  1.05 

C&k low 
     

Linear -20,847.3 +8,826.0 -16,632.7 
Non-linear -21,431.1 +10,097.0 -16,290.7 
Difference -583.8 +1,271.0 +342.0 
Factor 
 

 1.03  1.14  0.98 

C&k high 
   

Linear -12,041.5 +5,564.6 -7,250.6 
Non-linear -14,208.4 +7,457.5 -6,985.4 
Difference -2,166.9 +1,892.9 +265.2 
Factor 
 

 1.18  1.34  0.96 

C&k high 
     

Linear -14,747.6 +6,565.8 -10,231.7 
Non-linear -15,432.8 +7,388.5 -9,949.6 
Difference -685.2 +882.7 +282.1 
Factor 
 

 1.05  1.13  0.97 
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19.2.5 Middle span including geometrical imperfection 

The geometrical imperfection (lowest buckling mode with amplitude of      ), is only 
taken into account in the nonlinear analysis. The linear analysis is based on the perfect 
shape of the structure. Again only the left half span is displayed in the table. 

 
Figure 90: Bending moments middle span - linear 

 
Figure 91: Bending moments middle span including geometrical imperfection - nonlinear 

 
Table 38: Middle span: characteristic values bending moment distribution – left half span 

Middle span 
Model 

               

[kNm] 

         

[kNm] 

             

[kNm] 

C&k low 
   

Linear -9,519.7 +2,383.7 -563.1 
Non-linear -9,228.4 +2,600.1 -865.2 
Difference +291.3 +216.4 -302.1 
Factor 
 

 0.97  1.09  1.54 

C&k low 
     

Linear -14,893.9 +2,996.8 +2,059.4 
Non-linear -12,914.1 +2,502.8 +719.9 
Difference +1,979.8 -494.0 -1,339.5 
Factor 
 

 0.87  0.84  0.35 

C&k high 
   

Linear -7,572.7 +2,450.7 -1,509.2 
Non-linear -8,070.6 +2,653.1 -1,681.3 
Difference -497.9 +202.4 -172.1 
Factor 
 

 1.07  1.08  1.11 

C&k high 
     

Linear -9,616.5 +2,368.2 -538.2 
Non-linear -9,500.3 +2,380.3 -575.4 
Difference +116.2 +12.1 -37.2 
Factor 
 

 0.99 1.01  1.07 
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19.3 Concluding arch model without substructure 

When comparing the (symmetrical) seven span models to the single arch models, two 
comparable situations occur. At the end span the flexible supported situation occurs and 
the middle span resembles the fully clamped arch, when comparing the bending 
moment distributions and deformations. Actually, these differences in confinement are 
the main reason to model multiple arches. As can be seen in Figure 97, the normal 
forces do increase towards the middle span, but the largest share of the horizontal 
thrust is excited in the end span. Since in the end span larger deformations occur, the 
bending moment magnification is the highest in the end span. Although the horizontal 
support stiffness at the end spans was tuned to resemble only intermediate spans in 
these 7 span models, the edge disturbance remains (deformation before horizontal 
thrust is excited), irrespectively of the modelled stiffness. 
 
In the second span, the bending moments at the supports decrease in geometrically 
nonlinear analysis, when compared with linear analysis. 
 
In the middle span, the small hogging moment in linear analysis is increased in 
geometrically nonlinear analysis, leading to large magnification factors. 
 
The two extreme combinations in stiffness (low support stiffness, lower bound Young’s 
modulus and high support stiffness and upper bound Young’s modulus) lead to bending 
moments with the same order of magnitude. Combining low support stiffness with the 
upper bound Young’s modulus, higher bending moments will be found, since higher 
curvature is required to follow the horizontal translations. 
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20. Analysis multiple arch models including substructure 

 
Figure 92: 7 span model with batter piles (piers number 3 and 6) 

 
Figure 93: 7 span model with drilled piles (pier number 12) 

20.1 Seven span models 

In this analysis, the model is enlarged by adding the substructure. This substructure with 
foundation and support stiffnesses for the different soil layers is already modelled by 
BAM Infraconsult in design. The substructure and the additional data is added to the 
seven span models by simply copying part of the approach bridge structure into a new 
model for this investigation. All intermediate piers have different support stiffnesses due 
to different soil properties. Therefore, intermediate piers number 2 to number 12, are 
loaded by unit loads (        ), to investigate the substructure stiffness and to select 
three piers for the structural analysis of the arched superstructure. The horizontal 
translation is displayed in Figure 94. The difference with the analysis in paragraph 
19.1.2, is that in this analysis no stiffness values are required, but a choice is made for 
the piers that are modelled in the multiple arch models. 
 

 
   2         3     4            5       6  7        8 

 
    9        10    11          12 
Figure 94: Horizontal translation piers city bridge due to unit loading, values in [mm] 

 
For the piers with batter piles (the vibro pile system), translation varies mainly between 
      and      . Only piers number 2 and 3, suffer a much lower vertical soil 
stiffness and a much higher translation occurs. The drilled casing piles all have similar 
translations. To investigate the effect of the substructure stiffness on the bending 
moments in the arches, piers number 3, number 6 and number 12 will be analysed in 
the seven span model. 
 
At the end spans, horizontal and rotational supports should be modelled to account for 
the adjacent spans. Since the intermediate piers at the end spans are modelled, the end 
support stiffness in Table 32, should be reduced. The most straightforward method is 
subtracting the intermediate pier stiffness from the end span stiffness. To obtain a lower 
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bound value, the river bank pier stiffness is used (lowest value) and subtracted is the 
average stiffness of the piers on vibro piles (highest value), leading to: 
 
                                    
                                       
 
Piers number 3, 6 and 12 are copied out of the approach bridge model and arches and 
loads are added. For the Young’s modulus, both the upper and lower bound values will 
be investigated. 

20.1.1 Bending moment distribution 

As visualised in Figure 95, the bending moment distribution has a shape similar to the 
bending moment distribution that was found in the 7 span models without substructure 
(Figure 81). For the other investigated piers (№3 and №12), similar shaped bending 
moment distributions are found, although for the lower support stiffness, at mid span 
no hogging bending moments occur for the middle spans.  

 
Figure 95: Bending moment distribution piers number 6, Ef 

 
Since the bending moment distributions have similar shapes for the different analysed 
cases, only the extreme values of the bending moment distributions of the end and 
middle span are displayed in  Table 39 en Table 40. 
 
Table 39: Extreme values bending moment distribution [kNm] - Young’s modulus:    

Bending 
moment 

Endspan 
Hog-left 

 
Hog-right 

 
Sagging 

Middle  
Hog-left 

span 
Sagging 

 
Hog-mid 

№ 3 linear -38,448 -23,955 10,660 -12,268 2,425 725 
Nonlinear -36,432 -28,767 15,740 -11,836 2,458 329 
Factor 
 

0.95 1.20 1.48 0.96 1.01 0.45 

№ 6 linear -32,023 -22,860 8,227 -7,982 2,386 -1,359 
Nonlinear -30,493 -25,988 11,809 -8,094 2,804 -2,093 
Factor 
 

0.95 1.14 1.44 1.01 1.18 1.54 

№ 12 linear -37,413 -24,795 10,319 -10,815 2,317 -90 
Nonlinear -36,178 -29,694 15,412 -10,029 2,510 -842 
Factor 0.97 1.20 1.49 0.93 1.08 9.36 
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Table 40: Extreme values bending moment distribution [kNm] - Young’s modulus:      

Bending 
moment 

Endspan 
Hog-left 

 
Hog-right 

 
Sagging 

Middle  
Hog-left 

span 
Sagging 

 
Hog-mid 

№ 3 linear -55,070 -30,276 16,813 -20,106 4,173 4,084 
Nonlinear -54,449 -32,390 20,076 -20,663 4,813 4,921 
Factor 
 

0.99 1.07 1.19 1.03 1.15 1.20 

№ 6 linear -45,680 -29,202 13,288 -10,598 2,282 -230 
Nonlinear -45,476 -31,865 15,939 -10,425 2,320 -512 
Factor 
 

1.00 1.09 1.20 0.98 1.02 2.23 

№ 12 linear -53,213 -31,243 16,206 -16,976 3,179 2,661 
Nonlinear -53,076 -34,367 19,482 -16,921 3,292 2,943 
Factor 1.00 1.10 1.20 1.00 1.04 1.11 

20.1.2 Geometrical imperfection 

Eurocode EN1992-2 prescribes two geometrical imperfections for arch bridges, based on 
the first horizontal and the first vertical buckling modes. These buckling modes can be 
determined via stability analysis, but might be modelled as sine curves too. In the 
investigation, the imperfection is modelled by three half sine waves, representing the 
first vertical buckling mode, which is applied to all seven spans. This imperfection is 
affine with the deformations caused by the distributed load and therefore assumed to 
yield the governing combination of loads and imperfections, see Table 41.  
 
Only in case the tandem axle system is located asymmetrically, for example at a quarter 
of the span, the horizontal (antisymmetrical) buckling mode is affine with the largest 
share of the deformations due to the load. Since the tandem axle system causes high 
second order bending moments when combined with the distributed load, this situation 
is investigated as well, see Table 42. For this analysis, the imperfection is modelled by 
two half sine waves. The imperfect shape of the arches is drawn manually in Scia 
Engineer, so that it is incorporated in both linear and nonlinear analysis. Using the 
predefined functions in Scia Engineer will only lead to geometrical imperfections in the 
nonlinear analysis.  
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Table 41: Bending moments for arches with symmetrical imperfection – tandem axle at       

Bending 
moment 

Endspan 
Hog-left 

 
Hog-right 

 
Sagging 

Middle  
Hog-left 

span 
Sagging 

Geometrically perfect – substructure pier № 3 – Young’s modulus    

Linear -38,448 -23,955 10,660 -12,268 2,425 
Nonlinear -36,432 -28,767 15,740 -11,836 2,458 
Factor 
 

0.95 1.20 1.48 0.96 1.01 

Geometrically imperfect (symmetrical) 
Linear -38,305 -23,749 11,182 -12,350 2,141 
Nonlinear -36,235 -28,594 16,739 -11,287 2,083 
Factor 
 

0.95 1.20 1.50 0.91 0.97 

Geometrically perfect and tandem axle load at middle span 0.5 L 
Linear -38,103 -23,407 10,521 -16,538 6,305 
Nonlinear -36,007 -28,259 15,544 -18,591 9,934 
Factor 
 

0.94 1.21 1.48 1.12 1.58 

Geometrically imperfect (symmetrical) and tandem axle load at 0.5 L 
Linear -37,955 -23,193 11,104 -16,178 7,295 
Nonlinear -35,645 -27,891 16,434 -17,964 11,282 
Factor 
 

0.94 1.20 1.48 1.11 1.55 

Geometrically imperfect (symmetrical) and tandem axle at end span 0.5 L 
Linear -41,272 -27,152 16,129 -12,054 2,135 
Nonlinear -41,358 -34,697 25,192 -10,764 2,163 
Factor 1.00 1.28 1.56 0.89 1.01 

 
Table 42: Bending moments for arches with symmetrical imperfection, middle span anti-symmetrical and 
tandem axle at        

Bending 
moment 

Endspan 
Hog-left 

 
Hog-right 

 
Sagging 

Middle  
Hog-left 

span 
Sagging 

Geometrically perfect – substructure pier № 3 – Young’s modulus    

Linear -38,448 -23,955 10,660 -12,268 2,425 
Nonlinear -36,432 -28,767 15,740 -11,836 2,458 
Factor 
 

0.95 1.20 1.48 0.96 1.01 

Geometrically imperfect (antisymmetrical for middle span) 
Linear -38,353 -23,826 11,205 -13,524 3,027 
Nonlinear -36,331 -28,709 16,788 -12,581 3,425 
Factor 
 

0.95 1.20 1.50 0.93 1.13 

Geometrically perfect and tandem axle load at middle span 0.25 L 
Linear -38,100 -23,402 10,520 -18,957 6,704 
Nonlinear -36,001 -28,252 15,541 -20,940 8,198 
Factor 
 

0.94 1.21 1.48 1.10 1.22 

Geometrically imperfect and tandem axle load at 0.25 L 
Linear -38,236 -23,639 11,149 -19,866 7,414 
Nonlinear -36,182 -28,531 16,711 -21,744 9,339 
Factor 0.95 1.21 1.50 1.09 1.26 
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21. Approach bridge model 

In the previous analyses, the seven span models, three  piers were chosen (numbers 3, 6 
and 12). Each of these chosen piers were used for a seven span model, leading to 
symmetrical models and symmetrical results. However, the approach bridge is not 
symmetrical, as can be seen in Figure 96. The end supports providing the confinement of 
the arches, are different, the intermediate supports have different pier heights and soil 
stiffness vary along the       long approach bridge. 
 
Since the seven span models deviate from the approach bridge, a geometrically 
nonlinear analysis is carried out for the approach bridge model too. The model was 
made by BAM Infraconsult and is adapted to perform the nonlinear analysis. Since this 
analysis requires iterative solving for each load combination, the number of load 
combinations is reduced to fifteen. In these combinations, spans 1-2 to 15-16 are all 
loaded once by the tandem axle system. 

 
Figure 96: Example bending moment distribution - approach bridge model 
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21.1.1 Influence Young’s modulus 

First the influence of the Young’s modulus on the bending moment magnification is 
investigated for permanent and distributed traffic load only. 
 
Table 43: Characteristic values bending moment distribution approach bridge [kNm], Young’s modulus 
                

 
Span 

Max. hogging bending moment Max. sagging bending moment 

Linear Nonlinear Factor Linear Nonlinear Factor 
1-2 -34,198 -32,926 0.96 5,464 7,832 1.43 
2-3 -15,544 -12,249 0.79 2,925 3,413 1.17 
3-4 -11,693 -11,330 0.97 1,769 1,829 1.03 
4-5 -19,382 -20,169 1.04 3,647 4,159 1.14 
5-6 -19,159 -19,957 1.04 3,574 4,142 1.16 
6-7 -10,618 -10,033 0.94 1,946 2,226 1.14 
7-8 -11,467 -10,751 0.94 2,264 2,723 1.20 
8-9 -9,193 -8,674 0.94 2,508 3,240 1.29 
9-10 -9,466 -9,368 0.99 2,123 2,525 1.19 
10-11 -10,209 -9,872 0.97 2,321 2,728 1.18 
11-12 -10,166 -9,935 0.98 2,092 2,412 1.15 
12-13 -10,327 -9,916 0.96 2,107 2,413 1.15 
13-14 -10,806 -10,324 0.96 1,980 2,158 1.09 
14-15 -13,059 -12,246 0.94 2,162 2,201 1.02 
15-16 -14,042 -14,201 1.01 2,972 3,560 1.20 

 
 

Table 44: Characteristic values bending moment distribution approach bridge [kNm],      

            

 
Span 

Max. hogging bending moment Max. sagging bending moment 

Linear Nonlinear Factor Linear Nonlinear Factor 
1-2 -42,191 -41,043 0.97 7,679 9,031 1.18 
2-3 -22,063 -19,925 0.90 4,212 4,822 1.14 
3-4 -15,454 -15,272 0.99 2,216 2,555 1.15 
4-5 -21,194 -21,855 1.03 3,966 4,388 1.11 
5-6 -21,044 -21,498 1.02 3,572 3,842 1.08 
6-7 -11,724 -11,522 0.98 2,008 2,072 1.03 
7-8 -12,482 -12,060 0.97 2,518 2,752 1.09 
8-9 -9,075 -8,668 0.96 2,622 3,093 1.18 
9-10 -9,012 -8,780 0.97 2,165 2,385 1.10 
10-11 -10,305 -9,848 0.96 2,646 2,909 1.10 
11-12 -10,183 -9,794 0.95 2,245 2,420 1.08 
12-13 -10,653 -10,118 0.96 2,311 2,478 1.07 
13-14 -11,369 -10,877 0.96 2,101 2,167 1.03 
14-15 -14,062 -13,591 0.97 2,353 2,343 1.00 
15-16 -13,897 -13,917 1.00 3,235 3,656 1.13 
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21.1.2 Bending moments including tandem axle loading 

The tandem axle load leads to high bending moments and relatively low normal forces. 
Second order bending moments due to the tandem axle load itself are small. However, 
when combined with the other loads, higher normal forces occur together with 
relatively large deformations due to the tandem axle load. In the combination of 
distributed loads and the tandem axle system, higher second order bending moments 
are to be expected. It is investigated with the same approach bridge model, only now 
the loads are extended with the tandem axle load at a quarter of the arch span. This 
load is investigated on each span, thus 15 load combinations are analysed. Furthermore, 
temperature load (cooling) and shrinkage are added, both leading to downward 
deformations. The sagging bending moments at the tandem axle loads are displayed in 
Table 45. 
 
Table 45: Sagging bending moments at tandem axle load [kNm]                 

 
Span 

Max. sagging bending moment 

Linear Nonlinear Factor 
1-2 6,892 9,905 1.44 
2-3 4,060 4,391 1.08 
3-4 5,076 5,823 1.15 
4-5 4,053 4,363 1.08 
5-6 6,756 8,110 1.20 
6-7 5,255 6,405 1.22 
7-8 5,556 6,840 1.23 
8-9 5,397 6,705 1.24 
9-10 5,145 6,353 1.23 
10-11 5,341 6,576 1.23 
11-12 5,157 6,294 1.22 
12-13 5,139 6,200 1.21 
13-14 5,081 6,092 1.20 
14-15 5,415 6,475 1.20 
15-16 6,672 8,056 1.21 

Geometrical imperfection 

The geometrical imperfection is investigated for the approach bridge model by manually 
changing the nodal coordinates. Both the two and three half sine wave imperfections 
are investigated once. The two half wave imperfection applied to span 6-7 is combined 
with the tandem axle load at a quarter of the span and the three half wave imperfection 
applied to span 3-4 is combined with the tandem axle load at mid span. 
 
 Table 46: Results span 3-4 

Analysis Perfect Imperfect    

Linear 6,640 7,719 1,079 
Nonlinear 10,453 12,280 1,827 
  1.57 1.59  

Table 47: Results span 6-7 

Analysis Perfect Imperfect    

Linear 5,255 5,711 486 
Nonlinear 6,405 7,184 779 
 1.22 1.26  
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22. Conclusion multiple arch analysis 

Geometrical imperfections do not lead to much higher magnification factors, when 
comparing the perfect shape first and second order with the imperfect first and second 
order analysis. However, the bending moments are higher for the imperfect model. 
When considering magnification factors, in which the geometrical imperfection is 
accounted for much higher bending moment magnification factors are found. Especially 
when considering the tandem axle loading and the geometrical imperfection at the end 
span, combined with the internal forces and deformations due to the distributed loads. 
 
Figure 97 illustrates the end span being critical, since the normal force is exited largely, 
but the deformations are still large due to the relatively low degree of confinement.  
 

 

Figure 97: Normal force distribution  

 

 



 

 

 
 

Arched structures? Nonlinear! 

 

Part 4: Introduction to physical  

nonlinearity and 3D effects 
 

 

 

 

 

 

 

 

 

 

 

 



 
Literature 

 

Geometrically nonlinear behaviour of arches in 2D Page 115 of 134 
MSc Thesis  

Contents – Part 4: Introduction to physical nonlinearity and 3D 
 
23. Introduction to Part 4 116 
24. Physically nonlinear analysis 117 

24.1 Fictitious Young’s modulus via M-N-κ relation 117 
24.1.1 M-N-κ theory 118 
24.1.2 Fictitious stiffnesses following from M-N-κ analysis 120 

24.2 Results structural analyses 122 
25. Three dimensional modelling 124 

25.1 Models 124 
25.2 Results 126 

25.2.1 Normal forces in global x-direction 126 
25.2.2 Bending moments – around global y-axis 127 

25.3 Check two dimensional analysis 130 
26. Conclusion and recommendation for further research 132 
 

  



 
Literature 

 

Geometrically nonlinear behaviour of arches in 2D Page 116 of 134 
MSc Thesis  

23. Introduction to Part 4 

Physically nonlinear behaviour and the transverse load distribution could not be 
investigated in this thesis thoroughly due to time constraints. However, a brief 
introduction to both phenomena is provided in this part. It demonstrates the influence 
of the physical nonlinearity and the transverse load distribution and it provides a first 
step for future research. 
 
The influence of cracking at the supports is investigated by reducing the Young’s 
modulus of the material. Fictitious Young’s moduli are derived with M-N-κ diagrams 
and implemented in the structural model. Only the support regions are assumed to 
crack, the rest of the span is modelled by the uncracked stiffness of the cross-section. 
 
The transverse load distribution can only be investigated with a three dimensional 
finite element model. Point supports or line supports and transverse prestressing 
determine the transverse load distribution. A single arch is modelled with shell 
elements and the effect of the support condition and the prestress is displayed. The 
results are checked with two dimensional beam models. 
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24. Physically nonlinear analysis 

Structural behaviour of arches is determined by stiffnesses. Material stiffness and soil 
stiffness are the two parameters that have a large impact on the internal forces. In 
arches, the soil stiffness and axial stiffness determine the normal forces and the 
translation of the arch. The bending stiffness regulates the deformations and bending 
moments ensure the compatibility of deformations and boundary conditions.  
 
In the analysis, a high Young’s modulus will result in high first order bending moments 
and small deformations. Small deformations will result in low second order bending 
moments. When a low Young’s modulus is modelled, higher deformations will result in 
higher second order bending moments, but the first order bending moments are much 
lower. A lower Young’s modulus leads to lower bending moments, even when 
including the geometrically nonlinear effect. 
 
In design, the cross-sectional stiffness is modelled by a fictitious Young’s modulus and 
a linear elastic cross-section. According to the Dutch national annex to NEN-EN-1992-
1-1, the Young's modulus is reduced to include the effects of creep, cracking and axial 
forces. However, this formula leads to a relatively low Young’s modulus, which is a safe 
approach when checking maximum deformations, but might be too favourable for the 
computation of the internal forces. Nevertheless, in arched structures, 
underestimating the Young’s modulus and thus underestimating bending moments will 
lead to cracking. After cracking the Young’s modulus decreases and the bending 
moments will decrease as well. The realistic Young’s modulus is thus mainly required 
to check durability requirements. 
 
A true physically nonlinear analysis is not carried out in this investigation. A physically 
nonlinear analysis requires time for modelling and computation, in which internal 
forces and material stiffnesses should converge according to the physically nonlinear 
relation. Time for the physically nonlinear analysis lacks, but the principles will be 
demonstrated in this chapter to provide insight into the effect and to serve as a 
prelude for further investigation. 
 
In the two dimensional approach bridge model, the fictitious Young’s modulus is 
adapted, based on the M-N-κ theory. The high bending moments at the supports are 
assumed to cause cracking and the fictitious Young’s modulus is decreased manually in 
the support region. The mid part is assumed not to crack and accordingly the high 
initial stiffness is applied. 

24.1 Fictitious Young’s modulus via M-N-κ relation 

According to the Dutch national annex to Eurocode 2, the fictitious Young’s modulus 
might be approximated by                                 

       . 

This formula provides a good approximation for the Young’s modulus, when creep, 
cracking and axial forces should be accounted for. However, in arch analysis, the lower 
Young’s modulus due to creep leads to underestimation of the bending moments. 
Furthermore, it only provides information on the combination of axially loaded cracked 
cross-sections. Uncracked cross-sections combined with an axial load cannot be 
evaluated with the formula. 
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24.1.1 M-N-κ theory 

The bending moment curvature relation is programmed in a spreadsheet, including the 
effect of normal force. The diagram is based on four points, which follow the 
characteristic steps in the nonlinear behaviour of the cross-section. First the curvature 
is determined for the cracking bending moment of the uncracked cross-section (Figure 
98). After cracking two situations are possible, first the compressive yield strain of the 
concrete is reached or the tensile reinforcement reaches the yield strength. It is 
assumed that for the arch loaded by axial compression, the concrete compressive yield 
strain is reached first (Figure 99). For the third point, the steel yield strain is reached in 
the tensile reinforcement (Figure 100). The last point represents the ultimate bending 
moment, in which the ultimate yield strain in the concrete is reached (Figure 101). 

 
 
Figure 98: M-N-κ at the cracking bending moment 

 
 
Figure 99: M-N-κ for reaching the compressive yield strain 

 
 
Figure 100: M-N-κ for the elastic bending moment Me (yielding of concrete and reinforcement) 

 
Figure 101: M-N-κ at the ultimate bending moment 
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The four computations follow the same recipe. Each point on the  M-N-κ diagram 
follows from a characteristic strain. The other strains can be computed by geometrical 
mathematics, once the position of the neutral axis is known. Then Hooke’s law 
(     ) is applied to obtain the stress distribution. Based on horizontal equilibrium, 
which includes the axial force, the position of the neutral axis can be determined. This 
is iteratively solved in the spreadsheet by using the goal seek function, which performs 
a Newton-Raphson approximation. Once horizontal equilibrium is satisfied, the 
accessory bending moment can be computed. Curvature follows from the slope of the 
strain diagram. Then the fictitious stiffness is computed, based on the area moment of 
inertia  of the uncracked cross-section,                     . 

 
The M-N-κ diagram is determined for the two cross-sectional heights,          
and           . Concrete strength, reinforcement and cover are all applied 
according to the city bridge design. For the compressive axial force,             is 
used, leading to upper bound values for the fictitious Young’s modulus, which is a safe 
approximation. 
 

 

  
Figure 102: M-N-κ diagrams for h=500 and h=1,000 
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Creep effect 

In the derivation of the M-N-κ formulae, a bi-linear stress-strain relation is used. In 
Eurocode 2 (1992-1-1), the prescribed concrete compressive yield strain            
and yield stress     imply a reduced Young’s modulus                        . 
This Young’s modulus is a rough approximation of the material stiffness including 
creep reduction, but it is not the most accurate approximation. However, it can be 
used in linear analysis to check strength criteria. It is not suitable to compute 
deformations or to use it in geometrically nonlinear analysis. It is better to adapt the 
bi-linear diagram to the initial stiffness     and the reduced stiffness           
and thus obtaining the strains    

  and             
 . The concrete yield stress     is kept 

constant. The two properties of the applied C35/45 concrete are:            
            and                 . 
 

 
Figure 103: Adapted bi-linear stress-strain diagram 

 
In the diagram, the yield strains are determined via: 

   
  

   
   

 
     

      
        

 

            
  

              

   
 
               

      
       

 

In part 1, the creep coefficient is determined,                      . For this creep 

factor, the strains are almost equal,       and      . This is a coincidence. In case 
one of the many creep parameters is changed, the strains will differ. The mean Young’s 
modulus is not reduced to a design value      , since a lower Young’s modulus will 
result in lower bending moments.  

24.1.2 Fictitious stiffnesses following from M-N-κ analysis 

The results of the analysis are displayed in the graphs of Figure 102. The values of the 
fictitious stiffnesses are displayed in Table 48. For the uncracked stiffness, the first 
model is used, see Figure 98. The cracked stiffness is computed according to the model 
in Figure 100, which represents the lowest secant stiffness before the tensile 
reinforcement yields. 
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Table 48: Fictitious stiffnesses 

           UNCRACKED CRACKED  

                             
Creep included 21,545 19,074 13,387 9,604 
Creep not included 42,323 39,832 14,927 11,623 

 
Due to the increasing height at the support, weighted averages for the fictitious 
Young’s moduli are computed based on the average height of the cross-section. 

 
Figure 104: Arch geometry  at support 

 
A  linearly weighted average height is used to compute the weighted fictitious Young’s 
modulus: 

         
                    

 
        

 

         
       

        
       

 

         
        

        
       

 
Weighted fictitious Young’s moduli – support region 
                                              

                                              

                                                

                                              

 
These stiffnesses are combined with the uncracked fictitious stiffness in the span, as 
displayed in Table 49 and 
 
Table 49: Fictitious Young's moduli for FE analysis 

        
   Span  Support 

 UNCRACKED UNCRACKED CRACKED 
Creep included 21,545 20,675 12,055 
Creep not included 42,323 41,446 13,764 

 

Figure 105: Cracked and uncracked zones 
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24.2 Results structural analyses 

The influence of cracked cross-sections at the supports and the influence of creep is 
investigated with the approach bridge model. It is loaded by permanent load, 
temperature load, distributed traffic load and the tandem axle load at mid span of 
span 3-4. This loading is combined with the three half sine wave imperfection at span 
3-4. The results are displayed in Table 50. In this table, the maximum hogging and 
sagging bending moments are displayed for each span. The hogging bending moments 
at the supports decrease when cracking is taken into account by     when creep is 
taken into account and over     in case the stiffness without the creep effect is 
investigated. The sagging bending moments increase only little (or even decrease). The 
increase at mid span is 10% to 20% compared to the decrease at the supports. The 
lower bending stiffness of the arches due to cracking and creep leads to lower bending 
moments. The decrease of bending moments is compensated by higher normal forces. 
 
Table 50: Results structural analysis approach bridge model 

        Creep not included Creep included 

  Uncracked Cracked Uncracked Cracked 
1-2 Support -57,710 -41,299 -42,012 -36,681 
 Span 11,972 12,596 8,923 9,190 
2-3 Support -36,233 -21,524 -20,062 -15,309 
 Span 7,046 5,885 4,333 4,288 
3-4 Support -34,058 -22,677  -23,560 -19,992  
 Span 14,583 13,603 12,126 11,834 
4-5 Support -34,618 -23,080  -25,548  -21,625  
 Span 5,525 5,081 3,756 3,933 
5-6 Support -34,823 -22,294 -25,609 -21,459 
 Span 4,954 5,350 3,970 4,526 
6-7 Support -23,831  -15,109  -16,237  -13,419  
 Span 3,885 2,914 2,259 2,340 
7-8 Support -24,447  -15,977  -16,912  -14,250  
 Span 3,562 3,222 2,567 2,711 
8-9 Support -19,991  -12,413  -13,880  -11,488  
 Span 1,849 2,392 2,033 2,470 
9-10 Support -19,677 -12,370  -14,162  -11,841  
 Span 1,634 2,005 1,567 1,948 
10-11 Support -21,690  -13,717  -15,135  -12,671  
 Span 2,412 2,592 2,017 2,316 
11-12 Support -21,691  -13,677  -15,204  -12,707  
 Span 2,216 2,302 1,723 2,036 
12-13 Support -23,001  -14,368  -15,639  -12,986  
 Span 2,565 2,489 1,838 2,108 
13-14 Support -25,322 -15,832  -16,964  -13,968  
 Span 3,198 2,725 1,947 2,096 
14-15 Support -31,079  -20,561  -21,092  -17,652  
 Span 5,057 4,293 3,050 2,992 
15-16 Support -28,420 -18,359 21,532 -18,077 
   Span 6,790 6,596 5,371 5,540 
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Tandem axle load 

The sagging bending moment in span 3-4 reduces when cracking is taken into account. 
This is highly advantageous, since it is the bending moment at the tandem axle loading 
that decreases. The envelope of the sagging bending moments is composed mainly by 
the bending moments due to these point loads. Reducing the stiffness at the support is 
thus not only beneficial at the support region, but reduces bending moments in the 
other areas as well. 
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25. Three dimensional modelling 

The previous analyses, in which the geometrically nonlinear behaviour of the arched 
structure were investigated, are based on two dimensional models. In these models, 
the structure is represented by one dimensional beam elements. In two dimensional 
modelling, the load distribution in transverse direction is neglected. The concrete 
arches are actually curved plates or shells, in which bending in two direction occurs, 
due to twisting rigidity and the point supports. The geometry is displayed in Figure 
106.  

 
Figure 106: Three dimensional view of approach bridge design 

 
In this chapter there will be a brief overview of the differences between the beam 
model, a line supported shell model and a point supported shell model. A complete 
analysis of the approach bridge in three dimensional models has to be left for future 
research, due to time constraints.  

25.1 Models 

To provide some insight in the differences between the two dimensional and three 
dimensional behaviour of the structural concept, the point supported arches, four 
models are analysed and compared: 
 

- Two dimensional beam model of a single arch 
- Three dimensional shell model of a single line supported arch 
- Three dimensional shell model of a single point supported arch (Figure 107) 
- Three dimensional shell model of a single point supported arch, including the 

transverse prestressing (Figure 108) 
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Figure 107: Point supported arch model 

 
Figure 108: Prestress loading at hidden transverse beam 

 
To obtain insight in the structural differences, the loads, the Young’s modulus, the 
cross-section and the geometrical imperfection should be similar for the different 
models. The loads are applied as stated in part 1, including permanent load (self-
weight, dead weight and shrinkage), traffic load LM1, temperature differences and 
prestress load, see chapter 7. Since the loads are represented as realistic as possible, 
there will occur a difference between the two and three dimensional models. 
Parapets, barriers, mixed aggregates, traffic load and prestress cause uneven loading 
over the width of the bridge.  
 
The geometrical imperfection is included in the shape of the model. The three wave 
sine imperfection with a       amplitude is applied. The fictitious Young’s modulus is 
applied based on the uncracked cross-section and including creep, leading to 
               . The increasing cross-sectional height near the support is not 

modelled. 
 
For the supports, translational and rotational springs are implemented in the models, 
see Figure 107. In the two dimensional model, translational stiffness              
and rotational stiffness                 are applied. In the three dimensional 
models, these stiffnesses are adapted to line stiffnesses            and 
               . 
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25.2 Results 

In this paragraph, the results of the analyses are shown. Note that the internal forces 
are shown in the directions of the local axis system, while the global axis system is 
displayed in the figures.  

25.2.1 Normal forces in global x-direction 

 

   
Figure 109: Normal forces - line support 

 

  
Figure 110: Normal forces - point support 

 

  
Figure 111: Normal forces - point support including transverse prestress 

 
In Figure 111, the tensile forces in longitudinal direction near the edges are caused by 
the prestress load in transverse direction. In construction phasing, the hidden 
transverse beams are cast and prestressed first. Afterwards the arches are cast to 
these prestressed beams. Due to creep, some of these tensile forces will occur, but the 
force will be much smaller than computed in this model. 
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25.2.2 Bending moments – around global y-axis 

Line Support 

 
 

 
Figure 112: Bending moments - line support 

 
The arches with line supports only benefit a transverse load spread of the tandem axle 
loads. These loads are applied eccentrically at the arch crown, to display the effect. For 
line supported arches, there are no large benefits in modelling the structure in three 
dimensions. 
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Point support 

 
 

 
Figure 113: Bending moments - point support 
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Point support including transverse prestress  

  
 

 
Figure 114: Bending moments - point support including transverse prestress 
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25.3 Check two dimensional analysis 

In the finite element program, the internal forces on plates and shells can be displayed 
along internal lines. One of the options is to display the average value of the internal 
forces. In the figures, the average bending moment per unit width is displayed for the 
bending moments around the global y-axis. 
 

 

Figure 115: Average bending moments - line support - linear (l)  and geometrically nonlinear (r) 

 

 
Figure 116: Average bending moments - point support - linear  (l) and geometrically nonlinear (r) 

 
 
Figure 117: Average bending moments – including transverse prestress – linear (l)  and geometrically 
nonlinear (r) 

 
Figure 118: Bending moments two dimensional beam model - linear 
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Figure 119: Bending moments two dimensional beam model - geometrically nonlinear 

 
Table 51: Overview bending moments 

Bending moments 
        

Line support Point supp. Point supp. 
& prestress 

2D model 

Support Linear -11.830 -8.785 -9.053 -14.912 
Geometrically nonlinear -13.897 -11.456 -11.414 -13.264 
Span Linear 8.544 8.587 8.321 8.696 
Geometrically nonlinear 8.908 8.605 8.438 9.151 

 
In Table 51, the average bending moments that are displayed in Figure 115, Figure 116 
and Figure 117 are multiplied by the bridge width of     , to obtain the resulting 
bending moment over de bridge width. These values can be compared with the results 
of the two dimensional beam model. The results have the same order of magnitude. 
Only the bending moments at the support are a little lower for the point shaped 
supports. When comparing the line supported arch with the point supported arch, 
transverse load distribution between the piers via beam action is present. Due to the 
hammock shaped deformation in this region (Figure 121), the material curves only 
little. Support bending moments in the zone between the support are small, resulting 
in slightly lower average bending moment in the point supported case. Note that this 
deflection depends on the applied loading. In this case, the backfill is thicker and thus 
heavier in the support region.  
 
        Point supported incl. prestress   Line supported 

 
Figure 120: Deformations    (upper) and rotations    (lower) 

 
Figure 121: Detail of deformed shape at support 
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26. Conclusion and recommendation for further research 

The research showed that there is only a poor relation between second order bending 
moment magnification via Euler buckling and the actual geometrically nonlinear 
behaviour of arches. The better approach for the second order effect is to think of 
additional bending moments caused by imperfections and by the imaginary second 
order loading. The additional bending moments due to the second order effect are 
determined by the deformations and the horizontal thrust. 
 
The amplitude of the geometrical imperfection in the analyses is applied conform 
eurocode 2. Analysis showed the high sensitivity of arches to imperfections. The 
amplitude of the imperfection is a fictitious value to use in structural analysis. It 
incorporates deviations due to execution tolerances and material non-homogeneity. 
Due to time constraints, the derivation of the formula could not be investigated. 
However, it has a large influence on bending moments.   
 
Accounting for physical nonlinear behaviour is realistic and beneficial. The stiffness of 
concrete cross-sections varies depending on the internal forces it is exposed to. 
Bending moment peaks will lead to cracking. The resulting lower bending stiffness 
reduces the peak value. In this introducing analysis, the stiffness is applied according to 
M-N-κ theory in which the initial uncracked stiffness and the lowest elastic stiffness 
(just before yielding is reached). A full physical nonlinear analysis, including the 
reinforcement and nonlinear stress-strain relations, will provide more detailed results.  
 
The three dimensional model, including the physical and geometrical nonlinear 
behaviour, is the best representation of the point supported structure. It can be 
optimized by modelling the spreading of the tandem axle load through the foamed 
concrete more accurately. The most accurate and elaborate model will lead to the 
most detailed results, when modelled well. However, these models require much time. 
Computational time increases as equilibrium between loading, deformations and 
stiffnesses has to be found iteratively for each load combination separately. 
Furthermore, judging the large amount of output data in an elaborate model is time 
consuming as well. 
 
In practice, modelling all physical mechanisms as detailed as possible is considered 
with respect to uncertainties like the spread in soil data, accuracy of loads and 
deviations of material properties. These considerations might lead to the use of far 
more straightforward models in engineering. Nevertheless, for further research,  it is 
good to know whether the three dimensional, physically and geometrically nonlinear 
model will lead to lower or higher internal forces compared to the more elementary 
models. 
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